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Abstract—

In the context of Cognitive Radio (CR), opportunistic transmis-
sions can exploit temporarily vacant spectral bands. Efficient and
reliable spectrum sensing is key in the CR process. CR receivers
traditionally deal with wideband signals with high Nyquist rates
and low Signal to Noise Ratios (SNRs). Sub-Nyquist sampling
of such signals has been proposed for efficient sampling in CRs.
The modulated wideband converter (MWC) is an example of
such a sampling scheme. It is composed of an analog front-
end, that aliases the signal intentionally before sampling it at
a low rate. The signal can then be digitally reconstructed from
the low rate samples, using the known relation between the
samples and the original signal. Unfortunately, in real hardware
implementation, this relation becomes unknown. Physical effects
have a considerable impact on the sampling process, and as a
consequence, the signal cannot be reliably recovered. In this
paper, we present an efficient automated calibration algorithm
that builds the actual transfer function of the system, without
any prior knowledge. We then present a new, MWC based,
CR prototype, on which the calibration algorithm was tested.
Experiments on our hardware prototype, based on an embedded
proprietary card, show that our calibrated transfer function
leads to signal reconstruction whereas the theoretical one fails.
Our specification complies with CR requirements of the IEEE
standard 802.22 and was experimentally verified with different
modulations. It vastly improves a previous prototype in terms
of bandwidth, higher maximal frequency and coping with lower
SNR.

I. INTRODUCTION

In light of the ever-increasing demand for new spectral
bands and the under-utilization of those already allocated, the
concept of Cognitive Radio (CR) has emerged. Opportunistic
users could exploit temporarily vacant bands after detecting the
absence of activity of their owners. A crucial task in the CR
cycle is therefore spectrum sensing and detection which has
to be precise and efficient. Typical CRs deal with wideband
signals whose Nyquist rates are very high. Several sub-Nyquist
sampling methods have recently been proposed [1], alleviating
both the software and hardware burden. Among these systems
are the modulated wideband converter (MWC) [2], multi-coset
sampling [3] and the random demodulator [4].

This paper focuses on a new MWC prototype implementa-
tion for a sub-Nyquist CR system, and its calibration algorithm.
In this scheme, after successful calibration, the wideband
sparse radio frequency (RF) signal is fed into an analog
front-end composed of several hardware channels. In each
channel, the signal is mixed with a periodic function that
aliases its spectrum, so that each signal portion appears in
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baseband. The mixed signals are then low-pass filtered and
sampled at a sub-Nyquist rate. It is shown in [2] that the low
rate samples can be related to the original signal through a
linear transformation which depends on the mixing functions.
Exploiting this relation, the signal can be recovered digitally
from the low rate samples.

In practice, when implementing the MWC, one is faced
with hardware issues that alter the relation between the sam-
ples and the signal, and prevent signal reconstruction. Such
phenomena include non-ideal analog components such as the
filters, non-linear effects of the mixers, phase noise and jitter,
synchronization issues and more. Due to these effects, the
theoretical matrix, that models the transfer function of the
system can differ from the one corresponding to the true
hardware implementation. We propose an efficient calibration
algorithm, completely automated, that can be run once off-line,
before using the system, in order to find the effective transfer
function. Our approach does not assume any knowledge of the
hardware components nor their specifications.

We further present a new MWC hardware implementation
which relies on a different technology than previous imple-
mentation [1]. Among the new features are: the Nyquist rate
of the input signals can be as high as 6GH z, higher dynamic
range, and coping with lower Signal to Noise Ratio (SNR).
The reconstruction is performed in real-time from the low rate
samples. The novelty of our current implementation is reflected
in higher bandwidth for each of the transmitted bands, higher
maximal frequency and our proprietary calibration process.
All of the system components have been upgraded to support
improved dynamic range and real-time reconstruction. The
system has been tested with commonly used modulations in
communications, and surpasses the requirements of the CR
standard, IEEE 802.22 [5].

