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‚Analog Girl in a Digital World…‛ 

Voice recorder Camera Medical imaging 

Analog  
signal 

ADC 

Digital domain 

Compress 
~1:10 

De- 
Compress DAC 

Analog  
signal 

Nyquist rate 

Judy Gorman `99 

‚Can we not just directly measure the part that 
will not end up being thrown away ?‛ 

Donoho, ‘06 
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Key Idea 

 

Reduce storage/reduce sampling rates 

Reduce processing rates 

Increase imaging resolution 

Reduce power, size, cost… 

 

 

Exploit structure to improve data processing performance: 

Goal:  

Survey sampling strategies that exploit signal structure to reduce rate 

Present a unified framework for sub-Nyquist sampling 

Provide a variety of different applications and benefits 
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Outline 

Part 1: Introduction 

Part 2: Sub-Nyquist in a subspace 
Generalized sampling framework 

Examples 

Part 3: Union of subspaces 
Model, analog and discrete applications 

Short intro to compressed sensing 

Part 4: Xampling, Sub-Nyquist in a union 
Functional framework 

Modulated wideband conversion 

Sparse shift-invariant sampling 

Finite-rate/sequences of innovation methods 

Random demodulation 

Part 5: From theory to hardware 
Practical design metrics 

Circuit challenges 
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Outline Schematically 

Definition: Nyquist-rate system 
A single ADC device outputs a stream of numbers at rate    

Sub-Nyquist system 

One or more ADC devices 

Each ADC device runs at a rate below 

With / without analog preprocessing 

 

High-rate 

Low-rate 

Overall rate  Our main focus 
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Tutorial Goal 

 

Feel free to ask questions 

Raise ideas 

Slow us down if things are too fast … 

  

 

To be as interactive as possible! 

Hope you learn and enjoy! 
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– Part 1 – 

Introduction 

 Outline 
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Sampling: ‚Analog Girl in a Digital 
World…‛  Judy Gorman 99 

Digital world Analog world 

Reconstruction 
D2A 

Sampling 
A2D 

 Signal processing  
 Image denoising 
 Analysis… 

(Interpolation) 

 Music 
 Radar 
 Image… 
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Sampling: ‚Analog Girl in a Digital 
World…‛  Judy Gorman 99 

Digital world Analog world 

 Signal processing  
 Image denoising 
 Analysis… 

 Music 
 Radar 
 Image… 

 Very high sampling rates: 
    hardware excessive solutions 

  High DSP rates 
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ADC Market 

 State-of-the-art ADCs generate uniform samples at the input’s Nyquist rate 
 Continuous effort to: 

increase sampling rate (Giga-samples/sec) 
increase front-end bandwidth  
increase (effective) number of bits 

Working in digital becomes difficult 
 9  
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Nyquist Rate Sampling 

Standard processing techniques require sampling at the 
Nyquist rate = twice the highest frequency 

Narrow pulse, wide sensing range = high Nyquist rate 

Results in hardware excessive solutions and high DSP rates 

Too difficult to process, store and transmit 

   

Main Idea: 
Exploit structure to reduce sampling and processing rates 
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 piece-wise linear 

The Key – Structure 

 Sampling reduces ``dimenions’’  
 Must have some prior on  

Sampling 
A2D Uncountable Countable 
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The Key – Structure 

 Sampling reduces ``dimenions’’  
 Must have some prior on  

Sampling 
A2D Uncountable Countable 

 bandlimited 

Prior (= Signal Model) Necessary for Recovery 
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The Key – Structure 

 Sampling reduces ``dimenions’’  
 Must have some prior on  

Sampling 
A2D Uncountable Countable 

 Model too narrow  (e.g. pure sine)     not widely applicable 
 Model too wide (e.g. bandlimited)     no rate reduction 

Key:  Treat signal models that are sufficiently 
wide and structured at the same time 
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Structure Types 

 In this tutorial we treat 2 main structures: 

Subspace 

 Linear:   

 Generalized sampling theory 

Union of subspaces 

 Nonlinear:   

 Xampling (functional framework) 
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Structure Types 

 In this tutorial we treat 2 main structures: 

Subspace 

 Linear:   

 Generalized sampling theory 

Union of subspaces 

 Nonlinear:   

 Xampling (functional framework) 

 Subspace modeling is used in many practical applications 
 BUT, can result in unnecessary-high sampling and processing rates  
 Union modeling paves the way to innovative sampling methods,  

   at rates as low as the actual information rate 
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Ultrasound 

Tx pulse Ultrasonic probe 

Rx signal Unknowns 

Echoes result from scattering in the tissue 

The image is formed by identifying the 
scatterers 

 
High sampling rates 

High digital processing rates 
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To increase SNR the reflections are viewed by an antenna array 

SNR is improved through beamforming by introducing appropriate 
time shifts to the received signals 

 

 

 

 

 

 

 

Requires high sampling rates and large data processing rates 

Subspace:  One image trace requires 128 samplers @ 20M, 
 beamforming to 150 points,  a total of 6.3x106 sums/frame 

Union:  can reduce sampling rate by orders of magnitude 

 

 

Processing Rates 

Scan Plane 

 Xdcr 

Focusing the received 
 beam by applying delays 
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Processing Rates 

Portable  
Systems 

Low-End 
Systems 

High-End 
Systems 

 

Goal: reduce ultrasound machines to a size of a laptop at same resolution 
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Resolution (1): Radar 
 

    Principle: 
  A known pulse is transmitted 
  Reflections from targets are received  
  Target’s ranges and velocities are identified 

 
   Challenge: 

  All processing is done digitally 
  Targets can lie on an arbitrary grid 
  Process of digitizing  

     loss of resolution in range-velocity domain 
 

 
 Subspace methods: 
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Resolution (2): Subwavelength Imaging 

Input Output 

    Diffraction limit:  Even a perfect optical imaging system has a 
resolution limit determined by the wavelength λ 

The smallest observable detail is larger than ~ λ/2 

This results in image smearing  
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Resolution (2): Subwavelength Imaging 

    Diffraction limit:  Even a perfect optical imaging system has a 
resolution limit determined by the wavelength λ 

The smallest observable detail is larger than ~ λ/2 

This results in image smearing  

 Subspace methods: 
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Imaging via Union Modeling 

Union method 

150 nm 

 Radar: 

 Subwavelength: 

Gazit et al., ‘11 

Bajwa et al., ‘11 
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Wideband Communication 

AM FM QPSK QAM 

 Subspace methods:   
RF demodulation 
Undersampling 
and more… 
 

  Unknown    , e.g. cognitive radio. Should we sample at             ? 

