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Abstract—This work addresses target detection from a set of
compressive sensing radar measurements corrupted by additive
white Gaussian noise. In previous work, we studied target
localization using compressive sensing in the spatial domain, i.e.,
the use of an undersampled MIMO radar array, and proposed
the Multi-Branch Matching Pursuit (MBMP) algorithm, which
requires knowledge of the number of targets. Generalizing the
MBMP algorithm, we propose a framework for target detection,
which has several important advantages over previous methods:
(i) it is fully adaptive; (ii) it addresses the general multiple
measurement vector (MMV) setting; (iii) it provides a finite data
records analysis of false alarm and detection probabilities, which
holds for any measurement matrix. Using numerical simulations,
we show that the proposed algorithm is competitive with respect
to state-of-the-art compressive sensing algorithms for target
detection.

I. INTRODUCTION

In general, target localization with radar consists of two
stages: detection and estimation [1]. The detection process
establishes the presence of a target in a prescribed resolution
cell. This process is characterized by two parameters [2]:
probability of false alarm (PFA) and probability of detection
(PD). The goal is to maximize the probability of detection
for a fixed level of false alarms. Classical detection is a
process that inherently relies on a single target point of view.
Detection performance is usually represented by receiver oper-
ating curves (ROC). Estimation builds on detection by seeking
to improve the accuracy of localization for detected targets.
In principle, estimation adopts a multi-target viewpoint. For
example, maximum likelihood estimation accounts for the
interaction between closely spaced targets, hence localization
performance is generally improved compared to detection.

Undersampling, inherent to compressive sensing [3], causes
ambiguities, i.e., interaction between targets may give rise to
false peaks. Classical detection, in which resolution bins are
tested one-by-one for the presence of a target, is then not
suitable for compressive sensing scenarios. In contrast, clas-
sical estimation algorithms can handle compressive sensing
scenarios, but are not equipped to handle unknown number of
targets. In this work, we seek compressive sensing methods
that bridge between detection and estimation in the sense of
supporting detection of multiple targets, while accounting for
mutual effects between the targets. In particular, we focus
on the application of multiple-input multiple-output (MIMO)
radar [4] to the detection and estimation of targets from
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direction-of-arrival (DOA) measurements. In other words, we
seek to recover information about the scene by compressive
sensing methods without a priori information about the number
of targets.

The sparsity assumption, which permeates compressive
sensing, blurs the distinctions between detection and estima-
tion. In compressive sensing, the main unknown is the signal
support, which must be recovered. The recovery of the support
is essentially an estimation problem, but it requires decisions
on zero and non-zero elements, which is a detection problem.
In the MMV setting, we aim to recover a sparse signal matrix
X from noisy compressive measurements Y = AX + E,
where A is a measurement matrix and E represents the noise.
It has been shown in [5] that, under certain conditions on the
matrix A and the sparsity K, the optimal method to recover
X is by solving the nonconvex noisy l0-norm problem, i.e.,
minX ‖Y −AX‖2F +ν ‖X‖0, where ‖X‖0 counts the number
of non-zero norm rows of X. The regularization parameter ν
governs the trade-off between fitting the data (‖Y −AX‖2F )
and reducing the solution cardinality (‖X‖0), hence it can be
set based on prior information, for example, the number of
targets K or the noise level σ2. In a radar detection problem,
where there is no a priori information on the number of targets
or on the noise level, setting the parameter ν is non-trivial.

In [6], the authors addressed target detection in the so-
called single measurement vector (SMV) setting (when a
single snapshot is available, i.e., the matrix Y reduces to
a column vector) using the Complex Approximate Message
Passing (CAMP) algorithm, which aims to solve the l1-norm
convex approximation of the l0-norm problem. Building on an
asymptotic analysis of CAMP, the authors proposed a detection
framework, where K and σ2 are unknown. In addition to [6],
several other authors proposed compressed sensing algorithms
to address this type of problem, but either assumed the noise
level and/or the number of targets to be known, or required as
input the regularization parameter ν.

