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Abstract— We study compressive sensing in the spatial domain
for target localization using MIMO radar. By leveraging a joint
sparse representation, we extend the single-pulse framework
proposed in [1] to a multi-pulse one. For this scenario, we
devise a tree-based matching pursuit algorithm to solve the
nonconvex localization problem. It is shown that this method
can achieve high resolution target localization with a highly un-
dersampled MIMO radar with transmit/receive elements placed
at random. Moreover, a lower bound is developed on the number
of transmit/receive elements required to ensure accurate target
localization with high probability.

I. INTRODUCTION

Detection, estimation, and tracking of targets are basic
radar functions. Limited data support and low signal-to-noise
ratios (SNR) are among the many challenges frequently faced
by localization systems. Another challenge is the presence
of nearby targets, in terms of location or Doppler, since
closely spaced targets are more difficult to discriminate. In
multiple input multiple output (MIMO) radar [2], targets are
probed with multiple, simultaneous waveforms. Relying on
the orthogonality of the transmitted waveform, returns from
the targets are jointly processed by multiple receive antennas.
Depending on the mode of operation and system architecture,
MIMO radars have been shown to boost target detection, en-
hance spatial resolution, and improve interference suppression.
MIMO radars achieve these advantages by capitalizing on
a larger number of degrees of freedom than “conventional”
radar. In this work, we focus on the application of MIMO
radar to the estimation of direction-of-arrival (DOA). We are
particularly interested in a sparse, random array architecture in
which a low number of transmit/receive elements are placed
at random over a large aperture. We analyze this system from
a compressive sensing point of view and propose an algorithm
for DOA estimation.

It is well known in array signal processing [3] that resolution
improves with the array aperture. A non-ambiguous uniform
linear array (ULA) must have its elements spaced at intervals
no larger than 2. For a MIMO radar, unambiguous direction
finding of targets is possible for 2-spaced receive elements
and 2-spaced transmit elements (a virtual filled array),
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where  is the number of receive elements. In compressive
sensing parlance, the 2-spaced array and the MIMO virtual
filled array perform spatial sampling at Nyquist rate. In this
work, we are interested in a random array setup in which the
spatial sampling is at sub-Nyquist rates. Recovering targets
from undersampled array data, links random arrays to the
compressive sensing paradigm (see [1] and references therein).

Whereas compressive sensing literature originated in the
Single Measurement Vector (SMV) scenario, array signal
processing is set mainly in the Multiple Measurements Vector
(MMV) framework. The compressive sensing approach aims
to solve the non-convex combinatorial 0-norm problem (i.e.,
min kXk0 subject to kY −AXk2 ≤ ), which can be related
to the well known Deterministic Maximum Likelihood (DML)
estimator [4]. Both estimators require a multi-dimensional
search, infeasible in practical scenarios. The main insight of
compressive sensing has been to derive conditions guaran-
teeing a correct global solution via polynomial complexity
(e.g., by solving a convex relaxation of the original problem).
These conditions link properties ofX (specifically, the number
of active rows/targets  and their linear dependency) with
properties of the matrix A (the smallest number of linearly
dependent columns or spark (A)). For a matrix A with 

rows, it trivially holds that spark (A) ≤ + 1. Assuming
this bound is achieved with equality, a necessary and sufficient
lower bound on  for identifiability of the localization
problem is   2−rank (Y) [5], [8]. It is well known in
array processing that so-called “super-resolution” techniques,
e.g., subspace methods such as MUSIC [6] and ESPRIT [7]
as well as “rank aware” methods [8], are able to attain this
bound with equality in a noiseless setting, when the received
signal has a full-rank covariance matrix (rank (Y) = ). This
is a consequence of the fact that subspace methods are "large
sample" realizations of the maximum likelihood estimator for
   and uncorrelated signals [4]. In a noisy scenario, at
high SNR, the Cramér-Rao Bound (CRB) relates the number
of elements not only to the number of targets , but also
to the system performance. The CRB for array processing
DOA estimation is analyzed in [4], while the CRB for sparse
estimation is discussed in [9], [10]. In the current work, we
go deeper and uncover relations between compressed sensing
DOA estimation and the number of sensors that are necessary
for the estimation errors to be local, i.e., such that a local



bound like Cramér-Rao applies.
The work presented in this paper investigates these relations

