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Abstract—We explore several fundamental questions at the 
intersection of sampling theory and information theory: how 
is channel capacity affected by sampling below the channel's 
Nyquist rate, and what is the optimal input and sampling strategy 
at a given sub-Nyquist sampling rate. In particular, we derive 
the capacity of sampled analog channels for several sampling 
mechanisms, including a filter followed by sampling and a filter 
bank followed by sampling. Connections between sampling and 
MIMO Gaussian channels are illuminated based on this analysis. 
These results demonstrate the tradeoff between channel capacity 
and sampling rate, and also illustrate the interplay between 
sampling techniques and capacity of sampled analog channels. 

Index Terms—sampled analog channels, sub-Nyquist sampling, 
channel capacity 

I. INTRODUCTION 

The capacity of continuous-time waveform channels and the 
corresponding capacity-achieving water-filling power alloca
tion strategy over frequency is well known [1] and underlies 
practical protocol design in OFDM systems. Although receiver 
analysis and design in modern communication systems is 
based on digital sequences (obtained by sampling the received 
analog signals), the information content of these signals can 
be preserved if noise outside the channel bandwidth is filtered 
out and the filtered output is sampled above the Nyquist 
rate associated with the signal bandwidth. The majority of 
information theoretic work thus implicitly assumes Nyquist 
rate sampling without accounting for hardware limitations, 
which may preclude sampling at this rate, especially for 
wideband communications. In this paper we explore how 
channel capacity is affected by reduced-rate sampling, namely, 
how much information, in the Shannon sense, can be conveyed 
through a sampled analog channel which is sampled at a 
rate below the Nyquist rate. Bridging sampling theory and 
information theory, our work attempts to characterize the 
tradeoff between fundamental data rate limits and sampling 
rate constraints. 

A. Related Work and Motivation 
The derivation of the capacity of linear time-invariant (LTI) 

waveform channels was pioneered by Shannon. Making use 
of the asymptotic spectral properties of Toeplitz operators 
[1] or, alternatively, Fourier analysis [2], this capacity result 
established the optimality of water-filling power allocation 
based on signal-to-noise power across the frequency domain. 
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Information theoretic work on communication channels often 
implicitly assumes that sampling is performed above the 
Nyquist rate, and therefore preserves information. Forney et. 
al [3] surveys minimum-bandwidth orthogonal pulse am
plitude modulation (PAM) techniques for transmission over 
Gaussian channels, which allows the lossless conversion be
tween analog and digital channels through Nyquist-rate sam
pling. This paradigm of discretization has also been employed 
by Medard et. al to bound the maximum mutual information 
in time-varying channels [4], [5]. However, all of these works 
focus on analog channel capacity sampled at or above the 
Nyquist rate, and do not account for the effect upon capacity 
of reduced-rate sampling. 

The Nyquist rate is a fundamental sampling rate require
ment for perfect reconstruction of band-limited signals. This 
sampling rate requirement may be excessive for more general 
classes of signals like multiband signals, whose spectral con
tents reside continuously within several subbands over a wide 
spectrum. Landau [6] characterized the minimum sampling 
rate required in this setting - the sum of the bandwidths of 
the spectral support (termed the Landau rate). However, these 
works aim at finding optimal sampling and reconstruction 
mechanisms that achieve perfect reconstruction of a class 
of analog signals from noiseless samples. Another line of 
work pioneered by Berger et. al. [7]—[11] investigated joint 
optimization of the transmitted pulse shape and receiver 
prefiltering in PAM over an analog communication channel 
under sub-Nyquist sampling. However, this work does not con
sider optimal sampling techniques based on the information-
theoretic metric of channel capacity achievable through noisy 
samples of the channel output. In addition, the optimal filters 
derived in [7], [9] are used to determine an SNR metric 
which in turn is used to compute an approximation to sampled 
channel capacity of the bandlimited AWGN channels. This 
approximation does not correspond to the precise capacity of 
undersampled bandlimited AWGN channels we derive herein, 
nor is the capacity of more general undersampled analog 
channels considered. 

