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Abstract—We explore the capacity of sub-Nyquist sampled
analog channels based on modulation and filter bank sampling
techniques. In particular, we derive the capacity of sampled
analog channels under sampling via modulation banks and filter
banks. A connection between these sampling mechanisms and
MIMO Gaussian channels is illuminated. For sampling with
a single branch of modulation and filtering, we identify the
modulation sequence that optimizes capacity. These results illus-
trate the importance of the sampling technique on the capacity
of sampled analog channels for a broad class of nonuniform
sampling structures.

I. INTRODUCTION

The capacity of analog waveform channels and the cor-
responding capacity-achieving water-filling power allocation
strategy over frequency are well known [1], and provide much
insight and performance targets for practical communication
system design. These results implicitly assume sampling above
the Nyquist rate at the receiver end. However, hardware
and power limitations often preclude sampling at this rate,
especially for wideband communication systems. This gives
rise to several questions at the intersection of sampling the-
ory and information theory: how much information, in the
Shannon sense, can be conveyed through undersampled analog
channels, and how sampling structures should be optimized
to maximize sampled channel capacity under sub-Nyquist
sampling rate constraints.

In the sampling theory literature, various sampling methods
have been developed to exploit the structure of bandlimited
signals [2]. Examples include filter-bank sampling, first ana-
lyzed by Papoulis [3], in which the input signal is sampled
through M linear systems. Inspired by recent “compressed
sensing” [4] ideas, sub-Nyquist sampling approaches have
been developed to exploit the structure of several classes of
input signals, such as multiband signals [5] and signals with
a finite rate of innovation [6]. Sampling via modulation and
filter banks, where the signal is passed through modulation
banks and filter banks before sampling, has proven to be
very effective for signal reconstruction at sub-Nyquist sam-
pling rates. An example of this sampling mechanism is the
modulated wideband converter (MWC) proposed by Mishali
et al. [5], [7]. With all post-modulation filters chosen to
be low-pass filters, MWC performs well in sub-sampling
sparse multiband signals with unknown spectral support. In
fact, sampling via modulation and filter banks captures most
nonuniform sampling techniques used in practice, although it
does not include certain techniques such as sampling with a
random grid.

Most of the above sampling theoretic work aims at finding
optimal sampling and reconstruction mechanisms that achieve
either perfect reconstruction of a class of analog signals from
noiseless samples, or minimum reconstruction error from noisy
samples based on statistical measures (e.g. mean squared error
(MSE)). However, they do not consider optimal sampling
structures based on the information-theoretic metric of channel
capacity. In our previous work [8], we determined opti-
mal transmission strategies and sampling structures for sub-
Nyquist filter bank sampling of analog channels. These results
indicated that capacity was not always monotonic in sampling
rate, and illuminated an intriguing connection between MIMO
channel capacity and capacity of undersampled channels.
Moreover, the optimal filter designed to maximize capacity
was found to be the same as the filter that minimizes the
MSE between the original and reconstructed signals, thereby
uncovering a new connection between capacity and MSE.

In this paper, we expand on our prior work by considering
a broader class of nonuniform sampling mechanisms: that of
modulation banks combined with filter banks. In particular,
for modulation sequences that are periodic with period Tq , we
derive the sampled channel capacity and show its connection to
a general MIMO Gaussian channel in the frequency domain.
Under single-branch sampling via modulation and filtering,
we provide an algorithm to identify the optimal modulation
sequence for piece-wise flat channels when Tq is an integer
multiple of the sampling period. This single-branch mecha-
nism achieves the same performance as employing an optimal
filter bank with each branch sampled at a period Tq . This class
of sampling mechanisms with modulation banks, however,
only allow for a hardware gain instead of a capacity gain,
i.e. the class of modulation-bank sampling does not allow a
capacity gain to be harvested compared with the class of filter-
bank sampling.

The remainder of the paper is organized as follows. The
problem setup is formally stated in Section II. We derive the
sampled channel capacity under modulation-bank sampling
in Section III, along with an approximate analysis based on
MIMO channel capacity. The optimal modulation sequence
under single-branch sampling is explored in Section IV.

