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Abstract

Motivated by recent results on compressed sensing cam-
eras we consider cameras that perform an analog linear
transformation Φ on the signal, followed by scalar quanti-
zation. Specifically we ask: is it better to use compressed
sensing (Φ is an under-sampling random matrix) or direct
sensing (Φ is the sparsifying basis)? We compare the two
approaches using their energy-distortion tradeoffs: assum-
ing most of the energy consumed by such systems is in the
ADC and the energy of the quantizer doubles with each bit,
which system will give lower distortion for the same en-
ergy consumption? We present analytic expressions for the
energy-distortion curves for three signal models: signals re-
siding in a known subspace, sparse signals and power-law
signals. For all of these models, our analysis shows that
direct sensing results in lower distortion for a given energy
consumption. We also present simulation results for natural
images showing that direct sensing of Haar wavelet coeffi-
cients is preferable for these signals. Given the assumptions
of our model, direct sensing of Haar wavelets can achieve
high quality imaging (PSNR of 40 dB) with 6% the power
consumption of standard cameras using 8 bits per channel.

1. Introduction
In the third quarter of 2012, the worldwide smartphone

population surpassed 1 billion [1]. The smartphone has be-
come a popular and frequently used platform for both con-
sumption and creation of media. Mobile phones have be-
come increasingly performant, able to do real-time 3D ren-
dering and recording 1080p HD video. However, these de-
vices remain very power-constrained. Reducing power con-
sumption of various phone components has thus become an
important goal for manufacturers and researchers.

In [4] and [5], the authors showed that the camera sub-
system incurs a high power consumption. In fact, their re-
sults show that the camera is among the highest energy con-
sumers among a smartphone’s subsystems. In [20] the au-
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Figure 1. Compression and reconstruction setup. A signal x with
continuous entries is measured using a linear transformation Φ,
quantized using a scalar quantizer qpyq “ pq1py1q, ..., qmpymqq
with w representing quantization noise, and then reconstructed.

thors show similar results for Google Glass.
The typical electronic components of a mobile imag-

ing system are the CMOS image sensor, which outputs,
per pixel, an analog signal corresponding to the light in-
tensity, an analog-to-digital converter (ADC) which quan-
tizes the signal, and a processing unit which performs post-
acquisition tasks such as white balancing and error correc-
tion [13]. It is well known that ADCs are often major power
consumers in such imaging systems [19]. In view of these
observations, optimizing the trade-off between energy con-
sumption and distortion may be of more interest to system
designers than the rate-distortion trade-off.

In recent years, compressed sensing (CS) [3, 2, 8, 26, 9]
has been suggested as a method to reduce power consump-
tion in imaging systems [17, 25, 21]. In [24], Oike and
El Gamal construct a CMOS image sensor with Σ∆ ADC
which implements a CS system for natural image acquisi-
tion. The authors show a monotonic relation between the
energy consumption and the CS compression ratio. Mo-
tivated by these results, we ask whether such CS systems
have an efficient energy-distortion trade-off, compared to
simpler acquisition and reconstruction methods.

Formally, consider a coding scheme for signals x P Rn,
that consists of a measurement step which is a linear trans-
formation, and a quantization step which converts the con-
tinuous measurement into bits. That is, we have a measure-
ment matrix Φ P Rmˆn, and for a signal x P Rn we have
a measured y :“ Φx. The measured signal then passes
through a scalar quantizer qpyq “ pq1py1q, ¨ ¨ ¨ , qmpymqq.
Fig. 1 shows this setup, including reconstruction. In this
work we are interested in the MSE distortion }x´x̂}22. Note
that the system described in [24] is a special case of this
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Figure 2. A proposed variation on the design in [24], which allows
the system to multiply the pixel array with a ´1, 0, 1 vector at the
quantization stage. A multiplexer is controlled by the projection
vector φi, choosing between the values of x,´x and 0. The output
is passed to a Σ∆ ADC. For details see [24].

coding scheme, where Φ is sampled from the ensemble of
random binary matrices and quantization is performed per
measurement using a Σ∆ ADC.

The main question we address in this work is whether,
in terms of energy-distortion trade-off, one should use an
under-sampling (m ď n) matrix Φ P Rmˆn with i.i.d. en-
tries sampled from a Gaussian, or should Φ be the sparsify-
ing basis of the signal. We focus our analysis on the context
of natural images.