for MIMO random arrays. The paper makes the following
specific contributions: (1) it builds on our work in the single
pulse (SMV) setting [1] and on the RA-ORMP algorithm
[8], to develop a tree-based algorithm, dubbed Multi-Branch
Matching Pursuit (MBMP), for the multiple pulse (MMV)
setting, typical to radar; (2) it generalizes the lower bound
on the number of tx/rx elements originally presented in [1]
to account for the complexity of the algorithm. By doing so,
we show that it is possible to trade-off sensors for compu-
tational complexity. This provides specific insight into links
between random arrays and compressive sensing algorithms,
and demonstrates that high resolution can be enabled by the
proposed algorithm using a relatively low number of randomly
placed sensors.

The following notation is used: boldface denotes matrices
(uppercase) and vectors (lowercase); (·)∗ denotes the com-
plex conjugate operator; (·) denotes the transpose operator;
(·) is the complex conjugate-transpose operator, and (·)† is
the pseudo-inverse. The symbol “⊗” denotes the Kronecker
product. Moreover, given a set  of indices, || denotes its
cardinality, A is the sub-matrix obtained by considering only
the columns indexed in , and we define the projection matrix
Π⊥A

, I − AA
†
 . Finally, kXk0 counts the number of

nonzero-norm rows of X.

II. PROBLEM FORMULATION

We model a MIMO radar system where  sensors collect
a finite train of  pulses sent by  transmitters and returned
from  stationary targets. We assume that transmitters and re-
ceivers each form a (possibly overlapping) linear array of total
aperture  and  , respectively: the -th transmitter is at
position  on the -axis, while the -th receiver is at position
 (with  ∈ [0  ]  ∀ and  ∈ [0  ]  ∀). Targets
are assumed in the far-field, meaning that a target’s aspect
angle  is constant across the array. The purpose of the system
is to determine the DOA angles to the targets. The ×1 vector
representing the sampled received signal for the -th pulse is

R =
X

=1
b () c

 ()S +N (1)

where  is the -th target’s response relative
to the -th pulse, the  × 1 vector b () =
1√


£
exp

¡
2 sin 


1
¢
     exp

¡
2 sin 



¢¤

accounts for the angular response between the -
th target and each receiver sensor, the  × 1 vector
c () =

1√


£
exp

¡
2 sin 


1
¢
     exp

¡
2 sin 



¢¤

accounts for the angular response between the -th target
and each transmitter, and the  ×  matrix S contains
the  samples of the  signals constituting the -th
pulse transmitted by the MIMO radar. We assume the 

transmitted signals to be orthogonal (e.g., pulses modulated
by an orthogonal code). The  ×  matrix N models
noise (assumed temporally and spatially white). Finally, the
DOA angles are assumed constant over the duration of the

 pulses, while the target reflection coefficients  are
assumed to remain constant during a pulse period and vary
independently from pulse to pulse, following the Swerling
Case II target model [11].

Vectorizing the outputs of all the receivers’ matched filters,
and stacking them column-wise,

Y =



[(S∗1 ⊗ I ) vec (R1)      (S

∗
 ⊗ I ) vec (R )] 

(2)
we obtain

Y = Ã (θ) X̃+E (3)

where Y is a  ×  matrix, X̃ = [x̃1     x̃ ] is
a  ×  matrix with x̃ = [1     ]

 , Ã (θ) =
[c (1)⊗ b (1)      c ()⊗ b ()] is ×, and E =
[n1    n ] is  ×  with n , 



¡
S∗ ⊗ I

¢
vec (N).

To embed the DOA estimation into a sparse localization
framework, we discretize the possible targets’ locations θ,
obtaining a grid of  points
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(with  À ). Defining
the × matrix A = [a (1)     a ()], where a () ,
c ()⊗ b (), the localization problem is expressed as:

Y = AX+E (4)

where the unknown  ×  matrix X contains the targets
locations and gains. Zero rows of X correspond to grid points
without a target. The problem (4) is sparse in the sense that
X has only  ¿  nonzero rows.

