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ABSTRACT

We consider the problem of on-line (or recursive) parameter estima-
tion in which, at each moment, an unknown deterministic param-
eter vector must be re-estimated from measurements corrupted by
additive noise. We present efficient algorithms for calculating two
variants of the blind minimax estimator, which is a biased estimator
proven to outperform least squares in terms of mean squared error.
These operate in the same setting as the recursive least squares (RLS)
method and utilize it. Both algorithms have a computational com-
plexity in par with RLS. We discuss the advantages and shortcom-
ings of the presented methods and demonstrate through simulations
situations in which they produce substantial gain over RLS.

1. INTRODUCTION

The problem of on-line (or recursive) parameter estimation in the
linear regression setting has numerous applications in engineering;
these include, for example, the areas of system identification and
array processing. We consider the case where the estimation param-
eter is deterministic and the measurements are corrupted by additive
white Gaussian noise.

A classical way of performing such an estimate is the least
squares (LS) method. This method produces the lowest mean
squared error (MSE) amongst all unbiased estimators. Furthermore,
by recognizing the dependencies between subsequent points in time,
an efficient algorithm for calculating the LS estimator can be de-
rived. The result, known as recursive least squares (RLS), involves
only O(m2) scalar multiplications per step, where m is the number
of parameters to be estimated.

Stein showed that LS can be dominated, i.e. that lower MSE can
be achieved anywhere in the parameter space, by a biased estimator
[3]. Since then, a number of estimation techniques that dominate LS
were proposed [5][4][6].

In this paper we introduce a new method, based on the recently
developed blind minimax estimator (BME) [6], for efficiently calcu-
lating an LS dominating estimator recursively. Previous work in this
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field includes [7], in which a recursive realization of Bock’s estima-
tor [4] is proposed. However, the BME usually outperforms Bock’s
estimator [6].

We elaborate on the notion of on-line parameter estimation in
Section 2. In Section 3 we give the required background, including
a short review of the blind minimax estimator. Section 4 presents
our proposed solution and explains how it is derived. In Section 5
we present a simulated example comparing RLS with our proposed
solution. Finally, we discuss our findings in Section 6.

Throughout this paper, for a column vector a and a positive def-
inite matrix A, ‖a‖2 denotes the Euclidean square norm aHa and
‖a‖2A denotes the weighted square norm aHAa. The time index
is n and the sample time for scalars, vectors and matrices will be
displayed in subscript. {A}i,: is the i-th row of A, {a}i is the i-th
element of the vector a. λmin(A) and λmax(A) are the minimal
and maximal eigenvalues ofA, respectively.

2. PROBLEM STATEMENT

Consider the problem of on-line parameter estimation in which, at
each moment n, the unknown deterministic parameter vector xmust
be re-estimated from the measurements

yn = Hnx+wn. (2.1)

Here, wn is white Gaussian noise with known variance σ2
w, yn is

a known vector and Hn is a known matrix of full rank. At each
moment, the measurement vector yn−1 is extended by a new mea-
surement yn to form yn and a new row ρT

n is added to the model
matrix Hn−1, modeling the relation between the new measurement
yn and the unknown parameter vector x. Such a problem arises, for
example, in a system identification scenario [1].

In this setting, one would want to utilize the new data in order to
get a more accurate estimation of x while relying on previously cal-
culated data in order to reduce computation time. A classical method
for accomplishing this is using a recursive algorithm (known as RLS)
to calculate the least squares estimate ofx [1]. Our method improves
on this approach, by achieving lower mean squared error for every
n, under certain regularity conditions.
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3. BACKGROUND

We now review some common definitions and the previous work
on which we base our proposed solution. For ease of notation, the
following non-recursive formulations will be presented in terms of
the one-shot parameter estimation problem

y = Hx+w (3.1)

where x is an unknown deterministic parameter vector, w is white
Gaussian noise with known variance σ2

w, y is a known measurement
vector andH is a known matrix.

A common measure for estimation quality is the MSE. Denoting
the estimator of x by x̂ = x̂(y), the MSE is

MSE(x̂) , E{‖x̂ − x‖2}

= var(x, x̂) + ‖bias(x, x̂)‖2
(3.2)

where var(x, x̂) , tr(cov(x̂)) and bias(x, x̂) , E{x̂} − x are
the estimator variance and bias, respectively. Unlike the Bayesian
setting, in which an estimator that minimizes the MSE can be for-
mulated, it is impossible to minimize the MSE for all values of the
unknown parameter vector x.