We will study this question in three settings. We start
with a simple result for signals residing in a known sub-
space. In Section 4 we examine the standard k-sparse model
common in the CS literature, and in Section 5 we consider
signals obeying a power law decay, which is a good approx-
imation for natural images under common transformations
such as DCT and DWT. We show analytically that using
direct measurements with efficient rate allocation achieves
lower distortion than using random measurements. In Sec-
tion 6 we corroborate our analysis of the coding schemes
with experiments on natural images.

Proofs were omitted due to length constraints, and will
appear in the supplementary materials.

1.1. Linear transformations in the analog domain

This work was motivated by the work of Oike and El-
Gamal [24] who showed that it is possible to perform a
linear transformation on the image before quantization and
that the transformation is negligible in terms of power con-
sumption. This was achieved be performing summation and
quantization simultaneously in Σ∆ ADCs. The input to
each ADC is pixel block values multiplexed with ground,
where the multiplexer is controlled by the binary measure-
ment matrix Φ. Their system allows computing the dot
product of a pixel block with any binary vector with neg-
ligible power consumption. In analyzing the power con-
sumption of a prototype camera that they built, they found
that ADCs are main power consumers in the imaging sys-
tem, and that energy consumption decreases linearly with

the measurement ratio of the system.
We propose a small modification to the scheme which al-

lows for the elements of Φ to contain´1, 0, 1 values, shown
in Fig. 2. This is done by adding an inverting amplifier and
using a 3-to-1 multiplexer instead of the 2-to-1 used in [24].
We expect that in our modification as well, the power con-
sumption of the system will be dominated by ADC opera-
tions.

2. Modeling assumptions and problem formu-
lation

2.1. Modeling assumptions

To study the energy-distortion behavior of ADCs, we
model them as uniform scalar quantizers [28]. We make
two strong assumptions in our model:

• The distortion function of fixed rate uniform quantizers
has the following form for the input signals we work
with:

DpRq “ cσ22´2αR, (1)

where σ2 is the variance of the signal and the constants
c, α depend on the quantizer.

• The power consumption of an ADC doubles with every
bit

EpRq92R. (2)

In the following we explain these assumptions and for-
mulate our question in the context of our model.

Goyal et al. [14] use the following generic distortion
function for uniform scalar quantization of signals with
bounded support and entropy coded high-resolution uni-
form scalar quantization of general signals:

DpRq “ cσ22´2R. (3)

This distortion model is less accurate for uniform quan-
tization of signals with infinite support. In [15] the authors
describe an asymptotically accurate distortion model of uni-
form quantization for generalized Gaussian signals. This is
done by choosing the optimal support of the uniform quan-
tizer given the number of quantization cells and the param-
eters of the distribution, and results in a fairly complicated
expression.

Our distortion model,

DpRq “ cσ22´2αR, (4)

was chosen as a generalization of (3) that is still easy to an-
alyze and can be used to approximate the results in [15].
An additional parameter α ą 0 allows us to configure the
model according to the quantization scheme and signal dis-
tribution. When α “ 1 the model reduces to (3), describ-
ing the distortion of a uniform quantizer for a signal with



bounded support, and in the supplementary materials we
show empirically that for α « 0.85, this function approx-
imates optimal (according to [15]) uniform quantization of
Gaussian and Laplacian signals in the bit rate range 0´ 15,
which covers most ADC implementations [23]. The mul-
tiplicative constant c does not affect our analysis and we
ignore it for brevity.

The energy consumption of an ADC depends on its un-
derlying architecture, therefore modeling it accurately is
impractical. Instead, we use survey results [23] for ADCs
with bit rates in our region of interest as a guideline to de-
fine the energy consumption of a converter that outputs a bit
rate R as

EpRq “ c2R, (5)

where we ignore the multiplicative constant for brevity.
In the general case we have m sources (e.g., sensors

corresponding to pixels, or wavelet coefficients) which are
quantized independently using scalar quantization. Denot-
ing the rates of the codes tRiumi“1, the total energy con-
sumption of the system is

EpRq “
m
ÿ

i“1

2Ri . (6)

The minimal possible energy consumption according to
this model is m, corresponding to an allocation of 0 bits
to every element of the quantizer. While a model with 0
minimal energy consumption would be more accurate, the
simplicity of (6) allows for easier analysis. We will assume
that E ě m throughout the paper.

