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Time-Delay Estimation From Low-Rate Samples:
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Abstract—Time-delay estimation arises in many applications in
which a multipath medium has to be identified from pulses trans-
mitted through the channel. Previous methods for time delay re-
covery either operate on the analog received signal, or require sam-
pling at the Nyquist rate of the transmitted pulse. In this paper, we
develop a unified approach to time delay estimation from low-rate
samples. This problem can be formulated in the broader context of
sampling over an infinite union of subspaces. Although sampling
over unions of subspaces has been receiving growing interest, pre-
vious results either focus on unions of finite-dimensional subspaces,
or finite unions. The framework we develop here leads to perfect re-
covery of the multipath delays from samples of the channel output
at the lowest possible rate, even in the presence of overlapping
transmitted pulses, and allows for a variety of different sampling
methods. The sampling rate depends only on the number of multi-
path components and the transmission rate, but not on the band-
width of the probing signal. This result can be viewed as a sam-
pling theorem over an infinite union of infinite dimensional sub-
spaces. By properly manipulating the low-rate samples, we show
that the time delays can be recovered using the well-known ES-
PRIT algorithm. Combining results from sampling theory with
those obtained in the context of direction of arrival estimation, we
develop sufficient conditions on the transmitted pulse and the sam-
pling functions in order to ensure perfect recovery of the channel
parameters at the minimal possible rate.

Index Terms—Sub-Nyquist sampling, time-delay estimation,
union of subspaces.

I. INTRODUCTION

T IME-DELAY estimation is an important signal pro-
cessing problem, arising in various applications such as

radar [1], underwater acoustics [2], wireless communications
[3], and more. In a typical scenario, pulses with a priori known
shape are transmitted through a multipath medium, which
consists of several propagation paths. As a result, the received
signal is composed of delayed and weighted replicas of the
transmitted pulses. In order to identify the medium, the time
delay and gain coefficient of each multipath component has to
be estimated from the received signal.
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In this paper, we consider recovery of the parameters defining
such a multipath medium from samples of the channel output.
Specifically, we assume that pulses with known shape are trans-
mitted at a constant rate through the medium, and our aim is to
recover the time delays and time-varying gain coefficients of
each multipath component, from samples of the received signal.
We derive sampling schemes that ensure perfect recovery of
the medium’s parameters from samples taken at the minimal
possible rate. These sampling schemes can be viewed in a
broader context of sampling over a union of subspaces [4]–[6].
Sampling over unions of subspaces has been receiving growing
interest in recent years. Some special cases in include com-
pressed sensing [7], compressed sensing of analog signals [6],
[8]–[12] and finite-rate of innovation (FRI) sampling [13], [14].
All of these previous cases either treat finite unions (such as
compressed sensing), or unions of finite-dimensional subspaces
(such as FRI). Here we provide sampling theorems for a special
case of analog signals with infinitely many degrees of freedom,
lying in an infinite union of subspaces. Therefore, these results
can be viewed as a systematic treatment of sampling over an
infinite union of infinite dimensional subspaces.

The sampling rate of the schemes we develop is generally
much lower than the traditional Nyquist rate, and depends only
on the number of multipath components and the transmission
rate, but not on the bandwidth of the transmitted pulse. This
can lead to significant sampling rate reduction, comparing to
the Nyquist rate, in applications where only a small number of
propagation paths exists, or when the bandwidth of the trans-
mitted pulse is relatively high. This reduction is desirable for
practical implementation, since sampling at lower rates allows
for analog-to-digital converters (ADCs) that are more precise
(i.e., use more bits), and have a lower power consumption. In
addition, lowering the sampling rate can reduce the load on both
hardware and further digital processing units.

A classical solution for the time-delay estimation problem is
based on correlation between the received signal and the trans-
mitted pulse [1]. However, the time resolution of this method is
limited by the inverse of the transmitted pulse bandwidth. There-
fore, this technique is effective only when the multipath compo-
nents are well separated in time, or when only one component
is present. This approach was originally motivated in the analog
domain, where the entire analog correlation is computed. Per-
forming the correlation in the digital domain requires samples
of the data at a high sampling rate, in order to approximate the
continuous correlation.

In order to resolve closely spaced multipath components,
various superresolution estimation algorithms were proposed.
In [15], [16], the MUSIC [17] method was applied in the time
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domain in order to estimate the time delay of each multipath
component. Hou and Wu [18] were the first to convert the
time estimation problem to model-based sinusoidal parameter
estimation, and used an autoregressive method in order to
estimate the model’s parameters. Other works, such as [16],
[19], [20], relied on the same principle, but different estimation
algorithms were used: Tufts–Kumaresan SVD algorithm [21],
TLS-ESPRIT method [22] and a modification of MUSIC,
respectively.

In the above superresolution approaches, the sampling stage
was typically not directly addressed. Most of these works rely
on uniform pointwise samples of the received signal, at a high
sampling rate. In [18] and [20] the required sampling rate is
the Nyquist rate of the transmitted pulse. Since often the pulses
are chosen to have small time support, the bandwidth can be
quite large, corresponding to a high Nyquist rate. In [19] and in
the frequency domain algorithm proposed in [16], the sampling
of the received analog signal is not mentioned explicitly. Since
these algorithms involve operations in the analog frequency do-
main, effectively they also require sampling at the Nyquist rate.
The time domain algorithms proposed in [15] and [16] can theo-
retically recover the time delays from a low sampling rate, which
depends on the number of multipath components. However, the
sampling considerations were not directly addressed in these
works, and no concrete conditions on the transmitted pulse and
the samples were given, in order to ensure unique recovery of
the delays from the samples.

Besides the sampling stage which is not studied in previous
works, another assumption underlying all the methods above
is that the receiver has access to a single experiment [18]–[20]
or multiple nonoverlapping experiments [15], [16], [20] on the
channel. In each experiment a pulse is transmitted through the
multipath medium, and it is required that all the returns vanish
before the next experiment is conducted. This imposes the con-
straint that the transmitted pulse is sufficiently time limited,
which can be problematic in certain scenarios. For example, in
wireless communications, modulated pulses are transmitted at
a constant symbol rate through the medium. In this case, we
cannot consider the observed signal over one symbol period as
an independent experiment, since it will generally be affected
by reflections caused by adjacent symbols.