II. PROBLEM FORMULATION

Suppose that the transmit signal x(t) is time constrained
to the interval (0, T ]. The channel is modeled as an linear
time-invariant (LTI) filter with impulse response h(t) and
frequency response H(f) =

∫∞
−∞ h(t) exp (−j2πft) dt. The
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analog channel output is given by

r(t) = h(t) ∗ x(t) + η(t),

where η(t) is stationary zero-mean Gaussian noise with power
spectral density Sη (f). We assume throughout the remainder
of this paper that perfect channel state information is known
at both the transmitter and the receiver.

The analog channel output is passed through a sampling
system with sampling rate fs, which comprises M different
branches. Specifically, the received analog signal r(t) in the
ith branch is prefiltered by an LTI filter with impulse response
pi(t) and frequency response Pi(f), modulated by a periodic
waveform qi(t) of period Tq , filtered by another LTI filter
with frequency response Si(f), and then sampled uniformly
at a rate f̃s := fs/M = (MTs)

−1, as illustrated in Fig. 1.
Such sampling mechanisms include as special cases many
nonuniform sampling methods applied in practice. The first
prefilter Pi(f) will be useful in zeroing out out-of-band noise,
while the periodic waveforms scramble spectral contents from
different aliased frequency sets, thus bringing in more design
flexibility that may potentially lead to better exploitation of
channel structures. By taking advantage of random modulation
sequences to achieve incoherence among different branches,
this sampling mechanism has proved useful for sub-sampling
analog multiband signals by exploiting spectral sparsity [5].
Note that the filters can introduce arbitrary delay, so that the
branches may be sampled at different times.
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Figure 1. Sampling via modulation banks and filter banks: in each branch,
the received signal is prefiltered by an LTI filter with impulse response pi(t),
modulated by a periodic waveform qi(t), filtered by another LTI filter with
impulse response si(t), and then sampled at a rate fs/M .

In the ith branch, the received prefiltered analog signal in
the time interval (0, T ] prior to sampling can be written as

yi(t) = si(t) ∗ (qi(t) · (pi(t) ∗ h(t) ∗ x(t) + pi(t) ∗ η(t))) ,
(1)

resulting in the digital sequence of samples

yi[n] = yi(nMTs) and y [n] = [y1 [n] , · · · , yM [n]]
T
.
(2)

The problem of finding the capacity of the sampled channel
can be posed as quantifying the maximum mutual information
between the input signal x(t) and the output sequence sampled
at a rate fs as follows

C(fs) = lim
T→∞

1

T
max
p(x)

I
(
x[0, T ]; {y[n]}(0,T ]

)
, (3)

where x[0, T ] denotes the analog input signal over time [0, T ],
and the maximum is taken over all input distributions p(x)
subject to a power constraint 1

T E(
∫ T

0
|x(τ)|2 dτ) ≤ P .

III. SAMPLED CHANNEL CAPACITY

A. Capacity Results
In this section, we state in closed form the sampled channel

capacity. We first observe that the Fourier transform of each of
the periodic modulation sequences qi(t) is a delta train with
a spacing of the inverse period 1/Tq . Since multiplication in
the time domain corresponds to convolution in the spectral
domain, the modulation bank scrambles frequency components
among different aliased sets. This is reflected in Theorem 1
that characterizes the sampled analog channel capacity.

Assume that T̃s := MTs = bTq/a where a and b are
coprime integers, and that the Fourier transform of qi(t)
is given as

∑
l c
l
iδ(f − lfq). Before stating our theorem,

we introduce two Fourier symbol matrices Fη and Fh. The
aM×∞-dimensional matrix Fη contains M submatrices with
the αth submatrix given by an a × ∞-dimensional matrix
FηαF

p
α. Here, for any v ∈ Z, 1 ≤ l ≤ a, and 1 ≤ α ≤M , we

have

(Fηα)l,v = (Fpα)v,v

∑
u

{
cuαSα

(
f − ufq + v

fq
b

)
exp

(
j2πu

bl

a

)}
.