For a scalar source, the bit rate corresponding to an en-
ergy budget E is R “ log2E, from (6). For a source in
Rm, a scalar quantizer qpyq “ pq1py1q, ¨ ¨ ¨ , qmpymqq and
an energy budget E, one can achieve an energy consump-
tion equal to E with different bit allocations, resulting in
different distortions. We define the distortion DpEq of qp¨q
using the allocation which achieves minimal distortion:

min
Ri

m
ÿ

i“1

DipRiq

subject to EpRq ď E

Ri ě 0,@i,

(7)

where Dip¨q is the distortion-rate function of qip¨q for the
specific source distribution, andEpRq is defined in (6). This
is similar to rate-distortion formulations for parallel sources
constrained by total rate, and is solved using the common
”reverse water-filling” algorithm [7]. We note the following
observation which we will use in the sequel.

Lemma 1. Let E ě m. If Dip¨q are defined as in (4) and
all σi are equal, then all the rate allocations tRiumi“1 of the
solution to (7) are equal to log2pE{mq.

Equipped with these definitions, our analysis will con-
sist of calculating the measurement distortion DpEq “
E}y´qpyq}2 according to (7) for the measurement schemes
described in the following section. From the measurement
distortion we infer the reconstruction error E}x´ x̂}2.

2.2. Quantization systems and problem formulation

Let x P Rn be an input signal with some known distribu-
tion. In this work we examine the energy-distortion trade-
off of three quantization schemes of the form portrayed in
Fig. 1:

1. Random under-sampling measurements. m ď n,
Φij „ N p0, 1{mq and a fixed-rate uniform quantizer.

2. Direct measurements. Φ “ Ψ: with a fixed-rate uni-
form quantizer, where Ψ is the basis in which x is
sparse, and Ψ: “ pΨTΨq´1ΨT is the Moore-Penrose
pseudoinverse. Since the basis size is smaller than n,
m ď n in this case as well.

3. Direct measurements and improved quantization.
Again, Φ “ Ψ:, followed by a simple variable-rate
quantizer, which we call threshold-vr coding.

Given an energy budget E, the signal x is measured with
each of the schemes. It is then quantized and then recon-
structed as x̂. The quantizer bit allocations are given by
the solution to (7). We ask which scheme achieves minimal
MSE distortion E}x´ x̂}22.

3. Distortion-energy of signals in a known sub-
space

We begin with the simple case in which x P Rn is given
by x “ Ψθ, where Ψ P Rnˆk is a matrix of orthonormal
columns, and θ „ N p0, Ikq. We will assume that the spar-
sifying basis Ψ is known to both the quantizer and the re-
construction method. Similarly to [14], we show that direct
quantization with fixed-rate codes is better than using ran-
dom measurements. In this case the variable-rate approach
threshold-vr is not needed.

3.1. Direct measurements

In the direct approach we have m “ k, and we directly
measure the vector θ “ Ψ:x. The elements of θ are i.i.d..
Therefore, given a total energy budget E ě m, the bit rate
allocation of each of the k quantizers is log2pE{kq, from
Lemma 1. Thus, the distortion for this approach is:

DdirectpEq “ k

ˆ

E

k

˙´2α

. (8)



3.2. Random measurements

To analyze the random measurement distortion, we first
note that random matrices Φ P Rmˆn with zero mean
Gaussian i.i.d. entries Φij are orthogonally invariant [10,
Section 4.2]. Therefore if Ψ̄ P Rnˆn is some basis com-
pletion of Ψ, then Φ and ΦΨ̄´1 have the same distri-
bution. Thus, we will assume in the rest of the paper
that the sparsifying basis is the identity Ψ “ In and that
x “ pθ, 0, . . . , 0qT P Rn.

Note that the variances of the elements of y :“ Φx are
equal to σ2

y “ k{m. Thus, given an energy budget E ě m
the distortion of any element of y is given by

DypE{mq “ σ2
y

ˆ

E

m

˙´2α

“
k

m

ˆ

E

m

˙´2α

, (9)

according to Lemma 1. We now use the rate-distortion
results from [6] slightly modified by replacing distortion-
rate functions with distortion-energy functions. This oracle-
assisted approach, in which the support of the signal is
known to both coder and decoder, provides the following
lower bound for reconstruction of randomly measured sig-
nals.