In Section II, we propose a general signal model, that can
describe the received signal from a time-varying multipath
medium. An advantage of our model is that it does not require
the assumption of nonoverlapping experiments, and allows for
general pulse shapes. We then formulate the medium identi-
fication problem as a sampling problem, in which the set of
parameters defining the medium have to be recovered from
samples of the received signal at the lowest possible rate. To
this end we develop a general sampling scheme, which consists
of filtering the received signal with a bank of sampling filters
and uniformly sampling their outputs. This class of sampling
schemes is common in sampling theory [23] and can accommo-
date a wide variety of sampling techniques, including pointwise
uniform sampling. Given multipath components, we show
that in the worst case at least sampling filters are required
in order to perfectly recover the time delays. We then develop
explicit sampling strategies that achieve this minimal rate. In

particular, we derive sufficient conditions on the transmitted
pulse and the choice of sampling filters, which guarantee unique
recovery of the channel parameters.

In order to recover the channel parameters from the given
samples we combine results from standard sampling theory,
with those of direction-of-arrival (DOA) algorithms [17],
[22], [24], [25]. Specifically, by appropriate manipulation of
the sampling sequences, we show that we can formulate our
problem within the framework of DOA methods. We then rely
on the Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) [22], developed in that context.
The unknown delays are recovered from the samples by first
applying a digital correction filter bank, and then applying the
ESPRIT algorithm. Once the time delays are identified, the
gain coefficients are recovered using standard sampling tools.

This paper is organized as follows. In Section II, we describe
our signal model. A general sampling scheme of the received
signal is proposed in Section III. Section IV describes the re-
covery of the unknown delays from the samples, and provides
sufficient conditions ensuring a unique recovery. Relation to
previous work is discussed in detail in Section V. Section VI de-
scribes an application example of channel identification in wire-
less communications. Numerical experiments are described in
Section VII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Notations and Definitions

Matrices and vectors are denoted by bold font, with lower-
case letters corresponding to vectors and uppercase letters to
matrices. The th element of a vector is written as , and the

th element of a matrix is denoted by . Superscripts
, and represent complex conjugation, transposition

and conjugate transposition, respectively. The Moore–Penrose
pseudo-inverse of a matrix is written as . The identity ma-
trix of size is denoted by .

The Fourier transform of a continuous-time signal
is defined by , and

(1)

denotes the inner product between two continuous-time sig-
nals. The discrete-time Fourier transform (DTFT) of a sequence

is defined by

(2)

and is periodic with period .

B. Signal Model

We consider the class of signals that can be written in the form

(3)

where is a set of distinct unknown time de-
lays in the continuous interval is an arbitrary se-
quence in , and is a known function. Each signal
from this class can describe the propagation of a pulse with
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known shape which is transmitted at a constant rate of
through a medium consisting of paths. Each path has a con-
stant delay , and a time-varying gain, which is described by
the sequence . In cases where the transmitted pulses are
amplitude modulated, the sequence describes the multi-
plication between the pulse amplitude and the gain coefficient
of each path. In Section VI we will discuss more thoroughly an
example of a communication signal transmitted through a mul-
tipath time-varying channel.

Our problem is to determine the delays and the gains
from samples of the received signal , at the minimal possible
rate. Since these parameters uniquely define , our channel
identification problem is equivalent to developing efficient sam-
pling schemes for signals of the form (3), allowing perfect re-
construction of the signal from its samples.

The model (3) is more general than that described in previous
work [15], [16], [18]–[20], which is based on single or multiple
experiments on the medium. In each experiment the received
signal is observed over a finite time window, which is synchro-
nized to the transmission time of the pulse. More precisely, the
received signal in the th experiment is given by

(4)

where is the delay of the th multipath component which is
constant in all the experiments, and is the gain coefficient
of the th multipath component at the th experiment, which is
generally varying from one experiment to another. This model
can be seen as a special case of (3) with additional constraints
on the pulse and the transmission rate . Indeed, we can
write the received signal on the th experiment as

(5)

if we require that

(6)

This requirement means that the pulse has finite time
support, and that the repetition period of the pulses , is long
enough such that all the reflections from one pulse vanish
before the next pulse is transmitted. On the other hand, our
signal model does not require these constraints, so that it can
support infinite length pulses and allows interference between
experiments.

III. SAMPLING SCHEME

A. Known Delays

Before we treat our sampling problem of signals of the form
(3), we first consider a simpler setting in which the delays
are known. In this case our signal model is a special case of the
more general class of signals that lie in a shift-invariant (SI) sub-
space. For such signals classes, there are well known sampling
schemes that guarantee perfect recovery at the minimal possible
rate [8], [23], [26]. Below, we review the main results in this set-
ting which will serve as a basis for our development in the case
in which the delays are unknown.

Fig. 1. Sampling and reconstruction scheme for the case of known delays.

A finitely-generated SI subspace of is defined as [27]–[29]

(7)

The functions are referred to as the generators of . In
order to guarantee a unique stable representation of any signal

by coefficients , the generators are typi-
cally chosen to form a Riesz basis of [27], [28]. Clearly, the
signal model in (3) is a special case of (7) with generators ,
obtained from delayed versions of :

(8)

One way to sample a signal of the form (7) is to use parallel
sampling channels [8]. In each channel the signal is first filtered
with an impulse response , and then sampled uniformly
at times to produce the sampling sequence , as
depicted in the left-hand side of Fig. 1. The sampling sequence
at the output of the th channel can be written as

(9)

By analyzing the DTFTs of the sequences
, it was shown in [8] that the sequences

, which define the signal , can be recovered from
using an adequate multichannel filter bank. Specifically, let

denote the length- column vectors whose
th elements are respectively. Then, it can

be shown that

(10)

where is a matrix with th element

(11)

Here and denote the Fourier transforms of
and , respectively. If this matrix is stably invertible a.e. in

, then the sequences can be recovered from the samples
using the multichannel filter bank whose frequency response
is given by , as depicted in the right-hand side of
Fig. 1.

The proposed sampling scheme achieves an average sampling
rate of since there are sampling sequences each at rate

. Intuitively, this approach requires one sample per degree
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of freedom of the signal : for a signal of the form (3), under
the assumption that the time delays are known, or a signal of the
form (7), in each time period there are new parameters.