Also, Fpα and Fh are infinite diagonal matrices such that for
all l ∈ Z:

(Fpα)l,l = Pα

(
f − l fqb

)√
Sη
(
f − l fqb

)
,(

Fh
)
l,l

=
H
(
f−l fqb

)
√
Sη
(
f−l fqb

) .
Theorem 1. Consider the system shown in Fig. 1. Assume that
h(t), pi(t) and si(t) (1 ≤ i ≤M) are all continuous, bounded
and absolutely Riemann integrable, Fη is right invertible.
Additionally, suppose that hη(t) := F−1

(
H (f) /

√
Sη (f)

)
satisfies hη(t) = o (t−ε) for some constant ε > 1. The capacity
C(fs) of the sampled channel with a power constraint P is
given by

C(fs) =

∫ fs
2aM

− fs
2aM

1

2

aM∑
i=1

[log (ν · λi (f))]+ df, (4)

where ν is chosen such that

P =

∫ fs
2aM

− fs
2aM

aM∑
i=1

[ν − λi (f)]+ df. (5)

Here, λi (f) denotes the ith largest eigenvalue of
(FηFη∗)

− 1
2 FηFhFh∗Fη∗ (FηFη∗)

− 1
2 at frequency f ,

and [x]
+
:= max {x, 0}.

Remark 1. The right invertibility of Fη ensures that the sam-
pling method is non-degenerate, e.g. the modulation sequence
cannot be zero.

The optimal ν corresponds to a water-filling power alloca-
tion strategy based on the singular values of the equivalent
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channel matrix (FηFη∗)
− 1

2 FηFh, where (FηFη∗)
− 1

2 is due
to noise prewhitening and FηFh is the equivalent channel
matrix after modulation and filtering. This result can be
interpreted by viewing (4) as the classical MIMO Gaussian
channel capacity of the equivalent channel matrix. We note
that a closed-form capacity expression may be hard to obtain
for general modulated sequences qi(t). That is because the
multiplication operation corresponds to convolution in the
frequency domain which does not preserve Toeplitz properties
of the original operator associated with the channel filter.
However, when qi(t) is periodic, it can be mapped to a
spike train in the frequency domain, which still exhibits block
Toeplitz properties, as we describe in more detail later on.

B. Approximate Analysis
Rather than providing a rigorous proof of Theorem 1, we

develop here an approximate analysis by relating the modu-
lated aliased channel to a MIMO channel, which allows for
a communication based interpretation of the capacity results,
similar to the approximate Fourier analysis of Gallager [1]
for the capacity of the analog channel. The proof, which
is deferred to the full-length version [9], makes use of a
discretization argument and asymptotic spectral properties of
Toeplitz matrices.

The Fourier transform of the signal prior to modu-
lation in the ith branch at frequency f is given as
Pi(f) (H(f)X(f) +N(f)). Multiplication of this prefiltered
signal with the modulation sequence qi(t) corresponds to
convolution in the frequency domain. The modulation se-
quence qi(t) is assumed to be periodic with frequency response∑
l c
l
iδ (f − lfq). Define

R(f) = H(f)X(f) +N(f).

The channel output is sampled at a rate f̃s = fs/M in the
ith branch. We observe that since Tq does not coincide with
T̃s := MTs, and that the sampling system is periodic with
period bTq = aT̃s. Specifically, if we denote by h(t, τ) the
output of the sampling system at time t due to an input at time
τ , then h(t− bTq, τ − bTq) = h(t, τ). We therefore divide all
samples in the ith branch into a groups, where the lth (0 ≤ l <
a) group contains {yi[l + ka] | k ∈ Z}, as illustrated in Fig.
2(a). Hence, each group is sampled by a uniform grid with
rate fq/b. The sampling system when restricted to the output
on each group of the sampling grid can be treated as LTI, thus
justifying its equivalent representation in the spectral domain.
The equivalent impulse response of the sampling system for
the lth group can be given by

([
pi(t) · qi(t+ lT̃s)

]
∗ si(t)

)
.