 Union modeling:   
Can sample at the actual information bandwidth, even though 
 
Can process at low rate (no need to reconstruct Nyquist-rate samples) 
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Sub-Nyquist Demonstration 

FM @ 631.2 MHz AM @ 807.8 MHz 

1.
5 

M
H

z
 

10 kHz 100 kHz 

Overlayed sub-Nyquist  
aliasing around 6.171 MHz 

+ + 

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz 
MWC prototype 

Carrier frequencies are chosen to create overlayed aliasing at baseband 

Reconstruction 
(CTF) 

Mishali et al., ‘10 

 19  



Mishali-Eldar, ICASSP 2011 

Main idea: 

Move compression before ADC 

Use nonlinear algorithms to interface with standard DSP and 
signal reconstruction 

Xampling 

High-rate 

Low-rate SW 
HW 
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Xampling 

SW 
HW 

New hardware designs New digital algorithms 

Main idea: 

Move compression before ADC 

Use nonlinear algorithms to interface with standard DSP and 
signal reconstruction 

Follow a set of design principles   step from theory to hardware 
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From Theory to Hardware 

2.4 GHz Nyquist-rate, 120 MHz occupancy 
280 MHz sampling rate 
49 dB dynamic range 
SNDR > 30 dB over input range Mishali et al., 10 

800 kHz Nyquist-rate 
100 kHz sampling rate 

Ragheb et al., 08 

Tutorial briefly covers circuit challenges in sub-Nyquist systems 

Can gain significant advantages in practical applications 

Sub-Nyquist technology becomes feasible ! 

Candès et al., 08 Emami et al., 08 RICE 1-pixel camera DARPA A2I Project 

See many more contributors in compressive sensing hardware 
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– Part 2 – 

Sub-Nyquist in a Subspace 

 Outline 
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Shannon-Nyquist Sampling 

Theorem [Bandlimited Sampling]  

Shannon, ‘49 

 Model:             Bandlimited signals 
 Sampling:      Pointwise at rate 
 Reconstruction:  Interpolation by  

 24  



Mishali-Eldar, ICASSP 2011 

Avoiding High-Rate ADC 

 Use several samplers: 
Papoulis’ theorem 
Time-interleaved ADC (special case)  

 Exploit signal structure (subspace): 
Pulse streams 
Multiband sampling 
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Papoulis’ Theorem 

 Model:      bandlimited (same) 
 Sampling:      branches sampled at           the Nyquist rate, 

  Flexible constraints on 

 Overall rate is         (same) 

Papoulis, ‘77 

 Reconstruction: 
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Time-Interleaved ADCs 

A high-rate ADC comprised of a bank of lowrate devices 

 Each branch (coset) undersamples at            of 
   the Nyquist-rate 

Analog Devices Corp. 

Texas Instruments Corp. 

MAXIM Corp. 

National InstrumentsCorp. 

 Widely-researched Yen, ‘56 

Eldar and Oppenheim, ‘00 

Johansson and Lowenborg, ‘02 

Levy and Hurst, ‘04 

…and more 
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Practical ADC Devices 

In time-interleaved architectures: 
 The overall rate is Nyquist  
 Each branch needs front-end with Nyquist bandwidth  

   (will be important later) 
 Accurate time delay are required  

Black and Hodges, ‘80 

Jenq, ‘90 

Elbornsson et al., ‘05 

Divi and Wornell, ‘09 

Murmann et al., ‘09 

Goodman et al., ’09 

…and more 
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Generalized Sampling in a Subspace 

 Model:   Shift-invariant (SI) subspace of possible inputs 

 Sampling:   Inner products,  

   

   

 Practical !    e.g., splines, pulse amplitude modulation (PAM), and more… 
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Recovery:     Filter by                    to obtain         , then interpolate 

Reconstruction from Generalized Samples 

Model: 
 
Sampling: 
 

 Shift-invariant case 

 Sampling rate is       rather than the Nyquist rate of 
 
 Approach does not depend on 

Aldroubi and Unser, ‘94 

Christensen and Eldar, ‘05 
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 Sampling rate is         independent of 

Multiple Shift-Invariant Generators 

 Model: 

 Sampling / Reconstruction: 

 Previous work extends theory to arbitrary subspaces 
 Many beautiful results, and many contributors 

   (Unser, Aldroubi, Vaidyanathan,Blu, Jerri, Vetterli, Grochenig, DeVore,Christensen,Schoenberg,Eldar …)  

More information: 
Y. C. Eldar and T. Michaeli,  
‚Beyond Bandlimited Sampling,‛  
IEEE Signal Proc. Magazine,  
26(3): 48-68, May 2009 

de Boor, DeVore and Ron , ‘94 

Christensen and Eldar, ‘05 
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 Sampling rate is         independent of 

Multiple Shift-Invariant Generators 

 Model: 

 Sampling / Reconstruction: 

 Previous work extends theory to arbitrary subspaces 
 Many beautiful results, and many contributors 

   (Unser, Aldroubi, Vaidyanathan,Blu, Jerri, Vetterli, Grochenig, DeVore,Christensen,Schoenberg,Eldar …)  

More information: 
Y. C. Eldar and T. Michaeli,  
‚Beyond Bandlimited Sampling,‛  
IEEE Signal Proc. Magazine,  
26(3): 48-68, May 2009 

de Boor, DeVore and Ron , ‘94 

Christensen and Eldar, ‘05 
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Sampling:  choose                        

             3 adjacent shifts contributes to each sample  

Recovery:   exploit known shape 

         can be very high, since          is not bandlimited 

Toy-Example (1) 

Model:  

1 

Rate: 

Subspace 

prior 
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Toy-Example (2) 

Model:  

Perfect recovery ! 

is high… 

Rate: 

Lowpass data can contain all relevant information ! 
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           is high, since           is not bandlimited 

Sampling:   design                                and sample                                   

                                           are known 

Pulse-streams (known locations) 

Model:  fixed delays     , unknown  

 

 

Recovery:                          satisfy a linear system, with coefficients 

depending on                      

Rate: 
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Generalized Sampling in Practice 

So far: 
 Toy-examples: perfect recovery of nonbandlimited inputs ! 
 Pulse streams,     known pulse shape and fixed delays 

Sampling & processing rates 

A common denominator 

exact knowledge Approach minimal 

Design assumption 

High 

 Next slides: Multiband signals,           known carrier frequencies 
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Multiband (known carriers) 

AM FM QPSK QAM 

Model:  narrowband transmissions in wideband range,  

               modulated on carrier frequencies 

    

Sampling: 

RF demodulation 

Undersampling 

Nonuniform strategies 

Utilize knowledge 

Sampling and processing at rate           are often impractical 
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Landau’s Theorem 

Average sampling rate 

Theorem (known spectral support) 

Landau, ‘67 

      bands, individual widths         , requires at least         samples/sec 
 
 
 Note:  bandpass with single-side width     requires        samples/sec 

     transmissions result in               bands (conjugate symmetry) 

 States the minimal sampling rate for any (pointwise) sampling strategy  
   that utilizes frequency support  knowledge 
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RF Demodulation 

AM FM QPSK QAM 

      value is used in sampling and reconstruction 
 Analog preprocessing with RF devices (1 branch/transmission) 
 Minimal rate: 
 Zero-IF, low-IF topologies 

Lowpass DSP Interp. 