This paper is organized as follows. In Section II, we present
the MWC theoretical background and discuss the motivation
behind the calibration process. In Section III, we describe our
calibration algorithm. Section IV presents our prototype system
specifications. Section V shows hardware simulation results.

II. BACKGROUND AND MOTIVATION
A. The MWC

Let x(t) be a real-valued continuous-time signal, supported
on F = [—1/2Tnyq, +1/2Tny) and composed of up to N
occupied spectral bands, namely N/2 real transmissions. The
single-sided bandwidth of each transmission does not exceed
B. We assume that the carrier frequencies are unknown.

The MWC system [2], described in Fig. 1, is composed
of an analog front-end, that aliases the wideband input before
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Fig. 1: MWC - cognitive radio analog system and digital processing.

sampling it at a low rate. The following digital processing first
recovers the signal’s support, namely, the carrier frequencies,
and then the signal itself. More precisely, the MWC consists
of p channels, that are fed with the input signal z(t). In each
channel, an analog mixer mixes z(t) with a T, = 1/f,-
periodic series p;(t), (1 < i < p), such that every portion of
the spectrum of xz(t) appears in baseband. The mixing se-
ries p;(t) are selected as piecewise constant functions that
alternate between the levels £1 for each of M equal time
intervals. Other choices for p;(t) are possible, since in principle
they are only required to be periodic. The mixed signal is
then passed through a low-pass filter with cut-off frequency
1/(2Ts) = fs/2 and sampled at the rate f; > f, > B.

The analog process that generates the samples y;[n] can be
modeled using the complex transfer matrix A as

y[n] = Az[n], (1)

where y[n] contains the low rate samples from each channel,
and A is the known matrix containing the Fourier coefficients
of the mixing series. The vector z[n] is unknown and contains
the low rate samples of each f, portion of the spectrum of
x(t). Since x(t) is a sparse signal, containing a small number
of transmitted bands, most terms of the spectral vector z(f)
are zero. The support is preserved in the time domain samples
z[n].

In order to recover z[n| from the samples y[n], we first
recover its support .S using compressed sensing techniques (the
reader is referred to [2] for more details). The system can be
reduced to that support and solved by

@

where Ag denotes the Moore-Penrose pseudo-inverse of A
reduced to the support S. Using the same notation, the vector
zs[n] denotes reducing the vector z[n] to the support S.

Since the matrix A is constant in time, we can apply a
Discrete Time Fourier Transform (DTFT) to both sides of (1)
and (2). Rewriting both in frequency produces

ZS[“] = A,Ts'y[n]a

y(f)=Az(f), zs(f)=Aky(f). 3)
where the DTFT of a sequence x [n] is defined as
X (ej27rfT) A x (f) = Z z[n) e—I2mfTn )
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The vector z(f) containing the spectrum of z(¢) divided into
fp slices is defined using the DTFT of x(t) as

z2(f) =X(f+(k=Lo—1)fp), 0<k<Lo, f€F,

(&)

where,

fr= 1/Tpa Fp = [_fp/Qa +fp/2]
fs = 1/Tsa Fs = [_fs/2a +fs/2] (6)

It has been shown in [2] that the minimal number of
channels p required is twice the number of occupied bands
N. This determines the number of hardware devices (mixers,
filters, samplers). Fortunately, the number of channels can
be further reduced at the expense of a higher sampling rate
fs > fp per channel and additional digital processing, referred
to as the expander. Basically, each channel sampling at the rate
fs = qfp, with odd expanding ratio ¢ = 2¢' + 1, ¢’ € N°, is
equivalent to ¢ channels sampling at rate f,. Details are given
in [2]. The expander transforms the p equations provided by
the p physical channels into m = p - ¢ equivalent equations.
The recovery process is then identical to the one described
above.