The tradeoff between capacity and hardware complexity has 
been studied in another line of work focused on sampling 
precision [12]—[14]. These works demonstrate that, due to 
quantization of samples, sampling above the Nyquist rate can 
be beneficial in increasing achievable data rates. The focus 
of this quantization analysis is on the effect of increasing the 
sampling rate beyond the Nyquist rate to combat quantization 
error, whereas this paper is concerned with determining capac
ity and optimal sub-Nyquist sampling strategies for channels 
based on the channel structure, without considering quantiza
tion errors. 
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B. Capacity Definition C. Contribution 

We consider the same waveform channel model of Gallager 
[1, Chapter 8]. The transmit signal x(i) is time-constrained 
to the interval (0,T]. The channel is modeled as an LTI filter 
with impulse response h(t) and frequency response H(f) = 

h(i)exp(—j27rft)dt. The analog channel output is 
/ 

r(t) = h(t)*x(t)+rj(t), (1) 

and is observed over (0, T]1 , where rj(t) is stationary zero-
mean Gaussian noise. We assume throughout this paper that 
perfect channel state information, i.e. perfect knowledge of 
h(t), is known at both the transmitter and the receiver. 

The channel output r(i) is then passed through the receiver's 
analog front end, which may include a filter, a bank of M 
filters, or a bank of preprocessors consisting of filters and 
modulation modules, yielding a collection of analog outputs 
{Vi{t) '■ 1 < * < M}. We assume that the analog outputs are 
observed over the time interval (0, T] and then passed through 
ideal uniform samplers, yielding a set of digital sequences 
{yi[n] : n G Z, 1 < i < M } , as illustrated in Fig. 1. Here, 
each branch is uniformly sampled at a sampling rate of fs/M 
samples per second. 
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Figure 1. Sampled analog channel: The input x(i), constrained to (0 ,T ] , is 
passed through M branches of the receiver analog front end to yield analog 
outputs {y%(t) : 1 < i < M } ; each analog output yi{t) is observed over 
(0, T] and uniformly sampled by a sampler at a rate f3/M = (MTS)~ 
samples per second to yield the sampled sequence yi[n]. The preprocessor 
can be a filter, or a filter and a modulator followed by another filter. 

Sampling structures typically rely on general prefiltering 
prior to sampling [15], which can suppress aliasing and post-
sampling noise, minimize the recovery error for certain classes 
of input signals, and account for non-ideal linear distortion 
features of practical acquisition devices [16], [17]. Here, we 
explore sampled analog channels with the following two 
classes of sampling mechanisms: (1) a filter followed by 
sampling: the analog channel output is prefiltered by a single 
linear filter followed by an ideal uniform sampler (see Fig. 
2); (2) filter banks followed by sampling: the analog channel 
output is passed through a bank of LTI filters, each followed by 
an ideal uniform sampler (see Fig. 7). Our main contributions 
are summarized as follows. 

• Filtering followed by sampling. We derive the capacity 
for sampled analog channels with this sampling mech
anism in the presence of both white noise and colored 
noise. Due to aliasing, the sampled channel can be 
represented as a MISO Gaussian channel in the spectral 
domain, while the optimal input effectively performs 
maximum ratio combining. 

• Filter banks followed by sampling. A closed-form 
expression for sampled channel capacity is derived, along 
with analysis that relates it to a MIMO Gaussian channel. 
The input should be chosen to decouple the dimensions 
of the equivalent MIMO channel. This mechanism often 
achieves larger sampled channel capacity than a single fil
ter followed by sampling if the channel is non-monotonic, 
and it achieves the analog capacity of multiband channels 
sampled at the Landau rate if the number of branches is 
appropriately chosen. 

One interesting fact we discover for both techniques is the non-
monotonicity of capacity with sampling rate, which indicates 
that at certain sampling rates, channel degrees of freedom are 
lost. Thus, more sophisticated sampling techniques are needed 
to maximize achievable data rates under these sub-Nyquist 
sampling rates in order to preserve all channel degrees of 
freedom 

Defining the sampled sequence as y[n] = 
[T/I [n], ■ ■ ■ , 2 /MM]> the problem of finding the capacity C(fs) 
of sampled analog channels can be posed as quantifying the 
maximum mutual information between the input signal x(t) 
on the interval (0, T] and the output sequence sampled at 
an aggregate rate fs on the interval (0,T] in the limit as 
T —> oo. The sampled channel capacity can thus be expressed 
as 

C(fJ = ^SVLPI (3;(0'T]; ^ W l ) > 
where the supremum is taken over all possible in
put distributions subject to an average power constraint 

^ ( T Jo l x( r) l ^ T ) — ^ ' an(* w e e xPu c i t ly indicate the 
interval (0,T] over which the samples are taken. 