In this work, extending our previously proposed Multi-
Branch Matching Pursuit (MBMP) algorithm [7], we present
a framework for target detection which has several important
advantages over previous methods: (i) it is fully adaptive,
i.e., it does not require prior knowledge of the number of
targets K or noise level σ2; (ii) it addresses the general MMV
setting (rather than the SMV setting addressed in [6]); (iii) it
provides an analysis of false alarm and detection probabilities
that holds for finite data records and any measurement matrix
A (rather than an asymptotic analysis based on a Gaussian
measurement matrix A as in [6]). The proposed algorithm is



tested in a spatial compressive sensing-radar setting, where
undersampling in space enables considerable savings in the
number of array elements, while still enabling high resolution
localization. However, we point out that the work in this
paper does not rely on the particular structure of the spatial
compressive sensing matrix A, therefore our findings are
relevant to other radar compressive sensing scenarios, for
instance, radar compressive sensing in the time domain [8]
or in the frequency domain [6].

The following notation is used: boldface denotes matrices
(uppercase) and vectors (lowercase); for a matrix X, [X]i,j
denotes the element at i-th row and j-th column, X (i, :)
denotes the i-th row, and vec (X) produces a column vector
by stacking the columns of X; (·)∗ denotes the complex
conjugate operator; (·)T denotes the transpose operator; (·)H is
the complex conjugate-transpose operator, (·)† is the pseudo-
inverse operator, ‖X‖F is the Frobenius norm of A. The
symbol “⊗” denotes the Kronecker product. Given a set S
of indices, |S| denotes its cardinality, AS is the sub-matrix
obtained by considering only the columns indexed in S, and
Π⊥AS

, I −ASA
†
S is the orthogonal projection matrix onto

the null space of AH
S . Given two set of indexes, S and S′,

S\S′ contains the indexes of S which are not present in S′.
We define a K-sparse matrix to have only K non-zero norm
rows, ‖X‖0 counts the number of non-zero norm rows of
X and we say that a set of indices S is the support of the
matrix X if the set S collects the indexes of non-zero norm
rows of X. For a vector, x ∼ CN (µ,C) means that x has a
circular symmetric complex normal distribution with mean µ
and covariance matrix C. Fa,b denotes an F distribution with
a numerator degrees of freedom and b denominator degrees of
freedom, while F ′a,b (η) denotes a non-central F distribution
with a numerator degrees of freedom and b denominator
degrees of freedom, and non-centrality parameter η. Finally,
for a probability density function X , the right-tail probability
at γ is denoted by P = QX (γ), while γ = Q−1

X (P ) denotes
its inverse function.

II. SYSTEM MODEL

In our spatial compressive sensing framework for MIMO
radar, N sensors collect a finite train of P pulses sent by
M transmitters and returned from K stationary targets. We
assume that transmitters and receivers form linear arrays
of aperture Z/2: the m-th transmitter is at position ξm,
ξm ∈ [0, Z/2] ∀m, on the x-axis; the n-th receiver is at
position ζn, ζn ∈ [0, Z/2] ∀n. Targets are assumed in the far-
field, meaning that a target’s aspect angle1 θk is constant across
the array. The purpose of the system is to detect the presence
of targets and determine their DOA angles. Following [7], the
DOA estimation problem can be cast in a sparse localization
framework. Neglecting the discretization error, it is assumed
that the target possible locations comply with a grid of G
points φ1:G (with G� K). By defining the MN ×G matrix
A = [a (φ1) , . . . ,a (φn)] where a (θ) , c (θ) ⊗ b (θ) with

1θk is defined as the sine of the k-th target’s DOA angle.

b (θ) =
[
exp

(
−j2πZθλ ζ1

)
, . . . , exp

(
−j2πZθλ ζN

)]T
the transmitter steering vector and c (θ) =[
exp

(
−j2πZθλ ξ1

)
, . . . , exp

(
−j2πZθλ ξM

)]T
the receiver

steering vector (see [7] for further details), the signal model
is expressed:

Y = AX + E (1)

where E ∈ CMN×P represents the noise, which is assumed
to be independent and identically distributed (i.i.d.) complex
Gaussian, i.e., vec (E) ∼ CN

(
0, σ2I

)
, with unknown σ2. The

unknown matrix X ∈ CG×P contains the targets locations and
gains. Zero rows of X correspond to grid points without a
target. The problem (1) is sparse in the sense that X has only
K � G non-zero rows.