Theorem 1. [6]. Assume that the support of x P Rn is
known at the decoder, and that m ą k ` 3. Assume the
measurement matrix is Φij „ N p0, 1{mq. Let E be the
total energy budget of the code, and let DypEq be the dis-
tortion function of each element of y. Then the distortion
E}x ´ x̂}2 of the reconstruction has the following lower
bound

Dcs´oraclepEq “
km

m´ k ´ 1
DypE{mq. (10)

In our case, the support is indeed known, and so this
result gives the MSE of using random measurements. Of
course, a real CS system would not know the support of the
source signal at the decoder, but simulations show that this
result acts as a good lower bound on the reconstruction error
of CS algorithms [6].

Note that in both the direct and random approaches, the
quantized elements are Gaussian. Thus, the α parameter in
(8) and (9) has the same value. Using (8), (9) and Theorem
1 we obtain the following simple result.

Corollary 1. Let x be a signal drawn from a known sub-
space as described above, and let α ą 0.5. If m ą k ` 3
then:

DdirectpEq ă Dcs´oraclepEq. (11)

The result is intuitive – there is no reason to mix a signal
with i.i.d. entries when one knows its support exactly.

4. Distortion-energy of sparse signals

Next, let x P Rn be a k-sparse signal, where the k in-
dices are chosen uniformly from the

`

n
k

˘

possible sets, and
the non-zero entries are independently sampled from the
standard normal distribution.

In this section we show analytically that under reason-
able assumptions, the threshold-vr method achieves lower
distortion than any reconstruction algorithm which uses ran-
dom Gaussian measurements.

4.1. Direct measurements

We start with the fixed-rate direct method. In this method
the quantization consists of n scalar quantizers, to which we
allocate bit rates according to (7). It is easy to see that the
variance of any xi is k{n so that according to Lemma 1
the rate of each quantizer is R “ log2pE{nq. Assuming
a distortion model parameter α0 for this signal, the recon-
struction error is:

DdirectpEq “ n

ˆ

k

n

˙

2´2α0R “ k

ˆ

E

n

˙´2α0

. (12)

In terms of rate-distortion, it is easy to see that the di-
rect approach is not optimal for high rates since most of the
bit-rate is wasted on elements equal to zero. In [14], the au-
thors address this with a simple adaptive approach in which
coding consists of spending R0 “ log

`

n
k

˘

bits to code the
support indices, and the rest for coding their values, result-
ing in a distortion of k2´2αpR´R0q{k, where R " R0 is the
total amount of bits.

Our energy model applies only to quantization, so mod-
eling the energy consumption of coding the support is out
of our scope. Instead we assume an oracle model where the
support is known to the encoder and decoder. The resulting
distortion

DadaptivepEq “ k

ˆ

E

k

˙´2α

, (13)

is equivalent to (8) and serves as a lower bound for the fol-
lowing approach, which we can model entirely within our
framework.

A simple solution for the wasted bits in the direct method
is a coding scheme we call ”variable rate threshold code”
(threshold-vr) which sends the bit ’0’ when the source is un-
der a negligibly small threshold and otherwise uses a fixed
rate code prefixed by the bit ’1’. Since the thresholding can
be implemented using a simple comparison and separately
from the actual quantization, we get that each quantizer uses
energy equal to 21 for thresholding, and the remaining en-
ergy pE ´ 2nq is available for the k active quantizers.

Given an energy budget of E, the rate of each quantizer
is R “ log2ppE ´ 2nq{kq, from Lemma 1. Assume the
thresholding correctly identifies the support. From (4) we



get

Dthreshold´vrpEq “ k2´2αR “ k

ˆ

E ´ 2n

k

˙´2α

. (14)

4.2. Random measurements

We now consider the random measurement scheme,
where Φij „ N p0, 1{mq, and denote the measurement
y :“ Φx. From the central limit theorem, for large
enough n the elements of y are identically distributed as
N p0, k{mq, and again from Lemma 1 the energy allocated
to each quantizer is E{m.

As in the previous section, we have

DypE{mq “ σ2
y

ˆ

E

m

˙´2α

“
k

m

ˆ

E

m

˙´2α

. (15)

Plugging into Theorem 1 provides us a lower bound on the
distortion in the case of random measurements

Dcs´oraclepEq “
k2

m´ k ´ 1

ˆ

E

m

˙´2α

. (16)

Note that the quantized signal is Gaussian in the
threshold-vr and random approaches. Therefore, α has the
same value in (14) and (16). Comparing both methods we
obtain the following result.

Corollary 2. Let x be a k-sparse signal, and let E ą 10n
and α ě 0.85. If m ą 2k then

Dthreshold´vrpEq ă Dcs´oraclepEq. (17)

Note that standard CS theory requires that m ą

Ck logpn{kq with a large constant C ą 0 when logpn{kq
is small [12, 11], and so the conditions of Corollary 2 apply
to most practical instances.