3.1. Least squares estimation

Least squares estimation is a long-standing, widespread solution for
(3.1). It is derived by requiring unbiasedness and is proven to pro-
duce the lowest MSE amongst all unbiased estimators. The estimator
is given by

x̂LS = (HHH)−1HHy (3.3)

and is a random vector distributed as

x̂LS ∼ N (x,Q−1) (3.4)

where Q−1 , σ2
w(HHH)−1. This results in an MSE depending

solely onQ−1 and given by

MSE(x̂LS) = εLS , tr(Q−1). (3.5)

Although it is seemingly very appealing to restrict oneself to unbi-
ased estimators, and opting to minimize the estimator variance alone,
such an approach does not necessarily minimize the MSE. In fact, it
has been proven that, under some regularity conditions, LS can be
dominated, i.e., lower MSE can be achieved for all values of x by a
biased estimator. This result is known as Stein’s phenomenon. Two
such estimators are the James-Stein estimator [5], which addresses
the case in which H = I , and the blind minimax estimator (BME)
[6].

3.2. Blind minimax estimation

Suppose for a moment that x is known to lie within a bounded set S.
In such a case, it is possible to construct a linear minimax estimator

x̂M = arg min
x̂=Gy

max
x∈S

E{‖x̂ − x‖2}. (3.6)

This estimator minimizes the worst-case MSE among all possible
values of x in S. A closed-form formulation of (3.6) has been de-
rived for many cases of interest [8].

The blind minimax estimator [6], on the other hand, first esti-
mates a set S in which x is likely to lie. It then utilizes the minimax
estimator for that set on the measurements to estimate a value for x.
This produces an estimator that requires no prior knowledge of x.

3.2.1. Spherical blind minimax estimation

Choosing S to be the sphere S = {x : ‖x‖2 ≤ ‖x̂LS‖2} results in
the spherical blind minimax estimator (SBME)

x̂SBM =
‖x̂LS‖2

‖x̂LS‖2 + εLS
x̂LS (3.7)

where x̂LS is the LS estimator (3.3) and εLS is its MSE (3.5). One
should note that this is a scalar shrinkage of the LS estimator, imply-
ing that ‖x̂LS‖2 tends to be an overestimate of ‖x‖2.

It has been shown [6] that when

tr(Q−1)/λmax(Q−1) > 4 (3.8)

the SBME (3.7) strictly dominates LS. The ratio in (3.8) is known as
the effective dimension of the estimation problem.

3.2.2. Ellipsoidal blind minimax estimation

Not all elements of the LS estimate x̂LS are equally trustworthy,
due to (3.4). Some elements have larger variance than others and
so scalar shrinkage of x̂LS may be suboptimal in treating these ele-
ments. The ellipsoidal blind minimax estimator (EBME) addresses
this issue by shrinking each element of x̂LS according to its variance.

This is accomplished by first estimating an ellipsoidal set S
likely to contain x

S = {x : ‖x‖2Qb ≤ ‖x̂LS‖2Qb} (3.9)

for some real scalar b to be chosen below. Then, using the minimax
estimator with S produces the ellipsoidal blind minimax estimator
(EBME) [6]

x̂EBM = V diag((1− ασb/2
1 )+, . . . , (1− ασb/2

m )+)V H x̂LS

(3.10)
where V ΣV H is the eigenvalue decomposition of Q with V uni-
tary, Σ = diag(σ1, ..., σm) and σb

1 ≥ σb
2 ≥ · · · ≥ σb

m > 0. Here
(·)+ = max(·, 0),

α =
r1

‖x̂LS‖2
Qb + r2

(3.11)

r1 =

m∑
i=k+1

σ
b/2−1
i r2 =

m∑
i=k+1

σb−1
i

and k is chosen as the smallest index 0 ≤ k ≤ m− 1 such that

ασ
b/2
k+1 < 1. (3.12)

It has been shown [6] that whenQ satisfies

tr(Qb/2−1)/λmax(Qb/2−1) > 4, (3.13)
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the EBME (3.10) strictly dominates LS (3.3). We refer to the ratio
in (3.13) as the modified effective dimension.