Crols and Steyaert, ‘98 
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Undersampling 

 a.k.a. bandpass sampling 

QPSK 

DSP Interp. 

 Sampling:             Select rate to satisfy ``alias free condition’’  
 
 Reconstruction:   Same as in RF demodulation 
 
 No analog preprocessing 
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Allowed Undersampling Rates 

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Vaughan et al., ‘91 

 Sampling rate must be chosen in accordance to band location: 

Allowed 

Forbidden 

 Robustness to model mismatch requires significant rate increase 
 Multiband alias-free conditions are complicated and generally  

   do not result in significant rate reduction 

~150% increase 
above optimal 
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Periodic Nonuniform Sampling 

 Advantages: 
 No analog preprocessing  
 No ``alias-free’’ conditions, work for multiband 
 Approach minimal rate 

 
 Sampling: 

 In general, a p’th-order PNS can resolve up to p aliases: 
 Bandpass sampling at average rate 2B 
 Multiband sampling at rate approaching minimal 

Kohlenberg, ‘53 

Lin and Vaidyanathan, ‘98 
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Reconstruction from 2nd order PNS 

 Delays result in different linear combinations of the bands 
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Multi-Coset Sampling 

 PNS with delays         on the Nyquist grid 

Analog signal 

Point-wise samples 

0 

2 

3 
0 

0 

2 

2 

3 

3 

 43  



Mishali-Eldar, ICASSP 2011 

Multi-Coset Sampling 

 PNS with delays         on the Nyquist grid 

Analog signal 

Point-wise samples 

0 

2 

3 
0 

0 

2 

2 

3 

3 
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Multi-Coset Sampling 

 PNS with delays         on the Nyquist grid 

 Semi-blind approaches: 
Choose          universally (or at random) 
Design reconstruction filters 
 

Herley et. al., ‘99 

Bresler et al., ‘00 

 ``Blind’’ recovery: Bresler et al., ‘96,'98 

 Positions are implicitly assumed: 
                     depends on band positions 
Recovery fails if incorrect value is used for 
Result requires random signal model, and holds almost surely 

Completely blind = Unknown carriers = not a subspace model ! 
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Short Summary 

 Subspace models 
Linear, easy to treat mathematically 
Not necessarily bandlimited 

 
 Generalized sampling theory 

Treat arbitrary subspace models 
Many classic approaches can be derived from theory 
Rate is proportional to actual information rate rather than Nyquist 

But, what if… 

 the input model is not linear ? 
   (for example, when carrier frequencies or times of arrivals are unknown) 

 
 Answer: the rest of this tutorial 
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Nonlinear Models – Motivation 

 Encountered in practical applications: 
Cognitive radio mobiles utilize unused spectrum ``holes’’, 
spectral map is unknown a-priori 
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 Encountered in practical applications: 
Cognitive radio mobiles utilize unused spectrum ``holes’’, 
spectral map is unknown a-priori 
Ultrasound, reflections are intercepted at unknown delays 
 

Nonlinear Models – Motivation 
Ultrasonic probe 

Rx signal Unknowns 
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 Encountered in practical applications: 
Cognitive radio mobiles utilize unused spectrum ``holes’’, 
spectral map is unknown a-priori 
Ultrasound, reflections are intercepted at unknown delays 
 

Nonlinear Models – Motivation 

Rx signal Unknowns 

 Do not fit subspace modeling … we can always  sample at rate   
 
 Questions: 

Better modeling? Subspace up to some uncertainty ? 
Can we sample and process at rates below            with proper modeling?       
 

 47  
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– Part 3 – 

Union of Subspaces 

 Outline 
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Model 

 Signal belongs to one out of (possibly infinitely-)many subspaces 

 Each     corresponds to a different subspace 

         belongs to        , for some               But,       is unknown a-priori  

      is a nonlinear model:     

 A union is generally a true subset of its affine hull: 

Lu and Do, ‘08 
Eldar and Mishali, ‘09 

The union tells us more about the signal! 
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Union Types 

4 types: 

Legend: 

        = General analog union models 
           Infiniteness enters in either  

        = Discrete models, e.g., sparse trigonometric polynomials  
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Dimensions: 

  

  

Examples: Analog Unions (1) 

Pulses with unknown time delays 

A special case of a broader model: finite rate of innovation (FRI) 
Here, innovation rate =  

Sequences of innovation model has both dimensions infinite 

Vetterli et al., ’02-’11 

Gedalyahu and Eldar, ’09-’11 
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Examples: Analog Unions (2) 

Multiband with unknown carrier frequencies 

Dimensions: 

  

  

Another viewpoint with                                                       is 
described later on  
(efficient hardware and software implementation)  

Mishali and Eldar ’07-’11 
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Examples: Discrete Unions 

Signal model has underlying finite parameterization 

Tropp et al., ’09 

Continuous-time examples: 

Sparse trigonometric polynomials 

Sparse piece-wise constant with integer knots 

Discrete-time examples: 

Compressed sensing 

Block sparsity, tree-sparse models 

Donoho, Candès-Romberg-Tao, ‘06 

Baraniuk et al., Eldar et al., ’09-’11 

Kunis and Rauhut, ’08 
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Compressed Sensing = Union 

Each      is a subspace 

- sparse 

 Denoising and deblurring  

 Tracking and classification  

 Compressed sensing 

Sparsity models have been used successfully in many 
applications such as: 

Donoho, Johnstone, Mallat, Sapiro, Ma, Vidal, Starck, … 

Candès, Romberg, and Tao ‘06 

Donoho ‘06 
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Compressed Sensing  

For sub-Nyquist sampling, our focus is on infinite unions 

We will start with compressed sensing (CS) 

easier to explain 

methods for infinite unions also rely on CS algorithms 

Following a short intro on CS    Xampling and analog systems 

CS 
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Compressed     148 KB 
6% 

Short Intro 

Original     2500 KB 
100% 

‚Can we not just directly measure the part that will not 
end up being thrown away ?‛ 

Donoho, ‘06 
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In a Nutshell… 

Donoho, ‘06 
Candès-Romberg-Tao, ‘06 
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Concept 

Goal: Identify the bucket with fake coins.  

Nyquist: 
Weigh a coin 

from each bucket 
Compression 

Bucket # 

numbers 1 number 

Compressed Sensing: Bucket # 

1 number 

Weigh a linear combination 
of coins from all buckets 
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Uniqueness of Sparse Representations 

 How many samples are needed to ensure uniqueness? 
 