Thus, the equivalent Fourier transform of the system output
before ideal sampling in the lth group of the ith branch can
be written as

Ỹ li (f)

∆
=Si(f)

(
Pi(f)R(f) ∗

∑
u

cui δ (f − ufq) exp
(
j2πflT̃s

))

=Si(f)
∑
u

cui Pi (f − ufq)R (f − ufq) exp
(
j2πu
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Figure 2. (a) Grouping of sampling grid when fs = 3fq . The sampling
grid is divided into 3 groups, where each group forms a uniform grid with
rate fs/3; (b) Equivalent MIMO Gaussian channel for sampling via a single
branch of modulation and filtering. Here, fq = 1

2
fs and f ∈

[
0, fs

2

)
.

which further leads to the sampled sequence in the lth group
of the ith branch as

Y li (f) =
∑
v

Ỹ li

(
f − vfq

b

)
=
∑
v

Al,vPi

(
f − v fq

b

)
H

(
f − v fq

b

)
X

(
f − v fq

b

)
+Al,vPi

(
f − v fq

b

)
N

(
f − v fq

b

)
,

where

Al,v : =
∑
u

cui Si

(
f − v fq

b
+ ufq

)
exp

(
j2πu

bl

a

)
.

Fig. 2 illustrates this representation for sampling with a
single branch of modulation and filtering when fs = 2fq .
All the information of the entire sampled data is contained
in
{
Y li (f) | 0 ≤ l < a, 1 ≤ i ≤M

}
, and hence the sampling

system can be equivalently represented as a MIMO channel
with countable transmit antennas and aM receive antennas.

Define a aliased frequency set with rate f̃s as {f − lf̃s | l ∈
Z}. Due to the convolution operation in the spectral domain,
the frequency response of the sampled output at frequency
f becomes a linear combination of frequency components
{X(f)} and {N(f)} from several different aliased sets. Here,
we introduce the definition of a modulated aliased frequency
set as a generalization of the aliased set. Specifically, for each
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f , its modulated aliased set is the set1 {f − lfq − kf̃s | l, k ∈
Z}. By our assumption that afq = bf̃s with a and b being
relatively prime, simple results in number theory imply that{

f0 − lfq − kf̃s | l, k ∈ Z
}
=

{
f0 − l

fq
b
| l ∈ Z

}
. (6)

In other words, for a given f0 ∈ [−fq/2b, fq/2b], the sampled
output at f0 depends on the input in the entire modulated
aliased set. Since the sampling bandwidth at each branch is f̃s,
all outputs at frequencies {f0 − lfq/b | l ∈ Z; |f0 − lfq/b| ≤
f̃s
2 } rely on the inputs in the same modulated aliased set. This

can be treated as a Gaussian MIMO channel with a countable
number of input antennas at the frequency set {f0−lf̃s/a | l ∈
Z} and aM groups of receive antennas each associated with
one group of sample sequences in one branch. As an example,
we illustrate in Fig. 2 the equivalent MIMO Gaussian channel
under single-branch sampling via modulation and filtering,
when S(f) = 0 for all f /∈ [−fs/2, fs/2].

The effective frequencies of this frequency-selective MIMO
Gaussian channel range from −fq/2b to fq/2b. It can be easily
verified that the noise received in the lth group of the ith
branch is zero-mean Gaussian with spectral density

∞∑
v=−∞

∣∣∣∣Al,vPi(f − v fqb
)∣∣∣∣2 Sη (f − v fqb

)
, |f | ≤ fq

2b

indicating the mutual correlation of noise at different branches.
The received noise vector can be whitened by premultiplying
by an M×M whitening matrix (Fη(f)Fη∗(f))

− 1
2 associated

with the modulation and filter banks. After pre-whitening, the
equivalent channel matrix becomes

(Fη(f)Fη∗(f))
− 1

2 Fη(f)Fh(f) = F̃η(f)Fh(f), (7)

where F̃η(f)
∆
= (Fη(f)Fη∗(f))