The properties of the measurement matrix A are governed
by the grid-points φ1:G and by the sensors’ number and posi-
tions ξ1:M and ζ1:N . Since the sensors’ positions are assumed
random (described by the probability density functions (pdf)
p (ξ) and p (ζ)), the elements of the measurement matrix A
are also random. In the following, we chose p (ξ) and p (ζ)
to be uniform distributions, and we chose φ1:G as a uniform
grid of 2λ/Z-spaced points in the range [−1, 1].

III. DETECTION USING MBMP

The goal of the detection problem is to identify the non-zero
norm rows of X (i.e., its support) given the measurements Y
in (1). It has been shown [5] that, under certain conditions on
the matrix A and the sparsity K, the matrix X in (1) can be
recovered by solving the nonconvex noisy l0-norm problem:

min
X
‖Y −AX‖2F + ν ‖X‖0 (2)

where ν is a regularization parameter which depends on prior
information, e.g. the number of targets K or the noise level
σ2. In the following, we first review the MBMP algorithm
[7] to solve (2) assuming the number of targets K is known.
Then, we detail the proposed framework for target detection in
which we extend the MBMP algorithm to handle an unknown
number of targets K.

To present the proposed framework, it is instructive to
reformulate problem (2) in terms of the support S of the
solution X. Problem (2) is equivalent to

min
S

∥∥Π⊥AS
Y
∥∥2

F
+ ν |S| (3)

in the sense that, given the optimal solution Sopt of (3),
the non-zero norm rows of the optimal solution to (2) are
XSopt = A†SoptY, and, vice versa, given the optimal solution
Xopt of (2) the optimal solution Sopt of (3) is the support of
Xopt. The reformulation follows by noticing that for a fixed
support S, the non-zero rows of the solution to problem (2)
are XS = A†SY. Plugging this into the fit term, we have
Y − AX = Y − ASA

†
SY = Π⊥AS

Y, where the last step
follows from the definition of Π⊥AS

. Finally, for a fixed support
S, the cardinality term is simply ‖X‖0 = |S|, thus obtaining
the reformulation.



Figure 1. Graph of MBMP algorithm for a branch vector d = [3, 2].

The regularization parameter ν in (3) affects only the
cardinality of the solution’s support S. Therefore, for a fixed
cardinality, the support can be found from

Sj = arg min
S

∥∥Π⊥AS
Y
∥∥2

F
s.t. |S| = j (4)

which does not require knowledge of ν. In general, solving this
problem requires combinatorial complexity. In the following
we describe how the solution (with and without knowledge of
the sparsity K) can be efficiently approximated by using the
MBMP algorithm.

A. MBMP with known sparsity K

When the sparsity K is known, we aim to solve (4) with
j = K. The MBMP algorithm approximates the solution of
this problem by generalizing the matching pursuit strategy.
It is possible to visualize the MBMP algorithm as a tree of
nodes, as shown in Fig. 1, where each node is populated
with a provisional support, such that node’s level indicates the
cardinality of its associated support, e.g., all nodes at level
2 contain supports with cardinality |S| = 2. The process
stops when all nodes at level K have been populated, and
the provisional support, among nodes at level K, achieving
the minimum data-fit (

∥∥Π⊥AS
Y
∥∥2

F
) is elected as the solution.

The structure of the tree depends on the number of levels,
K, and on the number of allowed branches at each level
(assumed constant for nodes within the same level of the tree).
The structure can be specified using a vector d (referred to
as branch vector) of length K: di represents the number of
branches at level i − 1. For instance, the tree in Fig. 1 has
d = [3, 2] (node 0 has d1 = 3 branches, and each node at
level 1 possesses d2 = 2 branches). See [7] for more details.