V 
 
 
 
V 
 
V 
 
V 
 
v 
 
 
 
 
 

    

Problem: Condition hard to verify 
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Coherence 

 The coherence of A is defined by (assuming normalized columns) 

 When 

 Uniqueness of y=Ax can be expressed in terms of      as  
 
 
 
 Under same condition we will see that efficient recovery is  

possible as well 
 

     
              

Donoho et al., ‘01 
Tropp, ‘04 
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Restricted Isometry Property (RIP) 

 When noise is present uniqueness cannot be guaranteed 

 Would like to ensure stability 

 Can be guaranteed using RIP 

 A  has RIP of order     if 

 

   for any k–sparse vector x 

 In this case A is an approximate isometry 

 If A has unit-columns and coherence      then it has the RIP with 

                    

 
 
 

Candès and Tao, ‘05 
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Find the sparsest and consistent 
 

 

Recovery of Sparse Vectors 

Alternative recovery algorithms (Polynomial-time): 

NP-Hard !! 

 Basis pursuit 

Convex and tractable 

 Greedy algorithms 

OMP, FOCUSS, etc. 

 Reconstruction: 

Donoho, ‘06 
Candès et al., ‘06 

Candès, ‘08 

Donoho and Elad, ‘03 

Tropp, Elad, Cotter et al.,  
Chen et al., and many others… 
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Greedy Methods: Matching Pursuit 

Essential algorithm: 

1) Choose the first ‚active‛ column (maximally correlated with    ) 
 
 

2) Subtract off to form a residual  
 
 

3) Repeat with 

Very fast for small scale problems 

Not as accurate/robust for large signals in the presence of noise 

Orthogonal MP: 

 Improve residual computation 

Mallat and Zhang, ‘93 

Pati et al., ‘93 
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Recovery In the Presence of Noise 

  -relaxation techniques (convex optimization problems) 

Basis pursuit denoising (BPDN) / Lasso: 

 

 

Dantzig selector: 

 

Greedy approaches: stop when data error is on the order of the noise 

 

Candès and Tao, ‘07 

Tibshirani ‘96 
Chen et al., ‘98 
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Recovery Gurantees 

Common settings: 

Random sensing matrix A, random noise 

RIP (and similar properties) can be approximated w.h.p. 

RIP-based guarantees for Dantzig selector and BPDN:   

 

 

Deterministic A and x, random 

RIP typically unknown, coherence must be used 

Coherence-based results for BPDN, OMP, thresholding: 

 

 

Deterministic ‚adversarial‛ noise w: 

Guarantees on order of 

Candès and Tao, ’07 
Bicket et al., 09 

Ben-Haim, Eldar and Elad, ’10 

Donoho et al., ’06 
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The Sensing Matrix A 

Random IID matrices ensure recovery with high probability for 
sub-Gaussian distributions (Gaussian, Rademacher , Bernoulli, 
bounded RVs …) when  

Random partial Fourier matrices (or more generally unitary 
matrices) also ensure recovery with a slightly higher number of 
measurements 

Some structured matrices work as well such as a Vandermonde 
matrix 

Tutorials on Compressed Sensing: 
R. G. Baraniuk, ‚Compressive sensing,‛ IEEE Signal Processing Mag., 24(4), 118–124, July 2007. 
E. J. Candès and M. B. Wakin, ‚An introduction to compressive sampling,‛ IEEE Sig. Proc. Mag., 25(3), 
21–30, Mar. 2008. 
M. Duarte  and Y. C. Eldar, ‚Structured Compressed Sensing: From Theory to Applications,‛ TSP. 
Y. C. Eldar and G. Kutyniok, ‚Compressed Sensing: Theory and Applications,‛ Cambridge Press. 

Donoho, ‘06 

Candès et al., ‘06 
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Sub-Nyquist in a Union 

High-sampling rate 

Analog bandwidth issues 

Load on the digital processing due to the excessive rate 

  Imposing subspace model                  is inefficient,           problems 

 67  



Mishali-Eldar, ICASSP 2011 

Sub-Nyquist in a Union 

  Imposing subspace model                  is inefficient,           problems 

Generalized sampling theory for unions? 

Still developing… 

Apply CS on discretized analog models? 

    …at the price of model sensitivity, high computational loads, and  
    loss of resolution   

Rule of thumb: 1 MHz Nyquist = CS with 1 Million unknowns ! 
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Multiband: Discretization ? 

Instead of analog multiband: Work with discrete multi-tone: 

Model size: 

Problems: Advantages: 

Proportional to actual bandwidth Proportional to Nyquist rate 

Mishali, Eldar and Elron, ‘10 
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Multiband: Discretization ? 

Instead of analog multiband: Work with discrete multi-tone: 

Model size: 

Problems: Advantages: 

Sensitivity: 

System ‚grid‛ must match signal tones grid 

0.005% grid mismatch 
Negligible 

(for a slight rate increase) 

Cannot avoid grid mismatch 

huge-scale 

Mishali, Eldar and Elron, ‘10 
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Multiband: Discretization ? 

Instead of analog multiband: Work with discrete multi-tone: 

Model size: 

Problems: Advantages: 

Sensitivity:     Negligible System ‚grid‛ must match  
the unknown signal tones grid 

Computational load (100 MHz processer): 

Realtime processing 
Mishali, Eldar and Elron, ‘10 
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Multiband: Discretization ? 

Instead of analog multiband: Work with discrete multi-tone: 

Model size: 

Problems: Advantages: 

Sensitivity:     Negligible System ‚grid‛ must match  
the unknown signal tones grid 

Computational load (100 MHz processer): 

Realtime processing 

Analog 
Discretization ? 

Mishali, Eldar and Elron, ‘10 
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Discrete CS Radar 

A discrete version of the channel is being estimated 
Leakage effect  fake targets 

 
 
 
 
 
 
 
 
 
 
 
 
 Limited resolution to    
 Sampling process in hardware is unclear 
 Digital processing is complex and expensive 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Leakage effect  fake targets 

Real channel Discretized channel 
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Bajwa, Gedalyahu and Eldar, ’11 
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ADCs: Why Not Standard CS? 

 CS is for finite dimensional models (y=Ax)  

 Loss in resolution when discretizing 

 Sensitivity to grid, analog bandwidth issues  

 Is not able to exploit structure in analog signals 

 Results in large computation on the digital side 

 Samples do not typically interface with standard processing methods 

 

 More elaborate signal models needed that exploit 
structure to reduce sampling and processing rates 
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Sub-Nyquist in a Union 

  Imposing subspace model                  is inefficient,           problems 

Generalized sampling theory for unions? 

Still developing… 

Apply CS on discretized analog models? 