*We impose the assumption that both the transmit signal and the observed 
signal are constrained to finite time intervals to allow for a rigorous definition 
of channel capacity. In particular, as per Gallager's analysis [1, Chapter 8], 
we first calculate the capacity for finite time intervals and then take the limit 
of the interval to infinity. 

II. A F ILER FOLLOWED BY SAMPLING 

A. Problem Formulation 
Ideal uniform sampling is performed by sampling the analog 

signal uniformly at a rate fs = T~x. In order to avoid aliasing, 
suppress out-of-band noise and compensate for distortion, a 
prefilter is often added prior to the ideal uniform sampler 
[15]. Adding a prefilter can also be used to model the linear 
distortion features of practical sampling devices. Our sampling 
process thus includes a general analog prefilter, as illustrated in 
Fig. 2. Specifically, before sampling, we prefilter the received 
signal with an LTI filter that has impulse response s(i) and 
frequency response S ( / ) , where we assume that h(t) and 
s(t) are both bounded and continuous. The filtered output is 
observed over (0, T] and can be written as 

y(t) = s(t) * (h(t) * x{t) + 77(t)), t e (0, T]. (2) 

We then sample y(t) using an ideal uniform sampler, leading 
to the sampled sequence 

y[n] = y(nTs), 
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where Ts denotes the sampling interval. The metric of interest 
is then the maximum mutual information between x(0, T) and 
{2/W}(o,T]-

Figure 2. Filtering followed by sampling: the analog channel output r(t) is 
linearly filtered prior to ideal uniform sampling. 

B. Capacity Results 
Since both the channel and the prefllter are assumed to 

be LTI, applying the prefllter equivalently generates a new 
channel with channel gain H ( /) S ( / ) . Meanwhile, the noise 
is preflltered and hence non-white in general. The ideal 
uniform sampler that follows creates an aliased version of the 
preflltered signal in the frequency domain, as reflected in the 
following capacity expression. 

Theorem 1. Consider the system shown Fig. 2, where rj(i) 
is Gaussian noise with power spectral density Sr}(f). Assume 
that h(t), s(t) are both continuous, bounded and absolutely 
Riemann integrable. Define 

2 °° 
| V s ^ ( / , / s ) | 2 ^ Yl \S(f-lfs)\2Sr,(f-lfs), 

l = — oo 

\\VHs(f,fs)\\l = J2 Wf-lfe)S(f-lfe)\2 

l = — oo 

Suppose that there exists some constant es such that 

W^L > e s > 0 (3) 

holds. Additionally, suppose that h^t) T~x H{f) 

satisfies h^t) = o(t~e) for some constant e > 1 2. The 
capacity C(fs) of the sampled channel with a power constraint 
P is then given parametric ally as 

C(fs) \ J log L-
/e-FM V | 

I |VHS( / , / . d / (4) 

s^/sv (/,/.) 

where 

Hv) 
-( / , / . ) - ^ h < v and |/| < k 

\\VHSUJS)\\1 ~ 2 
(5) 

and v satisfies 

I 
f€H») 

s^/s~n (/,/.) 

I|VHS(/,/S)II^ 
d / (6) 

2This condition is used in the theorem proof as a sufficient condition to 
guarantee asymptotic properties of Toeplitz matrices. A similar condition will 
be used in Theorem 2. 

As expected, applying the prefllter modifies the channel 
gain and colors the noise accordingly. The color of the noise 
is reflected in the denominator term of the corresponding 
SNR in (4) at each / e — 2 > 2 within the sampling 
bandwidth. The linear time invariance of both the channel 
and the prefllter response leads to an equivalent frequency-
selective channel, and the ideal uniform sampling that follows 
generates a folded version of the non-sampled channel ca
pacity. Specifically, this capacity expression differs from the 
analog capacity in that the SNR in the sampled scenario is 

IsU) '•= WVHsifJsM/WV. S./S, (fJs) in contrast to 

7o(/) : = l # ( / ) l /Sri(f) for the non-sampled scenario. Water 
filling over the inverse sampled SNR 7 " 1 ( / ) determines the 
optimal power allocation. 