B. Unknown Delays

We now address our original problem of designing a sampling
scheme for signals of the form (3) with unknown delays. We
propose a system similar to that used in the case of known de-
lays, comprised of parallel sampling channels. Since now there
are more degrees of freedom in the signal , intuitively we
will require at least the same number of channels as in the case
of known delays. Denoting the number of channels by , this
implies that . As we will see, under certain conditions
on the sampling filters and pulse sampling fil-
ters are sufficient to guarantee perfect recovery of from the
samples. We will also show that this is the minimal possible rate
achievable for all signals .

In each channel of our sampling system, the signal is pre-
filtered using the filter and sampled uniformly at times

resulting in the samples (9). In the Fourier domain, we
can write (9) as

(12)

From the definition of , its Fourier transform can be written
as

(13)

where denotes the DTFT of the sequence , and
denotes the Fourier transform of . Substituting (13)

into (12), we have

(14)

where we used the fact that is -periodic.
In this sequel, we assume that , and that ex-

pressions in the DTFT domain are periodic. Denoting
by the length- column vector whose th element is

and by the length- column vector whose
th element is , we can write (14) in matrix form as

(15)

Here is a matrix with th element

(16)

and is a diagonal matrix with th diagonal element
equal to . Defining the vector as

(17)

we can rewrite (15) in the form

(18)

Our problem can then be reformulated as that of recovering
and the unknown delay set from the vectors

, for all . Once these are known, the
vectors can be recovered using the relation in (17).

To proceed, we focus our attention on sampling filters
with finite support in the frequency domain, contained in the
frequency range

(19)

where is an index which determines the working fre-
quency band . This choice should be such that it matches the
frequency occupation of (although does not have to be
bandlimited). This freedom allows our sampling scheme to sup-
port both complex and real valued signals. Under this choice of
filters, each element of (16) can be expressed as

(20)

where is a matrix whose th element is given
by

(21)

and is a Vandermonde matrix with th element

(22)

Substituting (20) into (18),

(23)

If is stably invertible, then we can define the mod-
ified measurement vector as

(24)

This vector satisfies

(25)

Since is independent of , from the linearity of the DTFT,
we can express (25) in the time domain as

(26)

The elements of the vectors and are the discrete time
sequences, obtained from the inverse DTFT of the elements of
the vectors and respectively.
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Fig. 2. Sampling and reconstruction scheme for the case of unknown delays.

Equation (25) and its equivalent time domain representation
(26), describe an infinite set of measurement vectors, each ob-
tained by the same measurement matrix , which depends
on the unknown delays . This problem is reminiscent of the
type of problems that arise in the field of DOA estimation [25],
as we discuss in the next section. One class of efficient methods
for DOA recovery, are known as subspace methods [25]. These
techniques have subsequently been applied to many other prob-
lems such as spectral estimation [30], system identification [31]
and more. Our approach is to rely on these methods in order
to first recover from the measurements. After is known, the
vectors and can be found using linear filtering
relations by

(27)

Under the assumption that is a set of distinct time delays,
is a Vandermonde matrix with linearly independent columns,
and consequently . Using (17)

(28)

The resulting sampling and reconstruction scheme is depicted
in Fig. 2.

We point out that when two or more delays are close, the
matrix can be ill conditioned. This will affect the stability
of the recovery of in the presence of noise in the system.
We examine this issue in more detail in Section VII.

Our last step, is to derive conditions on the filters and
the function ensuring that the matrix is stably
invertible. To this end, we decompose the matrix as

(29)

where is a matrix with th element

(30)

and is a diagonal matrix whose th diagonal
element is given by

(31)

Each one of these matrices needs to be stably invertible. There-
fore, from (31) the condition that the function needs to sat-
isfy is that

(32)

In addition the filters should be chosen in such a way
that they form a stably invertible matrix . Examples of
such filters are given in the next subsection.

We note here that the conditions given above guarantee a
stable digital correction filter bank ; however, gen-
erally it will be comprised of infinite length digital filters. Prac-
tical implementation of these filters can be achieved by trun-
cating the impulse response. The length of the resulting fil-
ters will affect the total delay of our proposed method, which
will generally be longer than that of the methods described in
Section I, due to the additional digital filtering stage.

We summarize the results so far in the following proposition.
Proposition 1: Let be

a set of sequences obtained by filtering the signal defined
by (3) with filters and sampling their outputs at times

. Let be supported on , and
let . If the function satisfies the condition in
(32) and the matrix , defined by (30), is stably invertible
a.e. , then the delays and vector can be found
from the set of equations

(33)

using subspace methods, described in the next section. Here
is a Vandermonde matrix with th element

, and

(34)

with defined by (21). The sequences can then
be recovered by

(35)

where is a diagonal matrix with diagonal elements
.

C. Examples of Filters

We now provide some examples of filters satisfying the
required conditions.

1) Complex Bandpass Filter-Bank: The first example is a set
of complex bandpass filters. We assume that the working band
is , and the function satisfies (32)
on that frequency range. We choose the filters as ideal
bandpass filters, covering consecutive frequency bands

otherwise.
(36)
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Fig. 3. Stream of diracs. (a)� � � diracs per period � � �. (b)–(d) The out-
puts of the first three sampling channels. The dashed lines denote the sampling
instants.

The resulting matrix is diagonal, and stably invertible.
This example generalizes to any valid working band, given by
(19), by shifting the frequency response of the filters.

We now provide an example demonstrating the importance of
the sampling filter.

Example 1: We consider the case where and
there are diracs per period of , as illustrated in
Fig. 3(a). The sampling scheme described above, consisting of a
complex bandpass filter-bank, is used. In Fig. 3(b)–(d), we show
the outputs of the first three sampling channels. This example
demonstrates the need for the sampling filters when sampling
short-length pulses at a low sampling rate. The sampling ker-
nels have the effect of smoothing the short pulses (diracs in this
example). Consequently, even when the sampling rate is low,
the samples contain information about the signal. In contrast, if
we were to sample the signal in Fig. 3(a) directly at a low rate,
then we would often obtain only zero samples which contain no
information about the signal.