Discretization issues… 

Must combine ideas from Sampling theory and CS recovery algorithms 
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– Part 4 – 

Xampling 

 Outline 
CS+Sampling = Xampling 

X prefix for compression, e.g. DivX 

Functional approach to sub-Nyquist in a Union 
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Standard DSP Systems 

High-rate 

Low-rate 

Sampling and processing at high rates = Nyquist of  

After compression, data has low rate 

Standard DSP software expects Nyquist-rate samples 
rely on invariant properties                         
(enables digital filtering / digital estimation for example)  

Move compression to hardware before ADC ! 

SW 
HW 
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Xampling – Architecture 

Mishali, Eldar and Elron, ‘10 
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Xampling – Architecture 

 Functional architecture: Both sampling and processing at low rate 
 
                         Detection block outputs lowrate data that DSP can handle 
 
 Built bottom-up: based on practical and pragmatic considerations 

Mishali, Eldar and Elron, ‘10 

Low-rate 
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Xampling – Architecture 

 Functional architecture: Both sampling and processing at low rate 
 
                         Detection block outputs lowrate data that DSP can handle 
 
 Built bottom-up: based on practical and pragmatic considerations 

Mishali, Eldar and Elron, ‘10 

Low-rate Low-rate Low-rate 
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Principle #1 (X-ADC): 

Create several streams of data 

Each stream is sampled at a low rate 

     (overall rate much smaller than the Nyquist rate) 

Each stream contains a combination from different subspaces 

 

Xampling: Main Idea 

New hardware design ideas 

New DSP algorithms 

Principle #2 (X-DSP): 

Identify subspaces involved (e.g., using CS) 

Recover using standard sampling results 
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Xampling Systems 

Eldar, ‘09 

Vetterli et al., ’02-’07 

Dragotti et al., ’02-’07 

Gedalyahu, Tur and Eldar, ’10-’11 

Tropp et al., ’09 

Modulated wideband converter  

Periodic nonuniform sampling (fully-blind) 

 

Sparse shift-invariant framework 

 

Finite rate of innovation sampling 

 

Random demodulation 

 

Mishali and Eldar, ‘07-’09 

Mishali and Eldar, ‘07-’09 
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no more than N bands, max width B, bandlimited to  

1. Each band has an uncountable 
number of non-zero elements 

2. Band locations lie on the continuum 

3. Band locations are unknown in advance 

Multiband Union 

~ ~ ~ ~ 

Mishali and Eldar, ‘07 
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Optimal Blind Sampling Rate 

Average sampling rate 

Theorem (known spectral support) 

Theorem (unknown spectral support) 

1. The minimal rate is doubled 
2.      bands, individual widths         , requires at least            samples/sec 

Mishali and Eldar, ‘07 

Landau, ‘67 
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The Modulated Wideband Converter 

~ ~ ~ ~ 

Mishali and Eldar, ’09 
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Recovery From Xamples 

~ ~ ~ ~ 

Cannot invert a fat matrix! 

Spectrum sparsity: Most of the           are identically zero  

For each n we have a small size CS problem 

Problem: CS algorithms for each n  many computations 
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Reconstruction Approach 

Solve finite 
problem 

Reconstruct 

            
 
 
 
 
 
 
 
 
 
 

0 

1 

2 

3 

4 

5 

6 

S = non-zero rows 

CTF 
(Support recovery) 

  

                                                 

                                                     

Continuous Finite 

   The matrix V is any basis for the span of  
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Underlying Theory 

Theorem [Exact Support Recovery, CTF] 

Mishali and Eldar, ‘08 

CTF = Continuous to Finite 

Construct a frame    
    for         

Solve MMV 
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Insight into CTF  

nonlinear 

1. Construct frame 
 

2. Solve  CS  system 
 

3. Apply       on  
for each time-instance  

Computationally heavy 

Computationally light 

easy 

nonlinear 

linear 

Run CS recovery  
for each time-instance  
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Reconstruction 

Memory 

CTF 
(Support recovery) DSP 

 
(Baseband) 

Analog 
Back-end 

 
(Realtime) 

High-level architecture 

Detector 

Recover any desired spectrum slice at baseband 

Mishali and Eldar, ‘07-’10 
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Reconstruction 

Memory 

CTF 
(Support recovery) DSP 

 
(Baseband) 

Analog 
Back-end 

 
(Realtime) 

High-level architecture 

Detector 

Mishali and Eldar, ‘07-’10 
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Reconstruction 

Memory 

CTF 
(Support recovery) DSP 

 
(Baseband) 

Analog 
Back-end 

 
(Realtime) 

High-level architecture 

Detector 

Can reconstruct: 
 The original analog input exactly                      (without noise) 
 Improve SNR for noisy inputs, due to rejection of out-of-band noise 
 Any band of interest, modulated on any desired carrier frequency 

Mishali and Eldar, ‘07-’10 
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Sign-Flipping Periodic Waveforms 

                                         
rectangular (signs) 

square (DFT) 

Theorem [Expected-RIP for MWC] 

Mishali and Eldar, ‘09 
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Time Appearance of Mixing Waveforms 

 90  

Bad news:  can’t design nice sign patterns at GHz rates  
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Time Appearance of Mixing Waveforms 

Bad news:  can’t design nice sign patterns at GHz rates  
 
Good news:  only the periodicity matters !    
 
 
 
Competing approaches (pure CS) struggle with time appearance 
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Simulation 

~ ~ ~ ~ 
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Sub-Nyquist Demonstration 

FM @ 631.2 MHz AM @ 807.8 MHz 

1.
5 

M
H

z
 

10 kHz 100 kHz 

Overlayed sub-Nyquist  
aliasing around 6.171 MHz 

+ + 

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz 
MWC prototype 

Carrier frequencies are chosen to create overlayed aliasing at baseband 

Reconstruction 
(CTF) 

Mishali et al., ‘10 
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Xampling Systems 

Eldar, ‘09 

Vetterli et al., ’02-’07 

Dragotti et al., ’02-’07 

Gedalyahu, Tur and Eldar, ’10-’11 

Tropp et al., ’09 

Modulated wideband converter  

Periodic nonuniform sampling (fully-blind) 

 

Sparse shift-invariant framework 

 

Finite rate of innovation sampling 

 

Random demodulation 

 

Mishali and Eldar, ‘07-’09 

Mishali and Eldar, ‘07-’09 
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Fully-Blind PNS Approach 

~ ~ ~ ~ 

Mishali and Eldar, ‘07 
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Can Avoid RF Front-end ? 