In Fig. 3 we show the gap between the distortion func-
tions of the oracle-assisted CS (16), the threshold-vr method
(14), and the direct method (12). We plot the SNR “

10 log10pE}x}2{DmethodpEqq corresponding to their distor-
tion functions for the quantization model parameter α “

0.85, dimension n “ 100 and sparsity k “ 5. The CS ora-
cle curve was chosen by searching for the m between k` 4
and n minimizing (16), and was found to be m “ 15. We
can see that the threshold-vr method achieves SNR compa-
rable to the adaptive bound (13) in most of the energy range.

We conclude that under our assumptions, it is prefer-
able to use direct measurements with variable rate threshold
quantization over random measurements.

5. Distortion-energy of signals obeying a power
law

While sparse signals have been thoroughly studied in the
CS literature, it is interesting to consider signals with sta-
tistical properties similar to those of natural images. One
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Figure 3. The energy-distortion SNR curves of the distortion func-
tions of oracle-assisted CS (16), threshold variable rate (14) and
direct (12) approaches, compared with the adaptive (13) baseline.
The horizontal axis is the ratio between the energy consumptions
of the methods and the energy consumed when each of the n ele-
ments is quantized using 8 bits. The dimension is n “ 100, and
the sparsity is k “ 5. The quantization parameter is α “ 0.85,
and the best measurement ratio β “ m{n for the CS bound was
chosen using search and was achieved for m “ 15.

of the fundamental results of frequency-based analysis of
natural images is that their power spectrum decay is in-
versely proportional to the square of the frequency [16].
Signals with decaying magnitudes of their sorted coeffi-
cients are generally referred to as compressible in the CS
literature, and it has been shown that for certain decay rates
they are well approximated by sparse signals and so can be
tractably decoded using CS techniques, with proven worst
case bounds on the error [3, 11].

Our interest lies in the mean error, and as we have done
with the previous signal models, we would like to compare
the error obtained by direct quantization with optimal allo-
cations with the error of methods that use random measure-
ments.

We remain with the model described in Fig. 1. Instead
of a sparse signal, let x P Rn be a random Gaussian with
zero mean and independent elements with a diagonal co-
variance matrix Cx whose diagonal entries obey the power
law pCxqii “ 1{i2.

For this signal we cannot use Theorem 1 to calculate the
distortion when Φ is random, since the signal is not strictly
k-sparse. Instead, our analysis will assume a linear mea-
surement model and apply simple results from random ma-
trix theory on the minimum mean square error (MMSE) es-
timator of the measured signal.

In this setting, x „ N p0,Cxq is measured with

y “ Φx`w, (18)

where Φ P Rmˆn (with m ď n). The vector w „

N p0,Cwq represents the quantization noise of the system,



and its covariance Cw is a diagonal matrix with variances
equal to the distortion of the corresponding elements, and so
dependent on the measurement method and the quantization
energy budget.

Let x̂ be the MMSE estimator of the model above, and let
the estimation error be ε “ x´ x̂. From the Gauss-Markov
theorem [18], the covariance of ε is

Cε “
`

C´1
x `ΦTC´1

w Φ
˘´1 (19)

and so the MSE is trpCεq. In the following we will show
that the MMSE of direct measurements is smaller than the
MMSE of random measurements.

5.1. Direct measurements

For the direct measurement method (Φ “ In) with fixed-
rate, the distortion for this signal model is given directly
by (7). The following result is a direct consequence of the
”reverse water-filling” method applied to this optimization
problem.

Lemma 2. Let α ą 0.5. If E ą α`0.5
α´0.5 pn ` 1q then the

distortion of the i-th element is

DipEq “ σ
1

α`0.5

i

˜

n
ÿ

j“1

σ
1

α`0.5

j

¸2α

E´2α, (20)

and the total distortion of the quantizer is

DdirectpEq “

˜

n
ÿ

i“1

σ
1

α`0.5

i

¸2α`1

E´2α. (21)

Now, assume that pCwqii “ DipEq. Then

mmsedirectpEq “ tr
`

C´1
x `C´1

w

˘´1
(22)

ă trpCwq “ DdirectpEq. (23)

Therefore, it is enough to show that DdirectpEq ă

mmserandompEq.