2) Delayed Channels: In this example we assume is even
and define the working band as

(37)

. We also assume that satisfies (32). We choose
the th filter as a delay of followed by an ideal low
pass filter. Thus,

otherwise
(38)

With this choice of filters, the th element of the matrix
defined in (30) is given by

(39)

The matrix can be expressed as

(40)

where is a diagonal matrix whose th diagonal
element is , and is a Vandermonde matrix
whose th element is given by . From (40), it
can be seen that is invertible for all , when the
delays in each channel are distinct.

One special case of this choice of sampling filters is when the
delays are uniformly spaced, i.e., . In this case
our sampling scheme can be implemented by an ideal low pass
filter with cutoff , followed by a uniform sampler at a rate
of .

IV. RECOVERY OF THE UNKNOWN DELAYS

We have seen in the previous section that perfect reconstruc-
tion of a signal of the form (3), is equivalent to that of re-
covering the delays from the modified measurements of (26).
As we now show, this problem is similar to that arising in DOA
estimation.

A. Relation to Direction of Arrival Estimation

In DOA estimation [17], [22], [24], [25], narrow band
sources impinge on an array, composed of sensors, from dis-
tinct DOAs. The goal is to estimate the DOAs of the sources
from a set of measurements, obtained from the sensors out-
puts at distinct time instants.

The DOA estimation problem can be formulated using the
following measurement model:

(41)

where is a matrix, composed of the measurements in its
columns, is a matrix consisting of the sources signals
in its columns and is a matrix which depends on
the set of unknown DOAs . The structure of is such that
its th column, denoted , depends only on the DOA of
the th source. The vector is referred to as the steering
vector of the array toward direction . The set containing all
possible steering vectors, i.e., is referred
as the array manifold. Given , the problem is to recover the
DOAs , and the sources .

The set of equations in (26) has the same form as (41). The th
column of the matrix depends only on the th unknown
delay , and can be described by the vector , where

(42)

The array manifold in our setting is the set of vectors
. Therefore, we can adopt DOA methods to estimate the

unknown delays. The only difference between the two problems
is that in our setting, we have infinitely many measurement vec-
tors, in contrast to the DOA problem in which has finitely
many columns. This will require several adjustments, which we
will detail in the ensuing subsections.

Two prominent methods used for DOA estimation are
MUSIC (MUltiple Signal Classification) [17] and ESPRIT [22].
These algorithms belong to a class of techniques, known as
subspace methods, which are based on separating the space
containing the measurements into two subspaces, the signal
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and noise subspaces. Estimating the unknown set of parameters
using MUSIC involves a continuous one-dimensional search
over the parameter range, which can be costly computationally.
The ESPRIT approach estimates the unknown set of parameters
more efficiently, by imposing the additional requirement that
the measurement matrix is rotationally invariant. We describe
this property in Section IV-C and show that in our case
satisfies this condition, and therefore we use the ESPRIT
approach.

B. Sufficient Conditions for Perfect Recovery

We now rely on results obtained in the context of DOA es-
timation in order to develop sufficient conditions for a unique
solution to (26). Such a solution consists of the infinite set of
vectors and the unknown delays .

Conditions for a unique solution for (41) where de-
rived in [32]. Since [32] deals with a finite number of measure-
ments, we have to extend the results to our case, which con-
sists of an infinite number of measurements. The analysis in
[32] requires a preliminary condition that any subset of dis-
tinct steering vectors from the array manifold is linearly inde-
pendent. In our case this condition translates into the require-
ment that any set of vectors associated with
distinct delays are linearly independent.
From (42), any such set forms a Vandermonde matrix, and
are therefore linearly independent. Therefore, this condition au-
tomatically holds in our problem without forcing any additional
constraints.

To derive sufficient conditions for a unique solution of the
set of infinite equations (26) we introduce some notation. We
define the measurement set as the set containing all mea-
surement vectors . Similarly, we define
the unknown vector set as . We may
then rewrite (26) as

(43)

The following proposition provides sufficient conditions for a
unique solution to (43).

Proposition 2: If is a solution to (43),

(44)

and

(45)

then is the unique solution of (43).
The notation is used for the minimal dimension

subspace containing the unknown vector set . The condi-
tion (45) is needed to avoid the case where . In this
case clearly the set can not recovered uniquely.

Proof: We denote . From (45)
. Therefore, there exist a finite subset ,

such that the vector set spans an -dimensional subspace:

(46)

By defining the matrices and as the matrices consisting of
the vector sets and , we can write

(47)

Clearly, from its construction, the rank of the matrix is .
From (44),

(48)

According to Theorem 1 in [32], the solution is the
unique solution to (47) under the condition (48).

Since the set of unknown delays is the unique solution to
the finite set of (47), it is also a unique solution to the infinite
set of (43). Once is uniquely determined, the matrix is
known. Since every vector of the set is contained in

(49)

Therefore, according to (44), . The matrix is a
Vandermonde matrix which consist of linearly inde-

pendent vectors. Therefore, for every , if is a solution
to

(50)

then it is the unique solution.
Proposition 2 suggests that a unique solution to the set of (26)

is guaranteed, under proper selection of the number of sampling
channels . This parameter, in turn, determines the average sam-
pling rate of our sampling scheme, which is given by . Con-
dition (44) depends on the value of , which is
generally not known in advance. According to our assumption

, therefore in order to satisfy the unique-
ness condition (44) for every signal of the form (3), we must
have sampling channels or a minimal sampling
rate of . Comparing this result to the minimal sampling
rate in the case when the delays are known in advance, there is
a penalty of 2 in the minimal rate.

In Section V-A, we show that our signal model, described in
(3), can be considered as part of a more general framework of
signals that lie in a union of SI subspaces [4]. It was shown in [4]
that the theoretical minimum sampling rate required for perfect
recovery of such a signal from its samples is . Therefore,
according to the results of Proposition 2, our sampling scheme
can achieve the minimal sampling rate required for signals of
the form (3).

The minimal sampling rate of , which is achieved by
our scheme, does not depend on the bandwidth of the pulse ,
but only on the number of propagation paths . In applications
where the number of propagation paths is relatively small, or
the bandwidth of the transmitted pulse is high, our approach can
provide a sampling rate lower than the Nyquist rate. More pre-
cisely, when , where is the bandwidth of the
transmitted pulse, our method can reduce the sampling rate rel-
atively to the Nyquist rate. For example, the setup in [33], used
for characterization of ultra-wideband (UWB) wireless indoor
channels, consists of pulses with bandwidth 1 GHz trans-
mitted at a rate of 2 MHz. Under the assumption that
there are 32 significant multipath components, our method can
reduce the sampling rate down to 128 MHz compared with the
2 GHz Nyquist rate.