? 
= 

 YES !   If the input bandwidth is not too high… 
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Practical ADC Devices 

In non-uniform sampling: 
 Both T/H and mux operate at the Nyquist rate 
 Digital processing and recovery requires interpolation to the high Nyquist grid 
 Accurate time-delays      are needed 
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Xampling Systems 

Eldar, ‘09 

Vetterli et al., ’02-’07 

Dragotti et al., ’02-’07 

Gedalyahu, Tur and Eldar, ’10-’11 

Tropp et al., ’09 

Modulated wideband converter  

Periodic nonuniform sampling (fully-blind) 

 

Sparse shift-invariant framework 

 

Finite rate of innovation sampling 

 

Random demodulation 

 

Mishali and Eldar, ‘07-’09 

Mishali and Eldar, ‘07-’09 
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Sparse Shift-Invariant Framework 

Sampling signals from a structured union of shift-invariant spaces (SI) 

There is no prior knowledge on the exact               indices in the sum 

Reconstruction 

CTF 

Real-time 
processing 

Theorem  

‚Good‛ CS matrix 
Sampling theory 

Sampling kernels Reconstruction kernels 

Eldar, ‘09 
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Sparse Shift-Invariant Framework 

Sampling signals from a structured union of shift-invariant spaces (SI) 

Reconstruction 

CTF 

Real-time 
processing 

Theorem  

‚Good‛ CS matrix 
Sampling theory 

Sampling kernels Reconstruction kernels 

Eldar, ‘09 
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Xampling Systems 

Eldar, ‘09 

Vetterli et al., ’02-’07 

Dragotti et al., ’02-’07 

Gedalyahu, Tur and Eldar, ’10-’11 

Tropp et al., ’09 

Modulated wideband converter  

Periodic nonuniform sampling (fully-blind) 

 

Sparse shift-invariant framework 

 

Finite rate of innovation sampling 

 

Random demodulation 

 

Mishali and Eldar, ‘07-’09 

Mishali and Eldar, ‘07-’09 
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 Delays and amplitudes are unknown 

 
 Applications: 

Communication 
Radar 
Bioimaging 
Neuronal signals  

 Special case of Finite Rate of Innovation (FRI) signals 

 Minimal sampling rate – the rate of innovation: 

 
 

Pulse Streams 

      degrees of freedom per unit time 

Vetterli et al., ’02 
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Naïve attempt: direct sampling at low rate 
Most samples do not contain information!! 
 
 
 
 

Analog Sampling Stage 

Sampling rate reduction requires proper design of the analog front-end 

 Periodic pulse streams 
 

 Finite 

 

 Infinite pulse streams 

Special cases: 

Vetterli et al., ’02-’05 

Dragotti et al., ’07-’10 

Tur et al., ’10-’11 

Gedalyahu et al., ’09 
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Periodic FRI signal model: 

 

 

 

The function  h(t) and the period are known 

Since x(t) is periodic it has a Fourier series with coefficients 

 

 
 

 

Spectral estimation: sum of complex exponentials problem 

Solved using 2L measurements 

Methods: annihilating filter, MUSIC, ESPRIT   

 

 

 

 

 

 

 

Periodic Pulse Streams 

Vetterli et al., ’02-’05 

Once the Fourier coefficients are known, 
Standard solutions exist. 
Challenge: How can we obtain the coefficients? 

Stoica and Moses, ’97 

Roy and Kailath, ’89 

Schmidt, ’86 
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General Approach 

Analog domain Digital domain 

Find 
Fourier 

Coefficiens 
 Sub-Nyquist 

Annihilating filter, 
MUSIC, ESPRIT… 

‚Mixing‛ filter 

Spectral Estimation 

Samples linear combinations of 
the Fourier coefficients 

Identify signal 
subspace 
(= X-DSP) 
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Find Fourier Coefficients 

Find 
Fourier 

Coefficiens 
 

Fourier series of a periodic input: 

Unknown 

Sensing with lowpass: 

Known 
measurements 
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Annihilating ``Filter’’ 

Goal: design a digital filter          with  

        has zeros at the ``frequencies’’                   annihilates  

Filter coefficients can be computed from the measurements: 
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X-ADC: Filter Choice 

Theorem [Sufficient Condition]  

Tur, Eldar and Friedman, ’11 
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Low pass filter 

Sum of sincs (SoS) in the frequency domain 

 

 

 

 

 

 In the time domain 

  

          

 

 

 

Special Cases 

Compact support! 

Tur, Eldar and Friedman, ’11 

Vetterli et al., ’02 
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SoS filter can be used for finite streams due to its finite support! 

Not true for LPF or other filters with long support 

  

 

 
Far more robust than  

Spline based methods –  

works even for high L! 

          

 

 

 

Finite Pulse Streams 
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Multichannel Scheme  

Proposed scheme: 
Mix & integrate 
Take linear combinations 

  from which Fourier coeff. 
  can be obtained 

 Supports general pulse shapes (time limited) 
 Operates at the rate of innovation 
 Stable in the presence of noise 
 Practical implementation based on the MWC 
 Single pulse generator can be used 
 

 

Fourier coeff. 
vector 

Samples 
Gedalyahu, Tur and Eldar, ’11 
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Filter Bank Approach 

S
er

ia
l-

to
-P

ar
al

le
l 

 
 The analog sampling filter ‚smoothens‛ the input signal : 

 Allows sampling of short-length pulses at low rate 
 CS interpretation: each sample is a linear combination of the signal’s 

values. 
 

 The digital correction filter-bank: 
 Removes the pulse and sampling kernel effects 
 Samples at its output satisfy: 
 
 The delays can be recovered using ESPRIT as long as                         

Gedalyahu and Eldar, ’09 
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Noise Robustness 
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proposed method

integrators
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proposed method

integrators

L=2 pulses, 5 samples L=10 pulses, 21 samples 

MSE of the delays estimation, versus integrators approach  

The proposed scheme is stable even for high rates of innovation! 

Kusuma and Goyal, ’06 
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Application:  
Multipath Medium Identification 

 
LTV channel  

         propagation paths 

Medium identification: 
Recovery of the time delays 
Recovery of time-variant gain coefficients 

    pulses per period  

The proposed method can recover the channel parameters from  
sub-Nyquist samples 

Gedalyahu and Eldar, ’09-’10 
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Each target is defined by: 
Range – delay 
Velocity – doppler 
 

Application: Radar 

Targets can be identified with infinite 
resolution as long as the time-bandwidth 
product  satisfies 

 
 

 

Bajwa, Gedalyahu and Eldar, ’11 
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Motivation  
Generate a two-dimensional focused ultrasound image while 
reducing the sampling rate in each active element far below the 
Nyquist rate 

 

Sample rate reduction leads to significant reduction of data size, 
and implies potential reduction of machinery size and power  
consumption, while maintaining image quality 

Xampling in Ultrasound Imaging 

Portable  
Systems 

Low-End 
Systems 

Mid-Range 
Systems 

High-End 
Systems 

Reduction of sampling rate implies potential reduction of 
machinery size and power  consumption 