B. System Calibration: Motivation

Theoretically, the matrix A is known and contains the
Fourier series coefficients of the mixing series p;(t) [2]:

1 Tp —j2E 1t
(ATheory)i,l =Gy = ? pz(t)e Tp " dt. (7)
pJO

For sequences made of piecewise constant functions, alter-
nating between =1, the theoretical matrix can be written
as Arpeory = SFD [2]. Here, S,,xa is composed from
alternating +1 values deduced from p; (t), Farx s is the DFT
matrix , and D/ 1 is a diagonal complex matrix. This matrix
gives 100% support recovery in an ideal MATLAB simulation.

However, in practice, several analog physical effects and
imperfections affect the mixing and sampling process, so that
the theoretical matrix no longer describes the actual transfer
function. In fact, using this matrix on the system prototype
failed, even though digital simulations suggest that in perfect
conditions this transfer function achieves 100% success rate.
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Fig. 2: Single channel diagram, visually showing the calibration process.
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Fig. 3: Single channel diagram that contains filters, amplifiers
and attenuators.

This motivates us to calibrate the hardware system in order to
discover its actual transfer function.

The main effects that distort the transfer function are:

1) The mixing procedure introduces nonlinearities. Mixers
are intended to modulate narrow-band signals with one
sine carrier, as opposed to our mixing sequences that
effectively contains over a hundred different sine waves.
The analog filters have non-ideal response.

Actual design uses amplifiers and attenuators. These
components exhibit non-linear frequency response.
Phase noise and jitter, due to variations in components,
cables and clock deltas.

Effects of signal-power to noise ratios.

2)
3)

4)
5)

Specifically in our prototype, filters, amplifiers and attenuators
are utilized in order to preserve the signal’s dynamic range,
and prevent saturation or overflow. In addition, the input signal
is first processed by an analo% module, filtering frequencies
below 5f, and above fy,q. = 5. A single channel diagram
can be seen in Fig. 3, showing the added components.

These distortions render the theoretical transfer matrix
Aheory ineffective. An accurate method for estimating the
effective A is crucial to the success of the support and signal
reconstruction. To obtain accurate estimation we propose an
end-to-end calibration scheme. The proposed procedure, pre-
sented in the next section, estimates each of the elements of
A, with very little prior knowledge of the mixing series p;(t)
(only their period length 7},), and no knowledge at all about
the characteristics of internal system components.
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III. CALIBRATION ALGORITHM

In this section, we describe our calibration algorithm. We
first explain the general methodology, and then describe the
calibration process for ¢ = 1 in detail. Finally, we explain how
the process can be altered to fit the general case, including the
expander.

A. Calibration Overview

We start by introducing the new notations. The maximal
input frequency is defined as fi,x fva Lo fp, where Lo €
N. The transfer matrix is A,,x 1, and its terms are denoted by
(A),; £ ¢y € C, where L = 2L + 1. In addition, let o* be
the cbmplex conjugate of o € C.

Our goal is to find the MWC transfer function, namely the
matrix A, which consists of the Fourier coefficients of the
series p;(t), as defined in (7). Since our system is not time in-
variant (e.g. samplers), nor linear (e.g. mixers), one cannot find
the system transfer function by simply measuring its impulse
response. We circumvent this difficulty, by investigating the
system’s response for every frequency band of the spectrum by
injecting consecutive sinusoidal inputs, at incrementing rates.

Algorithm MWC Calibration

1. choose 0 < fo < fp/2

2. forl:=1to Lo do

3. insert x(¢) - sine with frequency If, + fo

4. for i := 1 to pdo

5. estimate sinusoid parameters y;[n]

6. calculate ¢; 4 and c¢;,

7. if ¢ > 1 then

8. for s:=1to (¢g—1)/2 do

9. define y+ [n] = yits[n] £ yi—s[n]
10. estimate parameters of y4 and y_
11. calculate ¢; 45 17 and ¢; x5
12. end for

13. end if

14. end for

15. end for

16.