Besides the theoretical interest, sampling rate reduction is
also important for implementation considerations. For practical
ADCs, which perform the sampling process, there is a tradeoff
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between sampling rate and resolution [34]. Therefore, reducing
the sampling rate allows the use of more precise ADCs, which
can improve the time-delay estimation. The power consumption
of an ADC can also be reduced by lowering the sampling rate
[34]. In addition, a lower rate leads to more efficient digital pro-
cessing hardware, since a smaller number of samples has to be
processed. This also allows performing the digital processing
operations in real time.

C. Recovering the Unknown Delays

According to Proposition 2, in order be able to perfectly re-
construct every signal of the form (3), our sampling scheme
must have sampling channels. We assume throughout
that this condition holds.

We now describe an algorithm for the recovery of the un-
known delays from the measurement set , which is based
on the ESPRIT [22] algorithm. One of the conditions needed in
order to use ESPRIT is that the correlation matrix

(51)

is positive definite. In order to relate this condition to our
problem, we state the following proposition from [11].

Proposition 3: If the sum (51) exists, then every matrix
satisfying has column span equal to .

An immediate corollary from Proposition 3 is that
is equivalent to the condition . In this
case, which we refer to as the uncorrelated case, we can apply
the ESPRIT algorithm on the measurement set in order to
recover the unknown delays. The case

, will be referred to as the correlated case. In this setting the
condition does not hold, and the ESPRIT algorithm
cannot applied directly. Instead, we will use an additional stage
originally proposed in [35] and [36].

Note that

(52)

Since for any set of delays , the matrix has full column-
rank, the ranks of the matrices and are equal. There-
fore, the decision whether we are in the uncorrelated or corre-
lated case can made directly from the given measurements by
forming the matrix .

1) Uncorrelated Case: From (52), under the assumption that
the matrix is positive definite, it can be shown that the rank
of the matrix is . Moreover, the matrices and
have the same column span which is referred as the signal sub-
space. By performing a singular value decomposition (SVD) of
the matrix , we can obtain vectors, which span the signal
subspace, by taking the left singular vectors associated to the
nonzero singular values of . We define the matrix
as the matrix containing those vectors in its columns.

Next, we exploit the special structure of the Vandermonde
matrix. We denote the matrix as the sub matrix extracted
from by deleting its last row. In the same way we define

as the sub matrix extracted from by deleting its
first row. The Vandermonde matrix satisfies the following
rotational invariance property:

(53)

where is a diagonal matrix, whose th diagonal
element is given by . Since the matrices

and have the same column span, there exists an invert-
ible matrix such that

(54)

By deleting the last row in (54) we get

(55)

Similarly, deleting the first row in (54) and using the rotational
invariance property (53), we have

(56)

Combining (55) and (56) leads to the following relation between
the matrices and :

(57)

The matrix is a matrix with full
column rank. Therefore, . Using (57) we define
the following matrix as

(58)

From (58) it is clear that the diagonal matrix can be ob-
tained from the matrix by performing an eigenvalue decom-
position. Once the matrix is known, the unknown delays
can be retrieved from its diagonal elements as

(59)

In summary, our algorithm consist of the following steps.
1) Construct the correlation matrix .
2) Perform an SVD decomposition of and construct the

matrix consisting of the singular vectors associated
with the nonzero singular values in its columns.

3) Compute the matrix .
4) Compute the eigenvalues of .
5) Retrieve the unknown delays by .
2) Correlated Case: When the condition is not

satisfied the ESPRIT algorithm cannot be applied directly on
the vector set . In this case the rank of is smaller than

, and therefore its column span is no longer equal to the entire
signal subspace. To accommodate this setting, we perform an
additional stage before applying the ESPRIT method, based on
the spatial smoothing technique proposed in [35], [36].
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To proceed, we define length- sub vectors

(60)

We define the smoothed correlation matrix as

(61)

Under our assumptions , therefore . Ac-
cording to [36], when the rank of the smoothed corre-
lation matrix is regardless of the rank of . We may there-
fore refer now to column rank of as the signal subspace,
and apply the ESPRIT algorithm on this matrix.

V. RELATED SAMPLING PROBLEMS

In this section, we explore in more detail the relationship be-
tween our sampling problem and previous related setups treated
in the sampling literature: sampling signals from a union of
subspaces [4], [5], compressed sensing of analog signals [6],
[8]–[10], and FRI sampling [13], [14].

A. Sampling Signals From a Union of Subspaces

A model which received growing interest recently is that of
signals that lie in a union of subspaces [4]–[6], [9], [10], [12].
Under this model each signal can be described as [4]

(62)

where are subspaces of a given Hilbert space and is an
index set. The signal lies in one of the subspaces , how-
ever it is not known in advance in which one. Thus, effectively,
to determine , we first need to find the active subspace, or
the index .

Our signal model, given by (3), can be formulated as in (62).
As described in Section III-A once the time delays are fixed,
each signal lies in a SI subspace spanned by generators.
Therefore, the set of all signals of the form (3) constitute an
infinite union of SI subspaces, where is the set of delays ,
which can take on any continuous value in the interval ,
and is the corresponding SI subspace.

In [4] and [5], necessary and sufficient conditions are de-
rived for a sampling operator to be invertible over a union of
subspaces. For the case of a union of SI subspaces, [4] sug-
gests a sampling scheme, similar to that used in [8] and in this
paper, comprised of parallel sampling channels. Conditions on
the sampling filters are then given in order to ensure recon-
struction of the signals from its samples. In addition, the min-
imal number of sampling channels allowing perfect recovery
of the signal from its samples is shown to be . This leads
to a minimal sampling rate of which is achieved by our
scheme. However, in [4] no concrete reconstruction algorithms
were given that can achieve this rate. Furthermore, although
conditions for invertibility were provided, these do not neces-
sarily imply that there exists an efficient recovery algorithm,
which can recover the signal from its samples at the minimal

rate. Our aim in this work, is to provide concrete recovery tech-
niques, that are simple to implement, for signals over an infinite
union of SI subspaces.