C. Approximate Analysis 

Rather than providing here a rigorous proof of Theorem 
1, we first develop an approximate analysis by relating the 
aliased channel to MISO channels, which allows for a com
munication interpretation as in [1, Chapter 8.3]. The rigorous 
analysis, which is deferred to Appendix ??, makes use of a 
discretization argument and asymptotic spectral properties of 
Toeplitz matrices. 

Consider first the equivalence between the sampled channel 
and a MISO channel at a single frequency / e [—/s/2, / s / 2 ] . 
Suppose the transmitted signal has a frequency response3 

X(f). The Fourier transform of the sampled signal is given 
as follows: for all / e — 2 ' 2 

1 +00 

Y, H(f-kfs)S(f-kfs)X(f-kfs (7) 

due to aliasing. The summing operation allows us to treat 
the aliased channel at each frequency / within the sampling 
bandwidth as a separate MISO channel with countably many 
input branches and a single output branch, as illustrated in Fig. 
3(a). 

By assumption, the noise is of spectral density Sv(f), 
and hence the preflltered noise has power spectral den
sity Sv(f)\S(f)\2. The power spectral density of the sam
pled noise sequence at / £ — 4f, ^f\ is then given by 

sjs, (fJs z^-oo<v/-^m(/-vs)r.ifwe 
term {/ — lfs : / e Z} the aliased frequency set for / , then 
the amount of power allocated to X(f — lfs) should "match" 
the corresponding channel gain within each aliased set in order 
to achieve capacity. It follows from known results [18] that the 
MISO channel effectively has only one degree of freedom, 
and that the capacity-achieving strategy for a MISO Gaussian 
channel, which is often referred to as transmit maximum 
ratio combining (MRC) or beamforming, exploits the transmit 
diversity to maximize the received SNR. Specifically, denote 
by G(f) the transmitted signal for each / e — 2 ' 2 • ^n^ s 

3 This is an approximate analysis since the Fourier transform of the input 
signal may not even exist. The proof we provide later does not use Fourier 
analysis but rather the convergence properties of Toeplitz operators. 
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signal is multiplied by a constant gain cai(l £ 
through the Zth input branch, i.e. 

X(f-lfa)=caiG(f), VZeZ, 

V), and sent 

where 

(8) 

ai = — 1 | ^ " *3h M7 **' and c is a normalizing 
constant determined by the power constraint. The resulting 
SNR can be expressed as the sum of SNRs (as shown in [18]) 
at each branch 

c2\\VHS(f,fs)\\l (9) 
sjs, ■ ( / , / . ) 

Since the sampling operation combines signal components 
at frequencies from each aliased set {/ — lfs : / € Z} , it is 
equivalent to having a set of parallel MISO channels, each 
indexed by some / G — 2 ' 2 r Since each MISO channel 
has one degree of freedom, it can be converted to a set of par
allel SISO channels, where the channel at / has an equivalent 
channel gain H(f) = | |V j H- (s(/, / s) | |2 , as illustrated in Fig. 
3(b). The water-filling strategy is optimal in allocating power 
among the set of parallel channels, which yields the parametric 
equations (5) and (6) and completes our approximate analysis. 

x(f-V,)-

H(f-kfs) .s(f-¥.) 

H{f) 

c(f) (---+ Mf) -^g) ► 
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l i 
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Figure 3. Equivalent representations for filtering followed by sampling: (a) 
Equivalent MISO Gaussian channel for a given / £ [—/ s/2, / s / 2 ] ; (b) The 
equivalent set of parallel SISO channels representing all / £ [—/s/2, / s / 2 ] , 
where the SISO channel at a given frequency is equivalent to the MISO 
channel in Fig. 3(a). 