(x In each iteration of [, produce 2 - ¢ - p = 2m coefficients. *)

Fig. 5: Calibration algorithm for estimating the matrix A .
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B. Calibration method for expansion factor q = 1.

We start with a basic system without an expander, comprised
of m = p channels and expansion factor ¢ = 1. Considering
(3), y(f) denotes the vector of DTFTs of the samples y;[n]
and z(f) denotes spectrum portions of x(t). Both vectors can
be seen in Fig. 1.

For each [ iteration we insert the following input signal

i (t) =aosin2n (If, + fo)t + o] , I €][0,1,.., Lo].
()

The parameters o and ¢g can be chosen arbitrarily by the
user, while the bias frequency must satisfy 0 < fu < f,/2.
Taking the DTFT of (4) we have

Xi(f) =bod(f —1fp — fo) +b0(f +1fp+ fo), (9

where by £ g—?emo. From (5) we then have that for f € F,

bod(f — fo+1fp), k=1
() = 06 (f + fo = Ufp)s k=-l (10)
0, Vk # £l.
The right hand side of (3) becomes
(Az); = ci; - bod(f + fo) + i bod(f — fo), (1)
which translates in the time domain to
(Az), [n] = 2|boci,|sin (27 fonTs + ¢4) - (12)

Recalling that (12) is equal to y[n], we expect a sinusoid wave
as output. In practice, the output is a noisy sine, that requires
a sine estimation technique, in order to extract ¢; ;. In addition
to the added noise, due to non-linear effects of the mixer, the
signal contains additional harmonics at DC, and at k f,, and k fj
for k£ € N. An example of y; [n], obtained from our prototype,
is presented in Fig. 6.

Following these observations, we model the mixed sampled
signal y;[n] as a random process,

Uln] = Z B sin (27 frn 4 @) + Bo + u[n] .
k

(13)

Here, k is used to describe the discrete set of harmonics, By
is the DC offset and wu[n] is added white noise. The amplitude
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Bo is assumed to be the largest, and represents the magnitude
of the desired sinusoid at frequency fj.

Taking the above model into account, we use the following
estimation technique, assuming a block of length N samples:

1) RemO\J/g mean value ¥, = ¥, — BO, where By =
N Sonet Un -
2) Use Welch’s [6] spectrum §stimation to resolve the initial

values for the frequency fj, and initial amplitude Bo, of
the strongest sine wave. The frequency fo differ slightly
from the known fj, due to non-linearities of the mixing
process.

Use the Trust Region Least Squares (TR-LS) [7] method
to estimate the phase and improve amplitude estimation.
The TR-LS algorithm requires sufficiently close initial
values, for which we use the spectrum estimated fo and
Bo, and solve

3)

‘ 2

[307 @0] = arg énin H\TJ,L — B'sin (27rf0n + go’)
/7@/
(14)
Using the estimated parameters we extract the terms ¢; ;. Since
the functions p;(t) are real, their respective Fourier transform
coefficients satisfy

N .
Ci—1 =Cip 5 Vil

After performing Lg + 1 iterations of the above calibration
procedure, the matrix A has been fully built, for positive and
negative values of [, column by column:

. . R R
Cl,—Lo = €1,L, C1,0 C1,L,
P __ % A ~

A= | ¢, =6, Ci0 Ci,Lo
R . . .
Cp,—Lo = Cp L, Cp,0 Cp,Lo

px(2Lo+1)
1

C. Calibration method for expansion factor ¢ > 1

We now examine a system comprised of m = p-q expanded
channels. For each channel, the expander divides the spectrum
of width f, into ¢ = 2¢' + 1, ¢ € NO slices of width
fp = fs/q. Each band is modulated into the base-band and