In summary, in this work we focus on a special case of signals
that lie in an infinite union of SI subspaces. For this case, in con-
trast to [4], we provide a concrete reconstruction method. This
method achieves the minimal theoretical sampling rate derived
in [4]. In addition, while other works [6], [8]–[10], [12] provided
reconstruction algorithms only for signals defined over a finite
union of subspaces, here we provide a systematic sampling and
reconstruction method for signals in an infinite union of SI sub-
spaces.

B. Compressed Sensing of Analog Signals

The results of [8] provide recovery algorithms for signals that
lie in a finite union of SI subspaces. In contrast, here there are
an infinite number of possible subspaces.

The signal model in [8] is described in terms of generating
functions as

(63)

where the notation means a sum over at most el-
ements. Thus, for each signal there are only active gener-
ating functions out of total possible functions, but we do not
know in advance which generators are active. In principle, such
signals can be sampled and recovered using the paradigm de-
scribed in Section III corresponding to generating functions.
Indeed, any signal of the form (63) clearly also lies in the SI
subspace spanned by the generators , where some of the
sequences are identically 0. However, this would require
a sampling rate of , obtained by sampling filters. Since
only of the generators are active, intuitively, we should be
able to reduce the rate and still be able to recover the signal.
The main contribution of [8] is a sampling scheme consisting of

filters that is sufficient in order to recover exactly.
We can formulate our problem as a finite union of SI spaces of

the form (63) if we assume that the unknown delays are taken
from a discrete grid containing possible time delays. Under
this assumption the generating functions in (63) are expressible
as

(64)

Therefore, assuming a discrete setting, the method of [8] can
provide a sampling and reconstruction scheme for a signal of
the form (3) with rate .

Similar to our approach here, the sampling scheme in [8] is
based on parallel channels, each comprised of a filter and
a uniform sampler at rate . However, in order to achieve
this minimum sampling rate, the reconstruction in [8] involves
brute-force solving an optimization problem with combinato-
rial complexity. The complexity of the reconstruction stage can
be reduced by increasing the number of channels, which entails
a price in terms of sampling rate. In contrast, our reconstruc-
tion algorithm is based on the ESPRIT algorithm and can obtain
the minimal sampling rate of in polynomial complexity.
Furthermore, we do not require discretization of the time delays
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but rather can accommodate any continuous set of delays. In
this sense we can view our sampling paradigm as a special case
of compressed sensing for an infinite union of SI spaces. Since
previous work in this area has focused on sampling methods for
finite unions, this appears to be a first systematic example of a
sampling theory where the subspace is chosen over an infinite
union.

Another difference with the approach of [8] is the design of
the sampling filters. In our method, simple sampling filters can
be used, such as low pass filter or bandpass filter-bank. In con-
trast, the scheme of [8] requires proper design of the sampling
filters, which is obtained in two stages. In the first stage, filters

are chosen that satisfy some conditions with
respect to the possible generating functions. At the second
stage, a smaller set of filters is constructed from

, via

(65)

where is a matrix that satisfies the requirements of com-
pressed sensing in the appropriate dimension [7], and are
a set of sequences given explicitly in [8]. In order to arrive at
filters that are easy to implement, a careful choice of the param-
eters is needed, which may be difficult to obtain.

C. Signals With Finite Rate of Innovation

Another interesting class of signals that has been treated re-
cently in the sampling literature are FRI signals [13], [14]. Such
signals have a finite number of degrees of freedom per unit time,
referred to as the rate of innovation. Examples of FRI signals
include streams of diracs, nonuniform splines, and piecewise
polynomials. A general form of an FRI signal is given by [13]

(66)

where is a known function, are unknown time shifts and
are unknown weighing coefficients. Recovery of such signals

from their samples is equivalent to the recovery of the delays
and the weights .

Our signal model (3) can be seen as a special case of (66),
where additional shift invariant structure is imposed. This means
that in each period the time delays are constant relative to the
beginning of the period, whereas in a general FRI signal the time
delay can vary from period to period. Our method is designed in
such a way that it utilizes this extra structure to reduce the rate,
while still guaranteeing perfect recovery.

The FRI signals dealt with in [13] and [14] are divided into
three main classes: periodic, finite length and infinite length. If
we address our signal model as an FRI signal it will generally
fall into the third category of infinite length FRI signals. Some
special classes of finite (and periodic) FRI signals where treated
in [13], such as streams of diracs. For these special settings sam-
pling theorems where derived with very specific kernels, that
achieve the minimal rate (the rate of innovation). However, these
methods are not adapted to the general model (66).

Sampling and reconstruction of infinite length FRI signals
was treated in [14]. The method in [14] is based on the use of

specific sampling kernels which have finite time support: ker-
nels that can reproduce polynomials or exponentials. In addi-
tion the function is limited to diracs, differentiated diracs,
or short pulses with compact support. The reconstruction algo-
rithm proposed in [14] is local, namely it recovers the signal’s
parameters in each time interval separately. Naive use of this
approach in our context has two main disadvantages. First, in
our method the unknown delays are recovered from all the sam-
ples of the signal . A local algorithm is less robust to noise
and does not take the shared information into account. In ad-
dition, in terms of computational complexity, in our method all
the samples are collected to form a finite size correlation matrix,
and then the ESPRIT algorithm is applied once. Using the local
algorithm requires applying the annihilating filter method, used
for FRI recovery, on each time interval over again.

A final disadvantage of the FRI approach is the higher
sampling rate required. In order to discuss the sampling rate
achieved by the local algorithm proposed in [14], we limit our
discussion to the case where the function is a dirac, which
is the main case dealt with in [14]. The theorems for unique
recovery of the signal from its samples in [14] require that in
each interval of size there are at most diracs, where

is the support of the sampling kernel and is the sampling
period. Since in each interval of size we have diracs, it
can be easily shown that the minimal sampling rate is ,
which is a factor of larger than the rate achieved by our
scheme. For example, when using a B-spline kernel, which is
the function with the shortest time support that can reproduce
polynomials of a certain order, an order of at least
is needed, which has time support . Thus, the sampling
rate is times larger than our approach.