B. MBMP with unknown sparsity K

We now extend the MBMP to handle an unknown number
of targets K. While K is unknown, we do assume that an
upper limit K̄ is available. Note that K has to be lower than
the number of rows of A, i.e., K < MN , since otherwise
the uniqueness of the solution is not guaranteed, even in a
noiseless scenario [5].

The MBMP algorithm is extended as follows: (1) MBMP
is applied using the upper limit K̄, to obtain K̄ supports,
S1, . . . , SK̄ ; (2) by relying on results from detection theory, we
choose one among the K̄ supports. The idea is to approximate

the solution to (4) for j = 1 to K̄, to obtain K̄ supports,
S1, . . . , SK̄ , with cardinality ranging from 1 to K̄. This entire
process can be efficiently approximated by using the MBMP
algorithm to solve (4) for j = K̄. The provisional support
achieving the minimum data-fit (

∥∥Π⊥AS
Y
∥∥2

F
), among nodes at

level j, can be used to approximate Sj . In the following, we
analyze the detection process, meaning determining which of
the supports S1, . . . , SK̄ is the true one.

The idea of the detection process is to check whether a
test statistic is higher than a threshold. For a given support
S, consider the data model Y = ASX̃ + E, where AS ∈
CMN×|S| (MN > |S|) is a known measurement matrix of
rank |S|, X̃ ∈ C|S|×P is a matrix of unknown parameters, and
the noise term E ∈ CMN×P satisfies vec (E) ∼ CN

(
0, σ2I

)
,

where σ2 is unknown. The goal of the detection process is to
decide which of the rows of X̃ are non-zero. The SMV setting
(P = 1) for a real measurement matrix was addressed in [2,
Pag. 345]. In the following theorem we address the general
MMV (P ≥ 1) complex case:

Theorem 1 (GLRT for MMV Model - σ2 Unknown) The
hypothesis testing problem of whether a specific row i of X̃
is non-zero given that the other rows l 6= i are known to be
non-zero, is formulated

Hi,0 :
∥∥∥X̃ (i, :)

∥∥∥ = 0, σ2 > 0 (5)

Hi,1 :
∥∥∥X̃ (i, :)

∥∥∥ 6= 0, σ2 > 0

Then:
1) The Generalized Log-likelihood Ratio Test (GLRT) for
deciding Hi,1 is

Ti (Y, S) =

∥∥∥X̂ (i, :)
∥∥∥2

2∥∥∥Π⊥AS
Y
∥∥∥2

F

MN−|S|

[(
AH
S AS

)−1
]
i,i

> γ (6)

where X̂ , A†SY is the MLE of X̃ under Hi,1.
2) The exact probability of false alarm for finite data records
is given by

PFA = QF2P,2P (MN−|S|) (γ) . (7)

3) If the elements of the i-th row of X̃ have constant modulo,

i.e.,
∣∣∣∣[X̃]

i,t

∣∣∣∣ = β for every t, the exact probability of detection

for finite data records is given by

PD = QF ′
2P,2P (MN−|S|)(ηi)

(γ) (8)

where the non-centrality parameter is given by ηi =

Pβ2/

(
σ2

2

[(
AH
S AS

)−1
]
i,i

)
.

Proof: See Appendix.
The theorem is applicable when we want to test the support

S , SK−1 ∪ i for i = 1, . . . , G and i /∈ SK−1, where
SK−1 is a subset of the true support with cardinality K − 1.
The case when i matches the remaining non-zero row index
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Figure 2. Block diagram of the proposed architecture for CS-radar detection.

(i.e., the true support index not in SK−1) is equivalent to the
Hi,1 hypothesis. Furthermore, the theorem also applies when
we want to test for S , Strue ∪ i for i = 1, . . . , G and
i /∈ Strue, where Strue is the true support: this case matches
the Hi,0 hypothesis. The importance of this theorem is that
it characterizes the test statistic Ti (Y, S) and its distribution
under Hi,0. In other words, the theorem tells us that, assuming
S contains the true support Strue, the test statistics for a
row’s index i with only noise (i.e., i ∈ S\Strue) follows the
F2P,2P (MN−|S|) distribution.