III. THE MULTI-BRANCH MATCHING PURSUIT

ALGORITHM

In this section, we detail the proposed MBMP algorithm to
address the joint sparse noisy recovery of model (4). Assuming
the number of targets  is known, we want to solve the
following nonconvex optimization problem:

min
X
kY −AXk2 (5)

s.t. kXk0 ≤ 

It is worth noticing that the solution can be parametrized only
by its support , such that the problem can be equivalently
posed as min

°°Π⊥A
Y
°°2


s.t. || ≤ .
To describe the proposed algorithm, it is instructive to

review first the RA-ORMP structure. It starts by determining
the row of X that maximizes the metric given by the inner
product between the received signal subspace and each atom in
the dictionary. The row’s index is added to the active support.
At the next iteration, the information associated with the first
target is removed, and the metric is updated. The iterations
stop when a termination criteria is met, and the current active
support is elected as the solution. It is possible to visualize the
process as a chain of successive nodes as shown in part (a) of
Fig. 1: node (0) is tagged with an empty support. Each node
evaluates the prescribed metric based on the support inherited
from its parent, and adds an extra row to that support. Note that
in the RA-ORMP algorithm, each node has only a single child.
The proposed MBMP algorithm is a generalization of the



Fig. 1. Graph of: (a) RA-ORMP algorithm; (b) MBMP algorithm with
d = [3 2]. The numbers indicate the nodes’ level.

RA-ORMP, obtained by allowing each node to have multiple
children (the highest peaks of the metric instead of just the
maximum peak), such that the chain of nodes becomes a tree
(see part (b) of Fig. 1).

With the MBMP algorithm, each node contains a set of
indices associated with the active rows. At termination, the
support that minimizes (5) is selected as the solution. The
structure of the tree depends on the total number of levels 
and on the number of allowed branches at each level (assumed
constant for nodes within the same level of the tree). The
structure can be specified by a length  vector d: element
 represents the number of branches at level-(− 1). For
instance, the tree in Fig. 1(b) has d = [3 2] (node 0 has
1 = 3 branches, and each node at level 1 possesses 2 = 2

branches). With the same notation, the RA-ORMP chain in
Fig. 1(a) has d = [1 1]. Notice that the node’s level also
indicates the cardinality of the associated support. The pseudo-
code of the algorithm is detailed in the following table.

Algorithm 1 Multi-branch matching pursuit algorithm
Input: Y, A and d.
Output: Support of solution to (5)
1: Tag root node with  = ∅ and ̄ = {1     }.
2: while ∃ leaf node with ||  (d)

3: Select a leaf node with ||  (d).
4: Set Γ = , Γ̄ = ̄ and  = |Γ|.
5: Evaluate the signal subspaceU of the residual Π⊥AΓY.
6: ̂1:+1 = indexes of the +1 highest peaks of

kUΠ⊥AΓak2Π⊥AΓa2 with  ∈ Γ̄.

7: for  = 1     +1
8: Tag a child node with:

 = Γ ∪ ̂.
̄ = Γ̄ \ {̂1:}.
 =

°°Π⊥A
Y
°°2


.
9: end
10: end
11: Return  of a node tagged with the minimum  .

Computational Complexity

Given the  ×  matrix A, the MBMP algorithm
with branch vector d = [1      ] has complexity
 (min ()) where  ,

P̄
=1

Q
=1  . This

should be compared with the exhaustive search strategy, which
requires 

¡
min ()2

¢
multiplications, i.e.,

is exponential in . By properly selecting d we can ef-
fectively trade-off complexity with performance. For instance,
when all  = 1 the algorithm becomes equivalent to the RA-
ORMP, whose complexity is linear in . Moreover, we are
interested in solutions that require a relatively small number
of transmitters and receivers. Lower bounds on the number of
array elements are discussed in the next section.

IV. LOWER BOUNDS ON THE NUMBER OF SENSORS

In [1], we established a lower bound on the number of
elements of a random array MIMO radar system for a single
measurement vector (SMV) of sub-Nyquist spatial samples.
The bound was customized to the OLS algorithm [12] to guar-
antee correct recovery with high probability. In this section, we
propose a new bound tailored to the MBMP algorithm. This
bound is developed for the SMV (i.e., X in (4) is  × 1),
with its extension to MMV, in future work. For simplicity,
it is assumed that targets are located on grid points, and
measurements are noiseless.