D. Proof Sketch 
Since the Fourier transform is not well-defined for signals 

with infinite energy, there exist technical flaws lurking in the 

approximate treatment of the previous subsection. The key 
step to circumvent these issues is to explore the asymptotic 
properties of Toeplitz matrices/operators. This approach was 
used by Gallager [1] to prove the analog channel capacity the
orem. Under uniform sampling, however, the sampled channel 
no longer acts as a Toeplitz operator, but instead becomes a 
block-Toeplitz operator. Since Gallager's approach [1, Chapter 
8.4] does not accommodate block-Toeplitz matrices, a new 
analysis framework is needed. We provide here a roadmap 
of our analysis framework, and defer the complete proof to 
Appendix ??. 

1) Discrete Approximation: The channel response and the 
filter response are both assumed to be continuous, which 
motivates us to use a discrete-time approximation in order 
to transform the continuous-time operator into its discrete 
counterpart. We discretize a process in the time domain by 
point-wise sampling via an interval A, e.g. h(t) is transformed 
into {/i[n]} by setting 

h[n] = h(nA). 

For any given T, this allows us to use a finite-dimensional 
matrix to approximate the continuous-time block-Toeplitz op
erator. Then, due the continuity assumption, an exact capacity 
expression can be obtained by letting A go to zero. 

2) Spectral properties of block-Toeplitz matrices: After 
discretization, the input-output relation is similar to a MIMO 
discrete system. Applying MIMO channel capacity results 
leads to the capacity for a given T and A. The channel capacity 
is then obtained by taking T to infinity and A to zero, which 
can be related to the channel matrix's spectrum using Toeplitz 
theory. Since the prefiltered noise is non-white and correlated 
across time, we need to whiten it first. This, however, destroys 
the Toeplitz properties of the original system matrix. In order 
to apply established results in Toeplitz theory, we introduce 
the concept of asymptotic equivalence that builds connections 
between Toeplitz matrices and non-Toeplitz matrices. This 
allows us to relate the capacity limit with spectral properties 
of the channel and filter response. 

E. Numerical examples 
1) Additive Gaussian Noise Channel without Prefiltering: 

The first numerical example we consider is an additive Gaus
sian noise channel. The channel gain is flat within the channel 
bandwidth B (here, we set B = 0.5), i.e. H(f) = 1 if 
/ G [—B,B] and H(f) = 0 otherwise. The noise process 
is modeled as a measurable and stationary Gaussian process 
with the power spectral density plotted in Fig. 4. In fact, this 
is the noise model adopted by Lapidoth in [19] to approximate 
white noise, which avoids the infinite variance of the standard 
model for unfiltered white noise4. In this example, we employ 
ideal point-wise sampling without filtering. 

Since the noise bandwidth is larger than the channel band
width, ideal uniform sampling without prefiltering does not 

4In fact, the white noise process only exists as a "generalized process" 
in stochastic calculus, and ideal uniform sampling operating on white noise 
without prefiltering brings in noise from high-frequency components, which 
results in a folded noise process with infinite spectral density. In order to 
avoid this mathematical difficulty, we consider in this example Lapidoth's 
noise model. 
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Figure 4. Additive Gaussian noise channel. The channel gain and the 
power spectral density of the noise is plotted in the left plot. The sampling 
mechanism employed here is ideal uniform sampling without filtering. The 
power constraint is P = 5. The sampled capacity, as illustrated in the right 
plot, does not achieve analog capacity when sampling at a rate equal to twice 
the channel bandwidth, but does achieve it when sampling at a rate equal to 
twice the noise bandwidth. 

allow analog capacity to be achieved when sampling at a 
rate equal to twice the channel bandwidth. This is because 
uniform sampling without preflltering brings in noise from 
high-frequency components outside the channel bandwidth. 
Increasing the sampling rate above twice the channel band
width (but below the noise bandwidth) spreads the total noise 
power over a larger sampling bandwidth, reducing the noise 
density at each frequency, which allows the sampled capacity 
to continue increasing at sampling rates above the Nyquist 
rates, as illustrated in Fig. 4. It can be seen that the capacity 
does not increase monotonically with the sampling rate, which 
is a consequence of the non-monotonicity of the SNR in fs, 
as described in more detail later. We also note that capacity 
does not increase further when the sampling rate exceeds twice 
the noise bandwidth, since oversampling at any rate above 
twice the noise bandwidth already preserves all contents of 
the channel output - no further information can be harvested. 