5.2. Random measurements

Now consider the case where Φ P Rmˆn is random,
with Φij „ N p0, 1{mq. We assume a large scale regime
where m,n Ñ 8 and β “ m{n is constant. Our goal is to
calculate mmserandom “ E rtrpCεq|Φs. In words, we want
to find the MSE of the MMSE estimator which receives the
measurement matrix Φ as known input. We will find a sim-
ple lower bound for it, beginning with the fact that

trCε “ tr
`

C´1
x `ΦTC´1

w Φ
˘´1

(24)

ą tr
`

n2In `ΦTC´1
w Φ

˘´1
(25)

“
1

n2
tr

ˆ

In `
1

n2
ΦTC´1

w Φ

˙´1

. (26)

Similarly to the previous sections, we use Lemma 1 to
note that the noise covariance is a scalar matrix Cw “

σ2
wIm with

σ2
w “

1

m

n
ÿ

i“1

σ2
i

ˆ

E

m

˙´2α

, (27)

and so it remains to calculate

1

n2
tr

ˆ

In `
1

n2
1

σ2
w

ΦTΦ

˙´1

. (28)

Using the Marc̆enko-Pastur law [27] we get that the above
converges a.s. to

mmserandompEq “
1

n

˜

1´
F
`

pnσwq
´2, β´1

˘

4pnσwq´2β´1

¸

, (29)

where F px, zq is an elementary function defined in [27].
Note that since the quantized signal is Gaussian in the direct
and random approaches, the value of α in (27) and (23) is
equal. Therefore, combining (29) with (23) we obtain the
following result.

Corollary 3. Let 0.85 ď α ď 1, n ą 10 and β “ m{n ď
1. If

E ą cn (30)

for a known constant c which depends only on α and β, then

mmsedirectpEq ă mmserandompEq. (31)

In fact, c is small enough that for any practical problem
dimension n the direct method is essentially always better
than using random measurements. See the supplementary
materials for specifics. In Fig. 4 we plot the SNR of of
both methods for the quantization model parameter α “

0.85. The direct curve is given by (21) and the random curve
is obtained by evaluating (29) with different measurement
ratios β.

6. Experiments with natural images
To test the our numerical results we ran the complete pro-

cess of quantization and recovery on natural image patches,
using direct quantization and CS. Given an image patch
x P Rn, we used the 2D Haar transform H P Rnˆn to
get a wavelet representation of the patch Hx on which we
ran our quantization schemes.

We first tried performing optimal uniform quantization
(according to [15]) for both direct measurements and ran-
dom measurements of the Haar coefficients. Since the Haar
coefficient distributions are not uniform and have bounded
support, uniform quantization turned out to be only slightly
better than uniform quantization of pixel values (for the
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Figure 4. SNR of the lower bound on optimal reconstruction with
random measurements (29) versus direct quantization with energy
constrained bit allocation (21), for Gaussian signals in dimension
n “ 100 obeying a power law σ2

i “ 1{i2. The horizontal axis is
the ratio between the energy consumptions of the methods and the
energy consumed when each of the n elements is quantized using
8 bits. We show SNR for several values of β “ m{n.

same energy budget). To obtain better PSNR we used non-
uniform quantization in which the cells were learned with k-
means. For the random measurements, using non-uniform
quantization didn’t result in significant change in PSNR. We
note that because of the generality of our distortion model,
the theoretical results of the previous sections are relevant
even for non-uniform quantization.

Since the Haar wavelet representation does not have
equal variance, we allocated a different number of bits to
each coefficient. This was done by solving the optimiza-
tion problem in (7). Specifically, we used reverse water-
filling [7] to obtain real-valued rates, and then rounded these
rates to integers. Since the random measurements had equal
variance in their elements, bit allocation for the random
approach was uniform across all elements, as a result of
Lemma 1.

CS reconstruction was performed using two methods.
The first Quadratically Constrained Basis Pursuit (QCBP),
also known as Basis Pursuit DeNoising (BPDN),

x̂ “ arg min
x

}Hx}1 s.t. }ΦHx´ qpyq}2 ă ε, (32)

with qpyq “ y ` w being the quantized measurements,
ε “ cσw, and c ą 0 chosen using simple parameter search.
The second is total variation (TV) minimization [3],

x̂ “ arg min
x

TVpxq s.t. ΦHx “ qpyq, (33)

where

TVpxq “
ÿ

i,j

b

pxi`1,j ´ xi,jq2 ` pxi,j`1 ´ xi,jq2 (34)
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Figure 5. Performance of quantized CS with QCBP reconstruction
(32) and direct quantization with quantizer bit-rates allocated ac-
cording to (7), on 2D Haar coefficients of natural image patches
from BSDS300. The horizontal axis is the ratio between the en-
ergy consumptions of the methods and the energy consumed when
each of the n elements is quantized using 8 bits. The patch size is
n “ 16ˆ 16.