To guarantee correct recovery of the targets by the MBMP
algorithm, the correct support for vector X in (4) has to
be contained in one of the tree’s paths. This translates into
requiring that at the -th level of the tree, one of the +1
branches selects an index belonging to the true support. Thus,
at the level-0, it is required that the 1-ranked highest peak
response at grid points  without targets is smaller than the
highest response of a target,

1-ranked peak of
¯̄
ya

¡

¢¯̄

for  ∈ θ
largest value of

¯̄
ya

¡

¢¯̄

for  ∈ θ
 1 (6)

where  ,  = 1      are the directions associated with
the grid, and θ = {}=1 is the set of target locations. In
phased array parlance, the numerator is the 1-ranked highest
sidelobe. Since the noiseless snapshot across the array is given
by y =

P
=1 a (), correct target estimation at the first

level is guaranteed if the 1-ranked sidelobe is smaller than the
response of at least one of the targets. It is worth pointing out
that this is a much weaker condition with respect to the bound
proposed in [1], which required that the 1-ranked sidelobe
(largest) is smaller than the response of at least one of the
targets.

Following steps similar to [1], it can be shown that a
lower bound on the number of MIMO radar elements required
to guarantee that the sidelobe condition (6) is met with
probability greater than 1−  is

 ≥  ln


1
(7)

where the number of sidelobes  is approximately two times
the “virtual array” aperture, i.e.,  ≈ 2 ( + ) . A



proof outline is provided in the appendix.
Condition (6), and consequently (7), derives from level-

0 of the MBMP algorithm. Given a correct decision at this
level (say 1), the algorithm projects the received vector
and the dictionary on the null-space of the steering vector
a (1). The updated received vector becomes

P
=2 a ().

From MIMO random array theory [1], the new sidelobes¯̄̄P
=2 a

 ()a
¡

¢¯̄̄

,  6= {}=2, are Rayleigh dis-

tributed with a lower variance
³P

=2 ||2
´
 than for

the earlier case (i.e.,
³P

=1 ||2
´
 ). Intuitively, we

have removed the interference to the other targets from the
correct estimated target. Thus, as long as the new denominator
max∈

¯̄̄P
=2 a

 ()a
¡

¢¯̄̄ ≈ max∈{2} ||,

and for a proper 2 ≤ 1, the correct target recovery
at the second level imposes a looser bound, i.e.,  ≥
( − 1) ln 

2
, guaranteed by (7). A similar argument can be

invoked to guarantee a correct decision for successive levels.

V. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the potential of the MBMP algorithm for the target localization
problem, and to investigate the fitness of the proposed lower
bound. Consider a MIMO radar that transmits  pulses of
orthogonal spread spectrum waveforms of length  each.
The waveforms were chosen as the  × Fourier matrix.
Equal length apertures were assumed for the transmit and
receive arrays, i.e.,  =  =  and, unless otherwise
stated we set  = 50. To ensure the aperture length,
elements anchor the ends at locations 0 and  of both the
transmit and receive arrays. The locations of the remaining
sensors are drawn uniformly at random. We assume that the
number of targets  is known. In addition to MBMP, we
implement target localization using other compressive sensing
techniques (RA-ORMP and Reg. M-FOCUSS [13]) as well as
the MUSIC estimator, famous in array processing. In addition,
we compare the random array geometry with a ULA array
geometry. Specifically, a “virtual ULA” is obtained by 

receive elements spaced by 2, and  transmit elements
spaced by 2. The “virtual ULA” array (labeled “ULA”
on the figures) results in a significantly smaller aperture then
the random array with the same number of tx/rx sensors. To
gain further insight, we include for the “virtual ULA”, results
obtained with the grid-free ESPRIT algorithm. In each figure,
we perform independent Monte Carlo realizations varying the
target’s responses ( = exp (−) with  ∼ U (0 2)
∀ ), the noise (vec (N) ∼ CN

¡
0 2I

¢ ∀), and the ran-
dom array sensors’ positions. Moreover, the  is defined
as 10 log10 

2 and, since targets’ locations are held fixed, grid
points are spaced linearly in the range −80◦ +  to 80◦ + ,
where  ∼ U (−80 80) is randomized throughout the
Monte Carlo realizations. The choice of  is related to the
Rayleigh resolution limit for the random array. For instance,
when  = 50, the resolution is  (2) ≈ 06◦, and we
place 4 grid-points per lobe, i.e.,  ≈ 4 × 16006 = 1001.
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Fig. 2. CCDFs of the MBMP algorithm with different tree’s spans. Noiseless
SMV setting.