2) Optimal Preflltering: In the full-length version of this 
paper [20], we have identified the optimal prefllters that 
maximize capacity. Although they are in general discontinuous 
and hence hard to realize, they reduce to low-pass filters 
with cutoff frequency fs/2 for monotone channels (namely, 
channels for which the magnitude of the channel response 
\H(f)\ is non-increasing). Fig. 5 illustrates the capacity-

1 

sampling tradeoff curve for the raised-cosine channel5 with 
different roll-off factors. It can be observed that below the 
Nyquist rate, capacity increases with fs since the effective 
sampling bandwidth increases, while oversampling beyond the 
Nyquist rate does not increase capacity. As expected, sampling 
at or above the Nyquist rate creates an alias-free capacity 
expression, which reverts to the classical capacity results for 
non-sampled waveform channels. 

Figure 5. The sampled channel capacity vs sampling rate for a raised-
cosine channel with an optimal prefilter. The channel bandwidth is assumed 
to be [ — § , § ] , the power constraint P = 10, and the noise is white with 
flat spectral density o-jj = 1. The frequency response H(f) of the channel 
is assumed to be a raised cosine function with ft = 0.9 and T = 1.6. 
The tradeoff curves for two types of prefllters are illustrated: (1) the optimal 
prefilter (which is a low-pass filter); (2) the matched filter whose frequency 
response obeys S(f) = H*(f). In the sub-Nyquist sampling rate regime, the 
optimal prefilter outperforms the matched filter, while the two curves coincide 
when sampling is performed above the Nyquist rate. 

However, a somewhat counter-intuitive fact arises for more 
general types of channels: the channel capacity C(fs) is not 
necessarily an increasing function of the sampling rate fs. 
Consider the multiband channel in Fig. 6 with 4 subbands. 
If the channel is sampled at a rate fs — § / N Y O ' aliasing 
occurs and collapses the two subbands down to one subband 
(and hence one degree of freedom). However, if sampling 
is done at a rate fs = § / N Y Q > ^ c a n ^ e e a s ^ y ve rified 
that the two subbands shift in Frequency but remain non-
overlapping, resulting in two degrees of freedom. The tradeoff 
curve between capacity and sampling rate for this multiband 

5 Specifically, the frequency response of the raised cosine channel here is 
given as 

„m _ jT> I/I ^ ^ 

where /3 denotes the roll-off factor. 



channel with optimal prefllters is also plotted in Fig. 6. The 
underlying reason for the non-monotonic behavior of the 
capacity curve is that uniform sampling with a single filter 
largely constrains our ability to exploit channel and signal 
structures. 

introduce any given delay, so this approach subsumes that of 
a filter bank with different sampling times at each branch. 
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Figure 7. A filter bank followed by sampling: the received analog signal r(t) 
is passed through M branches. In the ith branch, the signal r(t) is passed 
through an LTI prefilter with frequency response Si(f), and then sampled 
uniformly by an ideal uniform sampler. 

Figure 6. The sampled channel capacity vs sampling rate for (1) uniform 
sampling with a single filter, (2) uniform sampling with 2 filters, and (3) 
uniform sampling with 4 filters. The channel bandwidth is assumed to be 
[— | , - | ] , the power constraint P = 10, and the noise power crjj = 1. For 
uniform sampling with both a single filter and 2 filters, the capacity is not 
monotonically increasing in the sub-Nyquist regime, while sampling above 
the Nyquist rate does not increase data rate. For the case with 4 filters, it 
achieves full capacity when exceeding the Landau rate. It can be observed that 
applying sampling with filter banks outperforms sampling with a single filter, 
but whether oversampling above the Landau rate achieves full non-sampled 
capacity depends on the number of filters. In general, when sampling is done 
below the Landau rate, capacity does not in general monotonically increase 
with the sampling rate for either a single filter or a bank of filters. 