is the isotropic total variation norm. Note that other con-
straints could be used in these formulations, such as ´ε ă

ΦHx´y ă ε, where the elements of ε are the cells sizes of
the quantizers. We have tried several constraint variations
for each problem and found that the above reach the lowest
error, correspondingly.

As expected, TV minimization performs better than
QCBP for natural images. Both approaches have lower
PSNR than direct sensing of Haar coefficients at the same
energy consumption levels, as can be seen in Fig. 5. More-
over, we see that the behavior of the direct and CS methods
is consistent with the analysis in Section 5, and Fig. 4. The
direct methods can be further improved using better recon-
struction algorithms.

Fig. 6 shows qualitative results of both methods for
zoomed-in image patches, and Table 1 shows quantitative
results for ten complete images. We also show a subsam-
pling baseline in which the overall amount of sampled pix-
els is decreased by a factor of 4, corresponding to 25% of
the energy consumption of a system sampling all pixels.

We note that these results do not contradict the low
power consumption obtained in [24]. Indeed, the amount
of quantizations decreases linearly with the amount of CS
measurements, and so energy decreases linearly as well.
Nevertheless, our experiments show that one can obtain
higher quality images with the same power budget by us-
ing direct quantization of Haar coefficients.



30.97 30.38 33.25 31.15 28.94

37.69 37.44 41.45 32.42 35.63
PSNR (dB)

Figure 6. Qualitative comparison of direct quantization and CS (β “ 0.8) of Haar coefficients on several zoomed-in images from BSDS300
[22]. For both methods energy usage is 5%´ 6% of a system which encodes each pixel with 8 bits. The patch size is n “ 16ˆ 16. Note
that the examples shown are comprised of several patches. Top: original, middle: CS-TV, bottom: direct.

PSNR (dB)
Image Id CS-QCBP CS-TV Subsampling Direct
232038 29.65 30.97 24.69 37.69
236017 31.17 34.08 28.65 41.65
238011 41.43 43.37 37.95 48.30
239007 28.46 30.38 27.28 37.44
239096 30.86 33.25 30.64 41.45
24004 28.12 31.15 24.54 32.42
24063 41.10 40.91 35.32 46.59
242078 26.89 28.94 24.05 35.63
245051 28.76 31.15 25.19 36.68
246016 32.84 35.02 30.32 38.44

Table 1. Reconstruction PSNR of quantized CS (β “ 0.8)
and direct quantization of Haar coefficients for 10 images from
BSDS300. For the CS and direct methods energy usage is 5% ´

6% of a system which encodes each pixel with 8 bits. The factor
4 subsampling results in an energy usage of 25%, while its PSNR
is lower than the other methods. The patch size is n “ 16ˆ 16.

7. Discussion and future work

We presented a model for distortion and energy con-
sumption of signal acquisition using linear measurements
followed by quantization. In this model we described a
quantizer bit rate allocation which is also constrained by
the total energy budget of the system.

We have shown that using direct measurements where
quantizer bit rates are allocated with this method is more
effective than using random measurements for signals in
a known subspace, sparse signals, and signals obeying a
power law decay in their variances. Specifically, the results
for the power law signals suggest that using compressed
sensing for natural image capture may be an inefficient ap-
proach for low energy consumption. We supported the the-
oretical results with simulations on natural images.

In the future, it would be interesting to analyze more
accurate signal models, test our results on real hardware,
and improve the reconstruction of the direct method using
stronger priors.



Acknowledgements

Support from the ISF and Intel ICRI-CI is gratefully ac-
knowledged.