− 1
2 Fη(f). Classical MIMO

Gaussian channel capacity results immediately imply that the
channel capacity at frequency f ∈ [−fq/2b, fq/2b] can be
expressed as

1

2

aM∑
i=1

[
log
(
νλi

(
F̃η(f)Fh(f)Fh∗(f)F̃η∗(f)

))]+
for some appropriate water level ν. Taking the integral over
[−fq/2b, fq/2b] and maximizing over all power allocation
strategies leads to a universal water level ν and hence our
capacity expression.

IV. EXAMPLES AND INTERPRETATION

We consider whether adding an extra modulation bank
provides an implementation gain for the following two special
cases.

1We note that although each modulated aliased set is countable, it may be
a dense set when fq/f̃s is irrational. Under the assumption in Theorem 1,
however, the elements in the set have a minimum spacing of fq/b.

A. 1
M fs =

1
afq for some integer a

In this case, the modulated aliased set is{
f − kf̃s − lfq | k, l ∈ Z

}
=

{
f − kf̃s | k ∈ Z

}
, which

is equivalent to the original aliased frequency set. That
said, the sampled output Y (f) is still a linear combination
of

{
H
(
f − kf̃s

)
X
(
f − kf̃s

)
+N

(
f − kf̃s

)
| k ∈ Z

}
.

But since linear combinations of these components can be
attained by simply adjusting the prefilter response S(f), the
modulation bank does not provide any more design degrees
of freedom. Therefore, the maximum sampled channel
capacity achievable by adding an additional modulation bank
is no larger than the one achievable without the modulation
sequences.

B. 1
M fs = bfq for some integer b

In this case, the modulated aliased set is enlarged to{
f − kf̃s − lfq | k, l ∈ Z

}
= {f − lfq | k ∈ Z}, which may

potentially provide implementation gain compared with filter-
bank sampling with the same number of branches. We consider
the following example. Suppose that the channel contains 3
flat subbands with channel gains as plotted in Fig. 3, and that
the noise is of unit spectral density within these 3 subbands
and zero otherwise. Here, single-branch sampling via a single
filter is employed, where the sampling rate is fs = 2 and
the period of the modulation sequence Tq = 2Ts. Due to
aliasing, Subband 1 and Subband 3 (as illustrated in Fig. 3)
are mixed together. The optimal prefilter without modulation
would be a band-pass filter with pass band −1.5 ≤ f ≤ 0.5
[8], resulting in a channel consisting of two subbands with
respective channel gains 2 and 1.

Now if we employ sampling via modulation followed by a
lowpass filter, the channel can be better exploited. Specifically,
suppose that the modulation sequence has a period of 2Ts and
obeys c0 = 1, c1 = 100, c2 = 1, c−2 = 1000 and ci = 0
for all other i’s, and that the cutoff frequency of the low-pass
filter is fcutoff = 1. By simple manipulation,[

exp
(
jπTq

(
f − fs

2

))
Y
(
f − fs

2

)
exp (jπTqf)Y (f)

]

=

[
2 100 1001

100 1 0

]
2X
(
f − fs

2

)
+N

(
f − fs

2

)
X (f) +N (f)

2X
(
f + fs

2

)
+N

(
f + fs

2

)


for all f ∈
[
0, fs2

]
. Through noise whitening and eigenvalue

decomposition, we can derive a pair of equivalent parallel
channels experiencing respective channel gains 2 and 1.99,
which outperforms non-modulated sampling via optimal filter-
ing. As illustrated in Fig. 3, Y (f−fs/2) primarily depends on
the frequency component at f + fs/2, while Y (f) primarily
depends on the frequency component at f − fs/2: both
frequencies have SNR 4. In fact, by increasing c−2 and c1

correspondingly, we can obtain a two-subband channel with
respective channel gains both arbitrarily close to 2. That said,
single-branch sampling via modulation can achieve the same
capacity as applying the optimal filter bank.
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Figure 3. The left plot illustrates the channel gain, where the sampling rate
is fs = 2. The right plot illustrates the signal components of the sampled
response under sampling via modulation.