In MBMP, when the correct support is estimated and we add
a new index to the support, the new index is the one that cor-
relates the most with the noise realization E among the G−K
columns with indices outside the support. Therefore the test
statistic, at cardinality K+1, is maxi/∈Strue T1 (Y, i ∪ Strue),
and its distributions is the maximum among G −K random
variables, each having a F2P,2P (MN−K−1) distribution. The
dependency among these random variables is hard to ana-
lyze, hence a closed form seams difficult to obtain. In the
numerical results, we show that a reasonable assumption is to
approximate them as independent. Using this assumption, the
test statistic maxi/∈Strue T1 (Y, i ∪ Strue) is distributed as the
maximum of G−K i.i.d. F2P,2P (MN−K−1) random variables
(which for ease of reference we denote as g (K + 1)). There-
fore, the threshold for the test statistic at cardinality j can be
set as

γj , Q−1
g(j) (PFA) (9)

for a given probability of false alarm PFA. Notice that the
threshold γj depends on the cardinality of the support under
test. Focusing at cardinality j, the detection process aims to
detect whether all the indices in Sj are non-zero, given that the
indices in Sj−1 are non-zero (i.e., contain targets plus noise).
This translates to check whether the minimum test statistic
among the indices of Sj not contained in Sj−1, i.e.,

fj , min
i∈Sj\Sj−1

Ti (Y,Sj) (10)

is higher then the given threshold γj . A high value of the
metric fj indicates that Sj is likely to be the true support,
whereas a small value of this metric indicates that Sj is likely
to contain at least one index that contains only noise.

Summarizing, in order to detect the support among
S1, . . . , SK̄ , obtained from MBMP, we let j = K̄, compute
γj using (9) and fj using (10), and check whether fj > γj .
In this case the process stops and we decide for SK̄ as the
support of the detected targets; otherwise we iterate j = j−1
until fj > γj or j = 0 (which corresponds to the case of

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

P
D

F

Outcome of T

 

 
Simulation
Theoretical(i) T

1
(Y,i ∪  Strue)

(ii) max
i ≠ S

true T
1
(Y,i ∪  Strue)

(iii) T
1
(Y,Strue)

Figure 3. Simulated and theoretical pdf of the test statistic Ti (Y, Sj).
System settings: G = 181, K = 8, P = 1, M = N = 7, SNR = 15db.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

P
D

F

Outcome of T

 

 
Simulation
Theoretical(i) T

1
(Y,i ∪  Strue)

(ii) max
i ≠ S

true T
1
(Y,i ∪  Strue)

(iii) T
1
(Y,Strue)

Figure 4. Simulated and theoretical pdf of the test statistic Ti (Y, Sj).
System settings: G = 181, K = 8, P = 10, M = N = 7, SNR = 8db.

detecting no targets). Fig. 2 depicts a block diagram of the
process.

IV. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the potential of the MBMP algorithm for detection using
the spatial compressive sensing signal model (1). To produce
each figure, we first draw a random realization of the array
sensors’ positions, which is maintained fixed throughout in-
dependent Monte-Carlo realizations of the noise (vec (Ep) ∼
CN

(
0, σ2I

)
∀p) and of the targets’ positions and responses

(xk,p = exp (−jϕk) , ∀p, p = 1, ..., P, and ϕk ∼ U (0, 2π)
∀k, k = 1, ...,K). The signal-to-noise ratio (SNR) is defined
as 10 log10 σ

2.
We start by analyzing the simulated and theoretical probabil-

ity density functions of the test statistic (6), over the ensemble
of random targets and noise, in three different cases: (i) the test
statistic T1 (Y, i ∪ Strue) , where i is a fixed index outside the
support; (ii) the maximum test statistic over indices i outside
the support, i.e., maxi/∈Strue T1 (Y, i ∪ Strue); (iii) the test
statistic T1 (Y, Strue) for the first index in the true support.
We set K = 8 targets and an array aperture of Z = 180λ
(where λ is the transmitted signal wavelength). The grid size
is G = 181 grid-points. In Fig. 3, we plot the results for
an SMV scenario (P = 1), while Fig. 4 shows an MMV
scenario (P = 10). The theoretical distributions for cases (i)
and (iii) (used in (7) and (8), respectively) are exact. It can be
seen that the theoretical distributions in case (ii), obtained by
assuming independent random variables, closely matches the
Monte-Carlo simulations results.