III. A B A N K OF FILTERS FOLLOWED BY SAMPLING 

A. Problem Formulation 
As discussed in the previous section, sampling following a 

single filter often falls short of exploiting channel structure. In 
particular, although Nyquist-rate uniform sampling preserves 
information for bandlimited signals, for multiband signals it 
does not ensure perfect reconstruction at a rate approaching 
the Landau rate (i.e. the total widths of spectral support). 
That is because uniform sampling at sub-Nyquist rates may 
suppress information by collapsing subbands, resulting in 
fewer degrees of freedom. This motivates us to investigate 
certain nonuniform sampling mechanisms. In particular, we 
now consider the class of non-uniform sampling mechanisms 
that is most widely used in practice, where the received signal 
is preprocessed by a bank of filters. Note that the filters may 

In this sampling strategy, we replace the single prefilter 
in Fig. 2 by a bank of M analog filters followed by ideal 
sampling at rate fs/M for each branch, as illustrated in Fig. 
7. We denote by Si(t) and Si (f) the impulse response and 
frequency response of the ith linear filter, respectively. The 
filtered analog output in the ith branch prior to sampling is 
then given as 

yi(t) = (h(t)*Si(t))*x(t) + Si(t)*ri(t), t e (0,T] . (10) 

These filtered signals are then passed through M ideal sam
plers to yield 

Vi[ri\ = Vi{nMTs) and y[n] = [y1[n],y2[n], • • • ,yM[n\], 
(11) 

where Ts = f~x. The capacity now is the maximum mutual 
information between x(0,T] and y[n]. 

B. Capacity Results 

Since the sampled output at these branches are all functions 
of the same input and noise and hence mutually dependent, 
the optimal transmission scheme must account for their cor
relation. Specifically, the transmit signal should be chosen to 
decouple mutual interference across different branches. This 
is reflected in the capacity expression given in Theorem 2. 

In order to state our theorem formally, we introduce two 
Fourier symbol matrices F s and F^ . Here, F s is an infinite 
matrix of m rows and infinite columns and F^ is a diagonal 
infinite matrix such that V l < i < f c , V Z e Z : 

(F . ( / ) ) i . 

(Ffc(/)), 

M Si(f 
H(f-Ht) 

JSv(f-ft)' 

) V < S " ( ^ - M ) > 
(12) 

Theorem 2. Consider the system shown in Fig. 7. Assume 
that h(t) and Si(t) (1 < i < M) are all continuous, bounded 
and absolutely Riemann integrable. Additionally, assume that 

hv(t) := J 7 - 1 I , '•y I satisfies hv(t) = o(t~e) for some y-s,(/)/ 
constant e > 1, and that F s is right-invertible for every f. The 
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capacity C(fs) of the sampled channel with a power constraint 
P can be given as 

tit \™ ( f. . xx + 
C(fs) = J _ ^ 2 E l°S ( ^ (FsFftF;F:) ) d/, 

2M i — 1 

where 

2M
f J2[^-^{f^KK)] df = p. 

Remark 1. Using the same argument as used by Telatar in 
[21], we can express this capacity alternatively as 

^ - logdet (lM + F S F ^ Q F ^ F : ) d/ , 

(13) 

where Fs = (F S F*)~^ Fs and 

for all | / | < fs/2M, indicating the mutual correlation of 
noise at different branches. The received noise vector can be 
whitened by multiplying Y ( / ) = [■■■, Y(f), Y(f-ff), ■ ■ ■ }T 

by an M x M whitening matrix (Fs(f)F*(f))~*. Since 
whitening here is an invertible operation, it preserves capacity. 
After whitening, the channel of Fig. 8(a) associated with 
frequency / has the following channel matrix 

( F s ( / ) F ; ( / ) ) - » F . ( / ) F k ( / ) = Fs(f)Fh(f). (16) 

MIMO Gaussian channel capacity results [21] immediately 
imply that the channel capacity at a given frequency / G 
[—fs/2M, fs/2M] corresponding to the channel in Fig. 8(a) 
can be expressed as 

Q Q ( / ) : | / | < ^ , Q ( / ) G § + 

/ . 

fs 
2M 

fs 
2M 

T t ( Q ( / ) ) d / = P. (14) 

The optimal {Q( / ) } corresponds to a water-filling power al
location strategy based on the singular values of the equivalent 
channel matrix F^F^, where F/j, is associated with the original 
channel and F s arises from prefiltering and noise whitening. 
For each / e [-f3/2M,fs/2M], the integrand in (13) can 
be interpreted as a MIMO Gaussian channel capacity formula 
with degrees of freedom associated with the frequency domain, 
as illustrated in Fig. 8(a). We still have full control over a 
countable number of input branches <x(f— l-^-j | / G Z k 
but this time we have M receive branches instead of a single 
branch (as in the MISO case for sampling following a single 
filter). The channel capacity can be achieved when the transmit 
signals are designed to decouple this MIMO channel into 
M parallel channels (and hence M degrees of freedom), 
each corresponding to one of its singular directions. Unlike 
traditional MIMO Gaussian channels, the noise samples in 
each output sample set {yi[n] : 1 < i < M} result from the 
same process rj{t) (as shown in Fig. 7(a)) and hence noise 
samples are correlated. 