More generally, let us consider the following scenario.
Suppose that the channel of bandwidth W = 2L

K fs is equally
divided into 2L subbands each of bandwidth fq = fs/K for
some integers K and L. The SNR |H (f)|2 /Sη (f) within
each subband is assumed to be flat. For instance, in the pres-
ence of white noise, if fq � Bc with Bc being the coherence
bandwidth, the channel gain (and hence the SNR) is roughly
equal across the subband. Take any f ∈ [−fq/2, fq/2], and run
the following algorithm to determine the modulation sequence.

Algorithm 1
1. Initialize. Find the K largest elements in{
|H(f−lfq)|2
Sη(f−lfq) : l ∈ Z,−L ≤ l ≤ L− 1

}
. Denote by

{li : 1 ≤ i ≤ K} the index set of these K elements such
that l1 > l2 > · · · > lK . Set i = 1, Imax = −L, J = ∅,
and ci = 0 for all i ∈ Z. Let A be a large given number.
2. For i = 1 : K

For m = Imax : Imax +K − 1
if (m mod K) /∈ J , do
J = J ∪ {m mod K}, Ik = m,

Imax = m+ L− 1− li , cm−li = AK+1−i and break;
3. For i = −L : L− 1

if i ∈ {I1, · · · , IK}, then S (f + ifp) = 1;
else S (f + ifq) = 0.

The goal of this algorithm is to generate K subbands with
high SNR. Due to convolution, the signal in each subband is
a linear combination of the frequency components in all fre-
quencies in the modulated aliased set. Adjusting the values of{
ci : i ∈ Z

}
results in different weights for each component.

Here, the signal in each subband being selected through Step
2 will contain one primary component accounting for most
of the power of the entire signal. Filtering is further used in
Step 3 in order to suppress aliasing. The performance of this
algorithm is characterized in the following proposition.

Proposition 1. Consider the above piecewise flat channel with
2L subbands. For a given fq , the modulation sequence found
by Algorithm 1 maximizes capacity when A→∞.

In fact, the performance of this algorithm is asymptotically

equivalent to the one using sampling via an optimal filter bank
with sampling rate fq at each branch. Single-branch sampling
effectively achieves the same performance as multi-branch
filter-bank sampling. Hence, this is the preferred approach
when building multiple analog filters is more expensive (in
terms of power consumption, size, or cost) than a single
modulator. We note, however, that for a given overall sampling
rate, modulation-bank sampling does not outperform filter-
bank sampling in terms of sampled capacity, as stated below.

Proposition 2. Consider the setup in Theorem 1. For a
given overall sampling rate fs, sampling with M branches of
optimal modulation and filter banks does not achieve higher
capacity than sampling with an optimal bank of aM filters.

That said, instead of a capacity improvement, the main
advantage of applying modulation bank is a hardware gain,
namely, using fewer branches to achieve the same capacity.

V. CONCLUDING REMARKS

This paper characterizes the effect upon sampled channel
capacity of modulation and filter bank sampling. In particular,
we derive the capacity as a function of sampling rate, and iden-
tify optimal modulation sequences for single-branch sampling
in the presence of piecewise flat channels. We show conditions
under which sampling with a single modulator and filter is
equivalent to sampling with a bank of filters. With the sampled
capacity characterized for most nonuniform sampling methods
that are applied in practice, it remains to be seen whether such
sampling methods are already optimal in terms of maximizing
capacity. An upper bound on sampled capacity under sampling
rate constraints for more general nonuniform sampling meth-
ods would allow us to evaluate which sampling mechanisms
are capacity-achieving for specific channels. Moreover, for
channels where there is a gap between achievable rates and the
capacity upper bound, these results might provide insight into
new sampling methods that might achieve or at least close the
gap to capacity. Investigation of capacity under more general
nonuniform sampling techniques is a topic of ongoing work.
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