As discussed in [4], FRI signals can also be viewed as an
example of signals that lie in an infinite union of subspaces.
We point out here the main difference between our model to
FRI signals in that respect. Although a general FRI signal of
the form (66) has an infinite number of degrees of freedom, the
recovery methods in [14] are local and handle each finite time
interval separately. Hence, effectively, these recovery methods
treat signals with a finite number of degrees of freedom, and for
each interval the signal can be seen as lying in a union of finite
dimensional subspaces. This is in contrast to our signal model,
which consists of signals that lie in a union of SI subspaces,
which have an infinite number of degrees of freedom.

VI. APPLICATION

In this section we describe an application of the proposed
signal model to the problem of channel estimation in wireless
communication [37]. We assume that the transmitted signal
passes through a multipath time-varying channel, and the aim
of the receiver is to estimate the channel’s parameters from
samples of the received signal.

We consider a baseband communication system operating in
a multipath fading environment with pulse amplitude modula-
tion (PAM). The data symbols are transmitted at a symbol rate of

, modulated by a known pulse . The transmitted signal
is then given by

(67)
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where are the data symbols taken from a finite alphabet,
and is the total number of transmitted symbols.

The transmitted signal passes through a baseband time-
varying multipath channel whose impulse response is modeled
as [38]

(68)

where is the path time varying complex gain for the th
multipath propagation path and is the corresponding time
delay. The total number of paths is denoted by . We assume
that the channel is slowly varying relative to the symbol rate, so
that the path gains are considered to be constant over one symbol
period:

(69)

In addition, we assume that the propagation delays are confined
to one symbol, i.e., . Under these assumptions, the
received signal is given by

(70)

where

(71)

and denotes the channel noise.
The received signal fits the signal model described in

(3). Therefore, if the pulse shape satisfies (32) with
, then our sampling scheme can recover the time delays of

the propagation paths. In addition, if the transmitted symbols
are known to the receiver, then the time varying path gains are
recoverable from the sequences .

As a result our sampling scheme can estimate the channel’s
parameters from samples of the output at a low rate, propor-
tional to the number of paths. As an example, we can look at
the channel estimation problem in code-division multiple-ac-
cess (CDMA) communication. This problem was handled using
subspace techniques in [39] and [40]. In these works, the sam-
pling is done at the chip rate or above, where is the
chip duration given by and is the spreading factor
which is usually high (1023, for example, in GPS applications).
In contrast, our sampling scheme can provide recovery of the
channel’s parameters at a sampling rate of . For a channel
with a small number of paths, this sampling rate can be signif-
icantly lower than the chip rate.

Another example is UWB [41] communications which has
gained popularity recently. In this technology, the bandwidth
of the transmitted pulse can be up to several gigahertz. Current
technology commercial ADCs cannot operate at these sampling
rates. For example, the highest sampling rate ADC device, man-
ufactured by National Semiconductor, supports sampling rates
of up to 3 GHz at a relatively low resolution of 8 bits and high
power consumption. Our proposed method, has the potential of
reducing the sampling rate, to rates which can be achieved by
lower rate ADCs with better resolution and lower power.

VII. NUMERICAL EXPERIMENTS

We now provide several experiments in which we examine
various aspects of our method. The numerical experiments are
divided into five parts:

1) demonstration of a channel estimation application;
2) evaluation of performance in the presence of noise;
3) effects of approximation of the matrix using only a

finite number of measurement vectors;
4) effects of the distance between delays on the performance;
5) effects of imperfect digital correction filtering, using finite

length filters.
In all the simulations, except for the one in Section VII-E, we

use the sampling scheme described in Section III-C-1), which
consists of a bank of ideal bandpass filters. We assume that the
working band is , and that the function
has constant frequency response on that frequency range, i.e.,

. In order to improve the robustness to noise
in the delay recovery stage, we use the total least-squares (TLS)
version of the ESPRIT algorithm described in [22]. All the re-
sults are based on averaging 1000 experiments.

A. Channel Estimation

In the first simulation we demonstrate a channel estimation
application. We consider a time-varying channel of the form
(68), with paths. In order to simulate a time varying
channel, the channel’s gain coefficients are modeled ac-
cording to the Jakes’ model [42] as a zero-mean complex-valued
Gaussian stationary process with the classical U-shape power
spectral density. In such a model the varying rate of each gain
coefficient depends on the maximal Doppler shift . In order
to simulate a slow varying channel, relatively to the symbol
rate , we used for each path a maximal Doppler shift of

. The energy of each time-varying path gain coeffi-
cient was normalized to . The path delays were drawn
uniformly in the range . For the estimation
symbols were used where the data symbols are assumed to be
known. The samples at the output of each of the sampling chan-
nels were corrupted by complex-valued Gaussian white noise
with an SNR of 20 dB.

The number of sampling channels is taken to be , which
is only one more than the number of unknown delays. Although
we have seen that sampling channels are required for perfect
recovery of every signal of the form (3), for some signals low-
ering the number of sampling channels is possible. Indeed, ac-
cording to Proposition 2, for signals with

, the minimal number of sampling channels required is .
We will demonstrate that for this example, channels are
sufficient.

In Fig. 4 the original and estimated channels are shown. Since
the gain coefficients of the channel are time-varying, only their
averaged energy over time is shown in the figure. In Fig. 5, we
plot the magnitude of the original and estimated gains of the first
path versus time. From Figs. 4 and 5 it is evident that our method
can provide a good estimate of the channel’s parameters, even
when the samples are noisy.

B. Performance in the Presence of Noise

In the next simulations we examine the effect of SNR and
the number of sampling channels on the error in the delays es-
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Fig. 4. Channel estimation with � � � sampling channels, and ��� � �� dB.

Fig. 5. Estimation of the time-varying gain coefficient of the first path, � �

����� � �� dB.

timation. We choose close delays, and
. The sequences

are finite length sequences with unit power chosen according to
Jakes’ model with .

Under the setting of the simulation, which consists of a pulse
with constant frequency response and ideal bandpass filters,
from (23) it can be verified that the sampling sequences satisfy
the following relation in the time domain:

(72)

The Cramér–Rao bound (CRB) for unbiased estimators of
from the data , was derived in [43] for this data

model. The TLS-ESPRIT algorithm, used for the delays estima-
tion in our method, is known to be asymptotically unbiased [44].
Experimentally we verified that, under the simulation setup, the
bias of the delays estimation is low enough for SNRs above
15 dB. Therefore, in this range of SNRs, the CRB derived in
[43] can give a lower bound on the MSE of the delays estimation
(up to factor of ), assuming our specific sampling scheme.