The same grid is used for all the recovery methods. As
a measure of estimation accuracy, for each realization, we
collect the largest modulo of the targets’ estimation error,
i.e.,

°°°θ̂ − θ°°°
∞
, max

¯̄̄
̂ − 

¯̄̄
. We then plot the comple-

mentary cumulative distribution function (CCDF), defined as
 () , Pr ( ≥ ) = 1− (), where  is the cumulative
distribution function. The function  is the probability of
having an error greater then the abscissa, such that a good
technique shifts the CCDF towards the bottom-left of the
figure. This choice highlights both the resolution and the
probability of ambiguities (sidelobes’ detections).

We analyze first the behavior of the proposed algorithm in a
noiseless SMV setting. Fig. 2 plots the CCDFs of the recovery
error for a variety of tree spans of the MBMP algorithm
(i.e., different branch vectors d), and compares it with the
performance of certain compressive sensing techniques, as
well as with the Truncated BB algorithm proposed in [1]
truncated at 100 iterations. The system settings are  =

 = 5 elements, noiseless 2 = 0, and  = 3 targets
at θ = [−5◦ 0◦ 5◦]. It can be seen how the probability of
errors greater then 06◦ (i.e., the random array resolution)
diminishes as the tree’s span is increased. Moreover, the
proposed MBMP algorithm outperforms the Truncated BB
with less then half of the latter complexity (i.e., from the
discussion of computational complexity, for d = [4 3 2], we
have  = 40). This favorable outcome stems from the rules
used to build the algorithm’s tree.

Next, we focus on a scenario with high noise and mul-
tiple pulses (MMV). The system settings are  =  =

5,  = 200, 2 = 1, and  = 4 targets at θ =

[−75◦−25◦ 25◦ 75◦]. Fig. 3 plots the CCDFs of the
recovery error for various versions of the MBMP algorithm
(i.e., for different branch vector d), and compares it with
the performance of compressive sensing techniques and with
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Fig. 3. CCDFs of the MBMP algorithm with different tree’s spans. Noisy
MMV setting.

the MUSIC estimator. The main difference from the noiseless
SMV scenario is that M-FOCUSS is now performing much
worse than MBMP. It is well known that for a large sample
(high  ) the estimated covariance matrix becomes accurate.
Subspace methods exploits that through the separation of
signal and noise subspaces. This gain is not exploited by
the M-FOCUSS algorithm, resulting in poorer performance.
Nonetheless, MUSIC (a subspace method) does not perform
that well either. Now, this can be explained by the non-
iterative decision strategy of the algorithm: the  targets
are estimated simultaneously as the  highest peaks of the
MUSIC spectrum. In contrast, MBMP refines its estimates
iteratively based on a successive-decision strategy (following
the tree’s levels). As a result, this strategy enables to reduce the
errors without compromising the computational complexity.

We then investigate the behavior of the proposed algorithm
(d = [5 3 2 1]) as a function of  and sample support
 . We compare it with the performance of compressive
sensing techniques and with the MUSIC estimator. The system
settings are  =  = 5 and  = 4 targets at θ =

[−75◦−25◦ 25◦ 75◦]. Fig. 4(a) plots the probability of
having a recovery error greater then 1◦ when the number of
samples is  = 5. Fig. 4(b) plots the probability of having a
recovery error greater then 1◦ in a scenario with high noise
( = 5 ). It can be seen the superior performances of
the MBMP algorithm with respect to other methods.

In the next experiment, we investigate the resolution capab-
ilities with respect to SNR and sample support. We are asking
how high must SNR be to deliver “super-resolution” (i.e.,
resolve targets less then one beamwidth apart)? We compare
a MIMO random array architecture and a “virtual ULA”
configuration. The system settings are  =  = 3 sensors
and  = 3 targets at θ = [−5◦ 0◦ 5◦]. The random array has
a virtual aperture of 14 (resulting in a beamwidth of ≈ 4◦),
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Fig. 4. Sidelobe probability of the MBMP algorithm (a) varying the noise
level; (b) varying the number of pulses.
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Fig. 5. Sidelobe error probability for random array and ULA with the MBMP
and ESPRIT algorithms.