max - logdet [I + F f l ( / ) F h ( / ) Q ( / ) F £ ( / ) F ; ( / ) j (17) 

subject to the constraints trace (Q( / ) ) < P{f) and Q ( / ) G 
§ + , where Q ( / ) denotes the power allocation matrix. Ranging 
over all / G [-fs/2M,fs/2M], we have the set of parallel 
MIMO channels for each frequency / illustrated in Fig. 8(b), 
where each MIMO channel in this figure is equivalent to the 
set of M parallel channels in Fig. 8(a) for the given frequency. 
Performing the water-filling power allocation strategy across 
all parallel channels leads to our capacity expression. 

C. Approximate Analysis 
The sampled analog channel under filter banks followed 

by sampling can be studied through its connection with 
MIMO Gaussian channels (see Fig. 8). Consider first a single 
frequency / G [—fs/2M, fs/2M]. Since we employ a bank of 
filters with each filter followed by an ideal uniform sampler, 
the equivalent channel has M receive branches, each corre
sponding to one branch of prefiltered sampling at a rate fs/M. 
The noise received in the ith branch is zero-mean Gaussian 
with power spectral density 

E 1 M 
f_lA (15) 

Figure 8. Equivalent representations for a bank of M filters followed 
by sampling: (a) Equivalent MIMO Gaussian channel for a single / £ 
[—fs/2M, fs/2M]; (b) An equivalent set of parallel channels representing 
all / G [—/S /2M, / S / 2 M ] , where the MIMO channel at a given frequency 
/ is equivalent to the MIMO channel of Fig. 8(a). 
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understanding of sufficient statistics that favors the channel 
structure may also guide the design of sampling mechanisms 
for both single-user and multiuser channels. 

Figure 9. The frequency response of the original and the filtered channel. 
(a) Original channel model; (b) filtered channel using optimal filtering; (c)(d) 
filtered channel using optimal filter banks (2 branches). 

D. Numerical Examples 

We again look at the multiband sparse channel where 
the channel response is concentrated in two subbands, as 
illustrated in Fig. 6. As derived in [20], the optimal filter bank 
will select m frequencies with the highest SNR out of the 
set < f — l^ : I e Z >. By comparison, uniform sampling with 
filtering only allows us to select the best single frequency with 
the highest SNR out of the set {/ — lfs \ I e Z}. For example, 
when several frequencies in the set {/ — lfs} enjoy higher 
channel gain than those in the set< f + ^ — lfs>, sampling 
with filter banks allows these desirable frequencies to be used 
for multiple branches. For uniform sampling with filtering, 
however, at most one from each set can be effectively used. 
See Fig. 9 for an example, in which sampling with 2 filters 
selects better frequency components than sampling with a 
single filter. Because of the better exploitation of spectral 
contents, sampling with filter banks outperforms sampling with 
a single filter, as illustrated in Fig. 6. It can be observed that 
when the number of branches is carefully chosen based on the 
channel structure, sampling with filter banks can achieve full 
capacity when the sampling rate exceeds the Landau rate, but 
uniform sampling with filter banks does not necessarily result 
in motononicity of capacity in fs when it is performed below 
the Landau rate. 

IV. CONCLUDING REMARKS 

This paper characterizes the interplay between sampling 
and channel capacity. In particular, we characterize capacity 
as a function of sampling rate along with the capacity-
achieving input strategy for different sampling mechanisms. 
We show that the capacity of a sampled channel degrades 
with reduced sampling rate, which encourages exploitation of 
channel structures in the sampling mechanism. Our work also 
points to the need for more general sampling mechanisms 
based on capacity as an optimization metric. It remains to 
be seen how capacity of sampled analog channels can be 
improved by more general non-uniform sampling. A deeper 
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