Wagner, Eldar, Feuer, Danin and Friedman, ’11 
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Main Results  
A scheme which enables reconstruction of a two dimensional 
image, from samples obtained at a rate 10-15 times below Nyquist   

The resulting image depicts strong perturbations in the tissue 

 

Xampling in Ultrasound Imaging 

Xampled B-mode image, 
generated from samples 
obtained at 0.17 Nyquist 
Rate 

Standard B-mode image, 
generated from samples 
obtained at Nyquist Rate 
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          - Individual traces 
of reflected echoes, 
received by the multi-
element transducer array 

Ultrasound Imaging & FRI 

Can we stably reconstruct pulse streams from 
low-rate samples?  

 m tAn ultrasonic pulse is transmitted  
into a tissue; echoes are scattered 
and reflected by density and 
propagation-velocity 
perturbations 

   

Beamformed Signal  

Digital 
Beamformer 

Meets the finite FRI model: 

Unknowns 
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Phantom 
comprising 5 

equally spaced 
scatterers 

Real data acquired by GE Healthcare’s Vivid-i imaging system 

Method applied on noisy signal 

Excellent reconstruction from sub-Nyquist samples 

Poor SNR motivates integration of the data from multiple receivers 

 

How should we combine the information from all 
channels in the compressed domain? 

Ultrasound Experiment 
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133 

Beamforming in the Compressed 
Domain 





Beamformed  
signal 

Distortion, m 

Conceptual beamforming 1D Xampling 

Distortion, -M 

Distortion, M 

Wagner, Eldar, Feuer, Danin and Friedman, ’11 
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134 

Beamforming in the Compressed 
Domain 





Distortion, m 

1D Xampling 

Distortion, m 

Wagner, Eldar, Feuer, Danin and Friedman, ’11 
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135 





1D Xampling 

Distortion, m 

Distortion, m 

Samples from  
the rest of the  
active elements 

Samples from  
the rest of the  
active elements 

Standard Imaging Xampled Image,  
Dynamic Focusing with 
L = 30;  ρ = 3.  

RF ultrasound data provided by  
Dr. Omer Oralkan and Prof. Pierre 
Khuri-Yakub of the E. L. Ginzton 
Laboratory at Stanford University. 

Beamforming in the Compressed 
Domain 

Wagner, Eldar, Feuer, Danin and Friedman, ’11 
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Xampling Systems 

Eldar, ‘09 

Vetterli et al., ’02-’07 

Dragotti et al., ’02-’07 

Gedalyahu, Tur and Eldar, ’10-’11 

Tropp et al., ’09 

Modulated wideband converter  

Periodic nonuniform sampling (fully-blind) 

 

Sparse shift-invariant framework 

 

Finite rate of innovation sampling 

 

Random demodulation 

 

Mishali and Eldar, ‘07-’09 

Mishali and Eldar, ‘07-’09 
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Random Demodulation 

Tropp et al., ‘09 

 Model:  sparse sum of harmonic tones 

 Sampling: 

Nyquist-rate 
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Random Demodulation 

 Reconstruction: 

Nyquist-rate 

  

Tropp et al., ‘09 
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Random Demodulation 

 Reconstruction: 

Nyquist-rate 

  

 Use CS solvers to recover    , then reconstruct   

 Numerical simulations: 32 kHz AM signal recovered from sampling  
   at 10% Nyquist rate Tropp et al., ‘09 

 Similar to MWC?    Next part describes the differences… 
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Nyquist Folding 

Lowpass 

  

 Rate reduction using nonlinear sampling effects: 

  

Fudge et al., ‘08 
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Nyquist Folding 

Lowpass 

  

 Rate reduction using nonlinear sampling effects: 

  

Fudge et al., ‘08 
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Summary: Xampling Systems 

X-DSP X-ADC Strategy Model 

CTF Periodic mixing 
MWC 

Mishali-Eldar 09 

Multiband CTF time shifts 
PNS 

Mishali-Eldar 08 

Jittered undersampling 
Nyquist-folding 

Fudge et al. 08 

CTF Filter-bank Eldar 08 Sparse shift-invariant 

Annihilating 
filter 

Lowpass 
Periodic 

Vetterli et al. 02-05 

FRI (time-delays) 
Moments 
factoring 

Splines 
One-shot 

Dragotti et al. 07 

Annihilating 
filter 

Sum-of-Sincs filtering 
Periodic/one-shot 

Gedlyahu-Tur-Eldar 09-10 

MUSIC or 
ESPRIT 

Lowpass or 
periodic mixing + integration 

Gadlyahu-Eldar 09 
Sequences of 
innovation 

CS Sign flipping + integration 
RD 

Tropp et al. 09 
Harmonic tones 

``Xampling: Signal Acquisition and Processing in Union of Subspaces’’, Mishali, Eldar and Elron, TSP ‘11 
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– Part 5 – 

From Theory to Hardware 

 Outline 
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Theory vs. Practice 

 Practical considerations affect the choice of a sampling solution 

 Example 1: Multiband sampling (known carriers    ) 

 Example 1: Pulse streams (known delays    ) 

RF demodulation Nonuniform methods 

Minimal analog 
preprocessing 

ADC with low analog 
bandwidth 

Digital match filter 

Low sampling rate 

Robustness to model 
mismatch  
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ADC Market 

 State-of-the-art ADCs generate Nyquist samples 
 Today’s challenges: 

Increase sampling rate (Giga-samples/sec) 
Increase front-end bandwidth  
Increase (effective) number of bits 
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Sub-Nyquist: Practical Challenges 

 Goal: Shift          challenge away from ADC technology 
 
 No free lunches !   Signal has frequencies until          
 Nyquist will enter elsewhere into system design  
 
 Practical design metrics: 

robustness to model mismatches 
flexible hardware design 
light computational loads 
imaging: high resolution 
noise performance 
power, area, size, cost, … 

 
 Next slides: 

Study practical metrics of example sub-Nyquist systems (RD/MWC) 
Glance into sub-Nyquist circuit challenges 
Sub-Nyquist imaging: analog vs. discrete CS 
 

 Focus of this part 
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Random Demodulator 

 Robustness: 

0.005% grid mismatch 

 Required hardware accuracy (so that                 ): 

Accurate integrator: 

 Computational load:    

 Reported hardware:   

``Nice’’ 
time-domain 
appearance 

Tropp et al., ‘09 

Ragheb et al., ‘08 

Yu et al., ‘10 
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Modulated Wideband Converter 

 Robustness: 

Mishali and Eldar, ‘09 

Inequalities allow model mismatches 

 Required hardware accuracy: 

``Nice’’ 
freq.-domain 
appearance 

Nonideal lowpass response can be compensated digitally Chen et al., ‘10 

 Computational load: 

 Reported hardware: 

Mishali et al., ‘11 
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Hardware Accuracy 

 Sign alternating functions at 2 GHz rate 

Time appearance Frequency appearance 
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Comparison 

Tropp et al., ‘09 

Mishali and Eldar, ‘09 

 Visually-similar systems – major differences in practical metrics 

Time-domain accuracy 
Computational loads 

Freq.-domain accuracy 
     (handled by RF front-end) 

 No free lunches… Nyquist enters in: 

 Similar conclusions in other applications? 
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CS Radar 

A discrete version of the channel is being estimated 
Leakage effect  fake targets 

 
 
 
 
 
 
 
 
 
 
 
 
 Limited resolution to    
 Sampling process in hardware is unclear 
 Digital processing is complex and expensive 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Leakage effect  fake targets 

Real channel Discretized channel 
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ADCs: Why Not Standard CS? 