while the “virtual ULA” has an aperture of 4 (beamwidth
of ≈ 14◦). The number of sensors and the array aperture
have been selected such that the random array beamwidth is
less then the minimum target separation ∆ = 5◦, while the
“virtual ULA” beamwidth is greater then ∆. Once again,
this is to investigate how an ambiguous but large aperture
MIMO random array compares with an ambiguity-free “virtual
ULA” where resolution is constrained to the array aperture.
In a noiseless scenario, we expect super-resolution methods
to recover all the targets with probability 1, irrespective of
“virtual ULA” aperture. Fig. 5 plots the probability of having
a recovery error greater then 1◦ varying the noise level and
for different number of pulses ( = 5, 10 and 50). The
MBMP algorithm (d = [5 3 2 1]) is employed in the MIMO



TABLE I

LOWER BOUND ON THE NUMBER OF SENSORS

1
    5 4 3 2 1

100 5 7 7 51.9 52.5 49.8 50.3 45.1
100 4 6 6 35.6 36.1 33.9 39.2 32.9
100 3 6 6 35.9 33.3 32.1 35.4 29.3
50 5 7 7 49.5 50.1 47.3 48.7 44.3
50 4 6 6 38.6 38.4 35.2 36.0 32.4
50 3 6 6 34.7 35.3 32.7 35.3 28.1

random array and in the "virtual ULA" setting. In the latter, the
ESPRIT algorithm is shown for comparison. The superiority of
the random array, which has higher array resolution, is evident.
Moreover, the proposed algorithm is found to be more robust
then ESPRIT to limited data support.

Finally, we address the goodness of the proposed lower
bound (7). To be consistent with the analysis, we choose
the noiseless SMV scenario (i.e., 2 = 0 and  = 1). The
MBMP algorithm is run with different branches’ vectors d, in
particular we select 1 from 1 to 5. Table I reports the value
of  ln 

1
for different scenarios varying the random array

aperture , the number of targets  and the number of sensors
 =  . The  used in evaluating the formula is the empirical
sidelobe probability (i.e., Pr

³°°°θ̂ − θ°°°
∞

 1◦
´

) experienced
by the MBMP algorithm in the different scenarios throughout
Monte-Carlo simulations. A surprisingly good fit between the
predicted value and the true  emerges, particularly in the
way (7) captures the role of 1.

VI. CONCLUSIONS

We address the source localization problem in MIMO radar
by using a sparse representation framework. We develop a
global search algorithm for the sparse recovery problem, and
derive an explicit lower bound on the number of random array
elements needed to achieve a prescribed probability of correct
DOA estimation. The lower bound provides specific insight
into links between random arrays and compressive sensing
algorithms, and demonstrates that a high resolution can be
obtained with a relatively low number of randomly placed
sensors.

VII. APPENDIX

Here we provide an outline of the proof to obtain (7), i.e., a
lower bound on  such that the first level of the algorithm
is successful with probability  ≥ 1 −  (for small , e.g.,
 ≈ 10−3).
Defining  , max

¯̄̄
 +

P
 6= a

 ()a ()
¯̄̄
, the prob-

ability of correct estimation, i.e., when (6) holds true, is

 =

1−1X
=0

Pr [exactly  sidelobes  ]  (8)

As in [1], we approximate the sidelobes using independent
Rayleigh variables with variance

³P
=1 ||2

´
 . For the

sake of notation brevity, we define  , exp
³
− 


=1||2

2
´

.
Using the binomial distribution, we have

 =

1−1X
=0

µ




¶
 [1− ]

−
 (9)

The condition  ≥ 1−  is thus equivalent to

 ≥ 1−
1−1X
=0

µ




¶
 [1− ]

−
 (10)

The quantity on the right-hand side can be upper-bounded by

1
. Using this bound and solving for  we have

 ≥
P

=1 ||2
2

ln

µ


1

¶
 (11)

We next focus on the term . Assuming that the targets are
separated by at least one lobe, using the same argument in [1],
the set

n¯̄̄
 +

P
 6= a

 ()a ()
¯̄̄

for  = 1    
o

can be approximated by  independent Ricean variables
with mean parameter || and variance 1



P
 6= | |2. The

maximum over  is a random variable which depends on
the targets’ modulo. When  is sufficiently high,  ≈
max ||. Assuming equal modulo targets and using  =

||, the quantity 1
2

P
=1 ||2 tends to  and (11) becomes

(7). While several assumptions are used in this outline, the
proposed bound (7) is reinforced by numerical results.
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