Globecom 2014 - Cognitive Radio and Networks Symposium

Power Spectrum
9.06383 -
0-
104
0
30-
_40-
_s0-]
-60-
70117
80-
0]
1009361
0

Signal d&

0 0 0 v | I 0 ! | ' |
10M  15M  20M  25M  30M  35M  40M  45M 50M  55M GOM

flHz]

|
5M

Fig. 6: The modulation of an input signal with the 7}, periodic
series p;(t) as the mixer’s LO input, adds additional redundant
harmonics to the output mixed signal y [n]. When inserting
sinusoid waves at rate kf, + fo additional harmonics are
present at f = my f, = mafo, mi,k € N.

re-sampled at rate f,,, as seen in Fig. 2. Every one of the p
physical channel provide g equations in the system (3) after the
expander, thus every ¢-th row of the matrix A before expansion
gives rise to g rows that are cyclic shifted versions of the
original one, overall m = p - ¢ rows.

The positive and negative slices of width f,, once the ex-
pander modulates each of them to baseband, contain complex
signals, with real and imaginary parts. In order to resolve
the transfer matrix terms we can no longer use regular sine
estimation methods since each expanded channel does not
necessarily contain a sinusoid. Due to lack of space, we only
present here the main results for the calibration of a system
with a digital expander. Let us define a new index describing
for each channel all the slices. The relative slice offset is
represented as s € [—¢/,...,0,...,¢].

The calibration process still includes Ly + 1 iterations, in
which the calibration input signal x;(t) at iteration ! and its
coefficients remain as described in (8). Note that for s = 0,
we get the baseband slice. That slice contains just one real
sinusoid, thus we can apply the same treatment as in Section
III-B to recover the relevant matrix terms c; ;. For s > 0, in
order to get real signals we use different linear combinations
of the slices with indices +s. This way, we are able to
reproduce real sinusoid signals and estimate their respective
matrix coefficients c;+5 +;. We repeat this process for each
1€]0,...,Lg] each combination of ¢ and s. By using linear
combinations, and conjugate symmetry between the c;+s 4
terms, we recover all the terms of the expanded A, « 1, matrix,
that is fully estimating the system’s transfer function.

Figure 5 shows the pseudo code of the derived algorithm.

IV. SYSTEM DESCRIPTION

We now describe our hardware system prototype, as seen
in Fig. 4. The RF input z (¢) and the mixing series p; ()
are generated using the Arbitrary Wave Generator (AWG) -
Agilent M8190. The sequences p; (t) are chosen as Gold Codes
[8], which are commonly used in telecommunication (CDMA)
and satellite navigation (GPS). Gold sequences were found to
give good results in the MWC system, primarily due to small
bounded cross-correlations within a set, which is useful when
multiple devices are broadcasting in the same frequency range
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Value Notes

fs 120 MHz (¢ + 1) fp - Sampling rate

fp 20 MHz 1/T,

q 5 Expansion factor

D 3 # Hardware Channels
fmax 3GHz Jmax = fNyq/?2

B 18.5 MHz Bandwidth on each carrier

M 305 Number of 'il intervals in each

period of p;(t)

TABLE I: The MWC parameters used in our setup.

and. Each of the different mixing series are composed from
alternating +1 values.

In the heart of the system is our proprietary developed MWC
card. The card is implemented using connector based analog
components, which allows to easily tweak and modify the card
characteristics.

Our prototype was fed RF signals with a Nyquist rate of
6 GHz, total maximal bandwidth occupancy of 120 MHz, and
varying support into the system. The exact system components
used throughout our setup are shown in Fig. 4. The specifica-
tion of the MWC card is given in Table I.

The digital back-end is implemented using the National
Instruments PXIe-1065 computer with DC coupled ADC. Very
low computational load is required in order to achieve real
time recovery and reconstruction, since all processing is done
at the low rate f,. The matrix A is calculated once, using
the proposed calibration process, and then stored in memory
regardless of the input carrier frequencies. MATLAB® and
LabVIEW® environments are used to simulate the various
digital operations.