References
[1] S. Bicheno. Global smartphone installed base forecast by

operating system for 88 countries: 2007 to 2017. Strategy
Analytics, 2012. 1

[2] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incom-
plete frequency information. Information Theory, IEEE
Transactions on, 52(2):489–509, 2006. 1

[3] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal re-
covery from incomplete and inaccurate measurements. Com-
munications on pure and applied mathematics, 59(8):1207–
1223, 2006. 1, 5, 7

[4] A. Carroll and G. Heiser. The systems hacker’s guide to the
galaxy energy usage in a modern smartphone. In Proceed-
ings of the 4th Asia-Pacific Workshop on Systems, APSys
’13, pages 5:1–5:7, New York, NY, USA, 2013. ACM. 1

[5] X. Chen, Y. Chen, Z. Ma, and F. C. A. Fernandes. How is en-
ergy consumed in smartphone display applications? In Pro-
ceedings of the 14th Workshop on Mobile Computing Sys-
tems and Applications, HotMobile ’13, pages 3:1–3:6, New
York, NY, USA, 2013. ACM. 1

[6] G. Coluccia, A. Roumy, and E. Magli. Operational rate-
distortion performance of single-source and distributed com-
pressed sensing. Communications, IEEE Transactions on,
62(6):2022–2033, 2014. 4

[7] T. M. Cover and J. A. Thomas. Elements of information the-
ory. John Wiley & Sons, 2012. 3, 7

[8] D. L. Donoho. Compressed sensing. Information Theory,
IEEE Transactions on, 52(4):1289–1306, 2006. 1

[9] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska,
T. Sun, K. E. Kelly, R. G. Baraniuk, et al. Single-pixel imag-
ing via compressive sampling. 1

[10] A. Edelman and N. R. Rao. Random matrix theory. Acta
Numerica, 14:233–297, 2005. 4

[11] Y. C. Eldar. Sampling Theory: Beyond Bandlimited Systems.
Cambridge University Press, 2015. 5

[12] S. Foucart and H. Rauhut. A mathematical introduction to
compressive sensing. Springer, 2013. 5

[13] A. E. Gamal and H. Eltoukhy. Cmos image sensors. Circuits
and Devices Magazine, IEEE, 21(3):6–20, 2005. 1

[14] V. K. Goyal, A. K. Fletcher, and S. Rangan. Compressive
sampling and lossy compression. Signal Processing Maga-
zine, IEEE, 25(2):48–56, 2008. 2, 3, 4

[15] D. Hui and D. L. Neuhoff. Asymptotic analysis of optimal
fixed-rate uniform scalar quantization. Information Theory,
IEEE Transactions on, 47(3):957–977, 2001. 2, 3, 6

[16] A. Hyvärinen, J. Hurri, and P. O. Hoyer. Natural Image
Statistics: A Probabilistic Approach to Early Computational
Vision., volume 39. Springer Science & Business Media,
2009. 5

[17] L. Jacques, P. Vandergheynst, A. Bibet, V. Majidzadeh,
A. Schmid, and Y. Leblebici. Cmos compressed imaging by
random convolution. In Acoustics, Speech and Signal Pro-
cessing, 2009. ICASSP 2009. IEEE International Conference
on, pages 1113–1116. IEEE, 2009. 1

[18] S. M. Kay. Fundamentals of statistical signal processing:
estimation theory. 1993. 6

[19] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and
P. Bahl. Energy characterization and optimization of image
sensing toward continuous mobile vision. In Proceeding of
the 11th annual international conference on Mobile systems,
applications, and services, pages 69–82. ACM, 2013. 1

[20] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong.
Draining our glass: An energy and heat characterization of
google glass. In Proceedings of 5th Asia-Pacific Workshop
on Systems, page 10. ACM, 2014. 1

[21] V. Majidzadeh, L. Jacques, A. Schmid, P. Vandergheynst,
and Y. Leblebici. A (256ˆ 256) pixel 76.7 mw cmos
imager/compressor based on real-time in-pixel compressive
sensing. In Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, pages 2956–2959.
IEEE, 2010. 1

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001. 8

[23] B. Murmann. Adc performance survey 1997-2015.
http://www.stanford.edu/˜murmann/adcsurvey.html, 2015. 3

[24] Y. Oike and A. El Gamal. Cmos image sensor with per-
column σδ adc and programmable compressed sensing.
Solid-State Circuits, IEEE Journal of, 48(1):318–328, 2013.
1, 2, 7

[25] R. Robucci, J. D. Gray, L. K. Chiu, J. Romberg, and
P. Hasler. Compressive sensing on a cmos separable-
transform image sensor. Proceedings of the IEEE,
98(6):1089–1101, 2010. 1

[26] J. Romberg. Imaging via compressive sampling [introduc-
tion to compressive sampling and recovery via convex pro-
gramming]. IEEE Signal Processing Magazine, 25(2):14–
20, 2008. 1
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