 CS is for finite dimensional models (y=Ax)  

 Loss in resolution when discretizing 

 Sensitivity to grid, analog bandwidth issues  

 Is not able to exploit structure in analog signals 

 Results in large computation on the digital side 

 Samples do not typically interface with standard processing methods 

 

 

Besides union models and Xampling there are 
many more challenges ! 

More details in: M. Mishali, Y. C. Eldar, and A. Elron, ‚Xampling: 
Signal acquisition and processing in union of subspaces‛ 
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Stepping CS to Practice 

 Address wideband noise and dynamic range: 

Since x is noisy:  y=A(x+e)+w,  e=wideband noise 

MWC/PNS:  Nyquist-bandwidth noise is aliased 

RD: noise is folded from all possible tone locations 

Large interference will swamp ADC 

 Integrate into existing systems 

Minimal (preferably no) modification to hardware 

e.g., reprogramming firmware, rewiring, etc. 

Deal with large analog BW and wide dynamic range 

 Prove cost-effective 

Rate is only one factor !    Digital complexity is not less important 

Improve effective number of bits / Xample 

 Next slides: quick glance at circuit challenges + applications 
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A 2.4 GHz Prototype 

2.3 GHz Nyquist-rate, 120 MHz occupancy 
280 MHz sampling rate 
Wideband receiver mode: 

49 dB dynamic range 
SNDR > 30 dB over all input range 

ADC mode: 
1.2 volt peak-to-peak full-scale 
42 dB SNDR = 6.7 ENOB 

Off-the-shelf devices, ~5k$, standard PCB production Mishali and Eldar, ’08-10 
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Circuit Design (2) 

Analog board 
m=4 channels 
1:4 Split + mixing + filtering 
Filter cutoff 33 MHz 
Sampling rate 70 MHz per 
channel (scope) 
 

Digital board: sign alternating 
sequences 

2.075 GHz VCO 
Discrete ECL shift-register 
M=108 bits 
4 Outputs (taps of the register) 

Mishali and Eldar, ’08-10 

 137  



Mishali-Eldar, ICASSP 2011 

Circuit Design (3) 

Wideband receiver mode: 
Gain control on the input 
Design specifications:  

         Power out > -7 dBm 
         SNDR > 30 dB  
         over all input range 

Gives 49 dB dynamic range 

 

Mishali and Eldar, ’08-10 
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Analog Design 

Mishali et al., ‘10 
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Digital Design 

Mishali et al., ‘10 
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Mixing with Periodic Functions 

159 

support wideband LO 

Cannot equalize 
entire path 

Fine biasing due to sinusoids power split  

Datasheet specifications are for single LO mixing 
(conversion loss, IP3, required power) ! Mishali et al., ’10 
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Highly-Transient Periodic Waveforms 

We selected the sign pattern which gives about the 
same harmonic levels 
Tap locations: 5th bit in every consecutive 24 bits 
(layout considerations only) 

Mishali et al., ‘10 
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Sub-Nyquist Demonstration 

FM @ 631.2 MHz AM @ 807.8 MHz 

1.
5 

M
H

z
 

10 kHz 100 kHz 

Overlayed sub-Nyquist  
aliasing around 6.171 MHz 

+ + 

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz 
MWC prototype 

Carrier frequencies are chosen to create overlayed aliasing at baseband 

Reconstruction 
(CTF) 

Mishali et al., ‘10 
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Application: Cognitive Radio 

~ ~ ~ ~ 

hole hole 

Sub-Nyquist sampling 

Xampling for Spectrum Sensing 

Detect active 
spectrum slices 

Fine support 
detection 

  For example: 
 

Mishali and Eldar, ’11 
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Simulations 

 3 QPSK transmissions, Symbol rate = 30 MHz,  
 
 Quality measure, CFO = Carrier frequency offset 
 
 Satisfies IEEE 802.11 40ppm specifications of standard transmissions  

   around 3.75 GHz 

Mishali and Eldar, ’11 
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Experiments 

Mishali and Eldar, ’11 
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Take-Home Message 

Compressed sensing uses finite models 

Xampling works for analog signals 

Compression Sampling 

Must combine ideas from Sampling theory and algorithms from CS 

CS+Sampling = Xampling 

X prefix for compression, e.g. DivX 
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Summary: Next Big Challenge 

 Develop cost-effective CS hardware solutions 
 
 Address wideband noise and dynamic range 
 
 Integrate into existing hardware solutions 
 
 Innovate at the circuit level: wideband input and large dynamic range 
 
 Design provable hardware 

at lab 
on-board 
on-chip 

 
 Become a mature technology ! 
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Conclusions 

Q & A 

 Outline 
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Union of subspaces: broad and flexible model 

Can lead to simple and efficient algorithms 

Includes analog signal models 

Sub-Nyquist sampler in hardware 

Compressed sensing of many classes of analog signals 

Many research opportunities: extensions, robustness, hardware, 
mathematical … 

 
Compressed sensing can be extended 

practically to the infinite analog domain! 

Conclusions 
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Burst of innovative publications 

Theory is still developing, yet the basic principles are understood 

 

Next frontier: Hardware implementations 

Become a mature technology ! 

Opinion 

More details in: 

M. Mishali and Y. C. Eldar, ‚Sub-Nyquist Sampling: Bridging Theory and Practice,’’ Sig. Proc. Mag. 

M. Duarte  and Y. C. Eldar, ‚Structured Compressed Sensing: From Theory to Applications,‛ TSP. 

M. Mishali and Y. C. Eldar, ‚Xampling: Compressed Sensing of Analog Signals,’’ in book, 
Cambridge press. 
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References + 

Online Documentations 

 Outline 
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Online Demonstrations 

  GUI package of the MWC 
 
 
 
 
 
 
 
Video recording of sub-Nyquist sampling + carrier recovery in lab 
 

SiPS 2010 
2010 IEEE Workshop on 

Signal Processing Systems  
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Xampling Website 

webee.technion.ac.il/people/YoninaEldar/xampling_top.html 
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