V. CALIBRATION RESULTS

We now present the prototype performance using the cali-
bration process. For the sake of comparison, a fully functional,
digital, MATLAB implementation of the MWC, was used to
emulate an ideal system, i.e. free from the physical difficulties
our prototype suffers from, as discussed in Section II-B.

For both systems, we used the parameters defined in Table
I. The same Gold sequences, described in the previous section,
were selected as the mixing series p;(t).

For sanity check, we used our calibration process to estimate
the transfer function of the MATLAB simulation MWC, and
compared the calibrated matrix with the theoretical one. As
expected, the MATLAB calibrated matrix also gave 100%
support recovery in the ideal MATLAB simulation. A compar-
ison of the theoretical matrix A7peory versus the MATLAB-
calibrated matrix is shown in Fig. 8a. The matrices are nearly
identical, demonstrating that the calibration process is success-
ful under digital, ideal, conditions.

We next performed a full calibration, for the actual proto-
type. A graphical comparison between the calibrated matrix on
the prototype, and the theoretical matrix is shown in Fig. 8b.
In this case, the two matrices are quite different.

To evaluate the prototype performance, we inserted 1200
noisy RF signals of the form z (¢) + w (¢), where x(t) is
a multiband signal, w (¢) is a white Gaussian noise process
which is added and scaled so that the test signal has a
desired signal-to-noise ratio (SNR). The SNR is defined to be
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Fig. 8: Comparison of the theoretical and the calibrated ma-
trices in MATLAB and hardware environments.

SNR £ 10 logq \‘Il z(1)||” =, with the standard ¢5 norm. The signal

consists of three palrs of bands (N = 6), each with bandwidth
B = 18.5Mhz, containing Phase Shift Keying (PSK) [9],
modulated, random data, with energy ratios of [1,0.8,0.2]. For
every signal, the carriers are chosen uniformly at random in
[fNyq/2, fNyq/2] With fnyq = 6Ghz. The support of the input
signal is recovered from a total of 9210 sub-Nyquist samples
(3070 for every MWC channel), sampled at only 120 MHz
each. The effective system rate is 120 - 3 = 360 MHz - only
6% of Nyquist. Correct support recovery is defined as the
ratio of correct carriers in the estimated support set, out of the
entire signal support. Figure 7 shows the percentage of correct
support recoveries for various SNR values. The results show
that the theoretical matrix failed to recover the signal’s support,
while the calibrated one accomplished correct recovery above
8dB SNR.

An example of signal reconstruction can be seen in Fig. 9,
which shows the power spectrum of a PSK modulated signal,
for SNR 25dB. The input holds 3 carriers (N 6),
each with bandwidth B = 18.5MHz, and carrier frequencies
of [0.92,1.32,2.42] GHz. The energy ratios were chosen as
[1,0.8,0.2] respectively. The upper graph shows the input
signal power spectrum, the middle one is the MWC output
using the prototype-calibrated matrix as the transfer function,
and the lower one is the MWC output when using ArTheory
for the support recovery and reconstruction. As can be clearly
seen, the calibrated matrix succeeds, while the theoretical one
fails.
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(c) Theoretical matrix full band reconstruction.

Fig. 9: Comparison of signal reconstruction, using the theoret-
ical and the calibrated matrices (hardware simulation).

VI. CONCLUSION

In this paper, we introduced a calibration method for the
hardware implementation of the MWC. Since the theoreti-
cal transfer function of the system, modeled by the matrix
A Theory, proved ineffective when dealing with real hardware,
we propose an automated off-line calibration process. The
output is a calibrated matrix A cgiiprated that reflects physical
effects and imperfections. With this matrix, reconstruction of
the signal is made possible using the hardware prototype.

We simulate scenarii with higher Nyquist rates than those
considered in the IEEE 802.22 protocol for CR applications on
TV bands, as seen in [5]. We are able to recover those signals
from very low rate samples, at only 6% of their Nyquist rate.
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