We next investigate the performance of the proposed de-
tection scheme based on MBMP (i.e., Fig. 2). We compare
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it with the detection scheme proposed in [6] based on the
CAMP algorithm. The MBMP algorithm’s complexity can be
adjusted by varying the branch vector d. To give an idea of
how the complexity of the algorithm affects the performance,
the MBMP is run with two different choices of the branch
vector d, both of length K̄ = 20: the first uses d =
[5, 4, 3, 2, 1, 1, . . . , 1], while the second uses d = [1, 1, . . . , 1].
We set K = 9 targets and an array aperture of Z = 250λ.
The grid size is G = 181 grid-points. In order to compare
with the architecture proposed in [6], we simulated an SMV
scenario. Denoting with Strue the true support, and with Ŝ
the support determined by a detection algorithm, we define(
Ŝ\Strue

)
/ (G−K) as the empirical probability of false

alarm and
(
Ŝ ∩ Strue

)
/K as the empirical probability of

detection.
In Fig. 5, we plot the ROC curve for the different algorithms.

It can be seen how the proposed architecture is able to
achieve higher probability of detection for the same false alarm
probability as compared to the CAMP algorithm. Further tests
would be required to establish which algorithm performs better
and under which conditions.

V. CONCLUSIONS

In this paper, we address target detection from compressive
sensing radar measurements corrupted by additive white Gaus-
sian noise. By taking a detection point-of-view, we generalize
the MBMP algorithm proposed in [7], such that the number of
targets is now one of the unknowns. The resulting architecture
for the sparse recovery problem is fully adaptive, i.e., it
does not require knowledge of the number of targets or the
noise variance. In addition, we analyze the false alarm and
detection probabilities for the proposed architecture. Using
numerical simulations, the proposed algorithm is compared
against a state-of-the-art compressive sensing algorithm for
target detection.

VI. APPENDIX

Proof of Theorem 1 - Because of the limited space, here
we provide a sketch of the proof. Following the same steps
as [2, Pag. 371-372], it can be shown that the GLRT can
be written as

(
σ̂2

0 − σ̂2
1

)
/σ̂2

1 where σ̂2
l is the MLE of the

noise level σ2 under Hi,l for l = 1, 2. Extending [9, Pag.
176-177], it can be shown that σ̂2

1 =
∥∥Π⊥AS

Y
∥∥2

F
/MNP ,

while, following similar steps as [2, Appendix 7B], σ̂2
0 − σ̂2

1

reduces to
∥∥∥X̂ (i, :)

∥∥∥2

2
/MNP

[(
AH
S AS

)−1
]
i,i

where X̂ ,

A†SY is the MLE of X̃ under Hi,1. Therefore, (6) can be
written as (MN − |S|)

(
σ̂2

0 − σ̂2
1

)
/σ̂2

1 , which, except from
a scaling factor, is the GLRT. Now, consider the random

variable
∥∥∥X̂ (i, :)

∥∥∥2

2
/

([(
AH
S AS

)−1
]
i,i

σ2

2

)
. Under Hi,1 and

assuming β =

∣∣∣∣[X̃]
i,t

∣∣∣∣, for every t, it has a non-central

Chi-Squared distribution with 2P degrees of freedom and
non-centrality parameter given by ηi, and, under Hi,0, it
has a central Chi-Squared distribution with 2P degrees of
freedom. Equivalently, it can be shown that the random
variable

∥∥Π⊥AS
Y
∥∥2

F
/σ

2

2 has a Chi-Squared distribution with
2P (MN − |S|) degrees of freedom under either Hi,0 and
Hi,1. These two random variables are independent. Notice
that (6) can be obtained by normalizing each of the random
variables by the number of degrees of freedom, and by taking
their ratio. By definition, (6) follows a F ′2P,2P (MN−|S|) (ηi)
distribution, under Hi,1, and a F2P,2P (MN−|S|) distribution,
under Hi,0.
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