Fig. 6. MSE of the delays estimation versus SNR, for � � � and � � �.

Fig. 7. MSE of the delays estimation versus the number of sampling channels
�, for � � � and ��� � 10 dB.

In Fig. 6, the mean-squared error (MSE) of the time-delays
estimation is shown versus the SNR, when using sam-
pling channels. For comparison we also plot the CRB. The
figure demonstrates that our method achieves the CRB for
SNR 15 dB, which is the range that delays estimation can be
considered as unbiased.

In Fig. 7, the MSE of the estimation of the time delays is
shown versus the number of sampling channels, for a constant
SNR of 10 dB. The results demonstrate that the estimation error
can be improved by increasing the number of channels. There-
fore, oversampling improves the robustness of our method to
noise.

C. Effects of Imperfect Approximation of

Next, we investigate the influence of estimating the matrix
using only a finite number of measurement vectors .

This number effects the total delay of our method, since recon-
struction of the sequences is performed only after the un-
known delays are recovered. In Fig. 8 the MSE of the delays

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 27,2010 at 17:42:04 UTC from IEEE Xplore.  Restrictions apply. 



GEDALYAHU AND ELDAR: TIME-DELAY ESTIMATION FROM LOW-RATE SAMPLES 3029

Fig. 8. MSE of the delays estimation versus the number of samples used, for
� � �� � � �, and ��� � 20 dB.

estimation is shown versus the number of measurement vec-
tors used for estimation of . A constant SNR of 20 dB and

sampling channels are used. Two cases are illustrated: in
the first, the sequences are taken according to the Jakes’
model with parameter and in the second case

is used, which corresponds to sequences with faster vari-
ation rate. Fig. 8 demonstrates that the MSE depends on the vari-
ation rate of the sequences. Intuitively the faster the sequences
vary, the more information each new measurement vector
contains, improving the estimation of . In addition, it can
be seen that using only 50 measurement vectors, yields a rea-
sonable estimation of the delays in the case of .
The same estimation error is achieved using 80 measurement
vectors, when using slow varying sequences. This result can be
further improved by increasing the SNR or the number of sam-
pling channels.

D. Effects of the Distance Between Delays

In the following simulation we examine the effects of the dis-
tance between the delays on the performance of our method.
We choose 2 delays with varying distance, 4 sam-
pling channels and a constant SNR of 25 dB. In Fig. 9 the MSE
of the delays estimation is shown as a function of the delays
distance. The figure shows that the estimation error decreases
as the distance between delays grows. It can also be shown that
good performance is achieved even for very close delays with a
distance of .

Next, we investigate the affect of the distance on the recovery
of the sequences . Since this recovery depends also on
the estimation of delays, it suffers from two sources of errors:
errors in the estimation of and errors caused by the noise.
To distinguish between these two errors, we plot the MSE in
estimating the sequences when using the estimated delays, and
when using the true delay values. The results are shown in
Fig. 10. For small distances between the delays, the error in
the estimation of the matrix is dominant. For distances
above the two graphs almost coincide. In addition, as
can be seen from the plot that uses the true delay values, for

Fig. 9. MSE of the delays estimation versus the distance between delays, for
� � �� � � � and ��� � �� dB.

Fig. 10. MSE of the sequences estimation versus the distance between delays,
for � � �� � � � and ��� � �� dB.

close delays there is a noise enhancement caused by the ill
conditioning of the matrix . This enhancement reduces as
the distance between the delays grows, and for distances above

this phenomenon is negligible.

E. Effects of Imperfect Digital Filtering Correction

In the next simulation we examine the effects of approxi-
mating the digital correction filter bank by finite
length digital filters. The length of the filters affects the delay of
our scheme. To demonstrate this point, we arbitrarily choose a
sampling scheme composed of three non-ideal bandpass filters
with a frequency response given by

otherwise
(73)

where

(74)
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Fig. 11. MSE of the delays estimation versus SNR for different lengths of dig-
ital correction filter bank approximations.

These filters satisfy the conditions of Proposition 1 and can
model realistic sampling filters with nonflat frequency response.
In this case a non trivial digital correction filter bank is required,
whose coefficients are calculated using the inverse DTFT of

.
In Fig. 11, the MSE of the delays estimation versus the SNR

is plotted for different lengths of filters. At low SNRs the domi-
nant error is caused by the noise, while for high SNRs the error
is mostly a result of the correction filter approximation. It can
be seen that a 49 taps filter provides a good approximation to
the correction filter bank, resulting in a delay of 24 samples.
When working at SNRs below 40 dB, filters with 11 taps seem
reasonable.

VIII. CONCLUSION

In this paper, we considered the problem of estimating the
time delays and time varying coefficients of a multipath channel,
from low-rate samples of the received signal. We showed that
this problem can be formulated within the broader context of
sampling theory, in which our goal is to recover an analog signal

that lies in a SI subspace, spanned by generators with
unknown delays. This class of problems can be viewed as an
infinite union of subspaces.

We showed that if the channel has multipath components,
or equivalently, if the SI subspace is generated by genera-
tors, than under appropriate conditions on the sampling filters,
a sampling rate of is necessary and sufficient to guarantee
perfect recovery of any signal . Here is the transmission
rate, or the period of the generators. We developed sufficient
conditions on the generators and the sampling filters in order
to guarantee perfect recovery at the minimal possible rate. To
recover the unknown time delays, we showed that our problem
can be formulated within the context of DOA estimation. Using
this relationship, we proposed an ESPRIT-type algorithm to de-
termine the unknown delays from the given low-rate samples.
Once the delays are properly identified, the time varying coeffi-
cients can be found by digital filtering.

Besides the application to time-delay estimation, the problem
we treated here can be seen as a first example of a sampling

theory for analog signals defined over an infinite union of SI
subspaces. Recently, there has been growing interest in sam-
pling theorems for signals over a union of subspaces [4]–[6],
[8]–[10], [12]. However, previous work addressing stability is-
sues and concrete recovery algorithms have focused on finite
unions or finite dimensional subspaces. Here, we take a first step
in the direction of extending these ideas to a broader setting that
treats analog signals lying in an infinite union of SI subspaces.
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