Recall from (3.4) that Q−1 provides information on the accu-
racy of x̂LS. Each eigenvalue of Q−1 determines the variance the
LS estimator will have in the direction of the associated eigenvector.
We refer to the eigenvectors of Q−1 as the eigendirections of x̂LS

and to the projections of x̂LS on the eigenvectors as the eigenele-
ments of x̂LS.

In the EBME, a different shrinkage factor of 1−ασb/2
i is applied

to each eigendirection of x̂LS. The amount of shrinkage in each
direction is dependent on the variance in that direction as well as on
the scalar b, which we refer to as the discrimination factor. When
b < 0, the EBME shrinks high-variance eigenelements of x̂LS more
than it shrinks low-variance ones. Furthermore, the more negative
the value of b, the more eccentric the resulting ellipsoid S. This,
in turn, results in greater shrinkage of high-variance eigenelements
relative to that of low-variance ones. When b = 0, the ellipsoid S
degenerates to a sphere, leading to the scalar shrinkage of the SBME
(3.7).

In the estimation process, the EBME zeros out eigenelements of
x̂LS associated with eigenvalues satisfying ασb/2

i > 1, an operation
called the positive-part correction. The elements zeroed out are those
associated with very large variances, compared to the other elements
of x̂LS.

3.3. Recursive least squares

For the on-line parameter estimation problem (2.1), the recursive
least squares (RLS) algorithm accurately calculates the LS estima-
tion of x at each time n. To this end and remebering (3.3), it is useful
to define

Qn , σ−2
w HH

n Hn. (3.14)

In this on-line problem (2.1), Qn is given as a rank-1 update of
Qn−1

Qn = σ−2
w (HH

n−1Hn−1 + ρnρ
H
n ). (3.15)

Utilizing the rank-1 update (3.15), it is possible to efficiently update
Pn, the inverse of σ2

wQn, given Pn−1. Each update includes only
matrix-vector multiplications, thus requiring only O(m2) computa-
tional operations.

For future reference, we state the algorithm as

φ = Pn−1ρ (3.16)

γ = 1/(1 + ρHφ) (3.17)

x̂LS
n = x̂LS

n−1 + γ(yn − ρH x̂LS
n−1)φ (3.18)

Pn = (Pn−1 − γφφH) (3.19)

where x̂LS
n is the least squares estimate for x at time n and σ2

wPn is
its covariance matrix [2].

4. PROPOSED SOLUTION

In the following section we introduce an adaptation of the blind min-
imax estimators of Section 3.2 to the on-line estimation scenario

(2.1).

4.1. Spherical blind minimax

The SBME can readily be calculated on-line as a simple modification
of the RLS algorithm. This is done by obtaining x̂LS

n (3.18) and
Pn (3.19) using RLS, then substituting x̂LS for x̂LS

n and εLS
n ,

σ2
wtr(Pn) for εLS in SBME (3.7). Thus, the SBME is very cheaply

calculated, requiring an additional m+ 1 multiplications over RLS.
At every moment n, dominance over the LS estimator is guaranteed,
as long as (3.8) holds.

Similar to the SBME, the James-Stein RLS estimator [7] also
applies scalar shrinkage to x̂LS, recursively calculating Bock’s es-
timator [4]. However, as demonstrated in [6], the SBME usually
produces lower MSE than Bock’s estimator.

4.2. Recursive full-rank ellipsoidal blind minimax

4.2.1. Overview

As discussed in Section 3.2.2, the EBME applies non-scalar shrink-
age to the LS estimator. We propose to use an adaptation of EBME to
operate in the same computational complexity as RLS. The guiding
principles in the choice of the derived estimator are achieving low
computational complexity and non-scalar shrinkage, while maintain-
ing dominance over LS.

To this end, observe that EBME (3.10) is the positive-part
correction of the full-rank ellipsoidal blind minimax estimator
(frEBME) which is the result of substituting k = 0 in (3.10) and
(3.11). At every moment n, the frEBME dominates the LS estimator
under the same condition as EBME, i.e., as long as (3.13) holds [6].

Applying the positive-part correction to the above estimator re-
quires obtaining the eigenvalue decomposition (EVD) ofQn, which
necessitates many additional computations on top of RLS. In fact,
most of the available EVD rank-1 update algorithms either do so in
O(m2r), where r is the number of eigenpairs tracked, or rely on an
iterative convergence method (e.g. see [9][10][11]). For the above
reason, the choice of whether or not to apply the positive-part correc-
tion is left to the designer. A technique for applying the positive-part
correction using a tracked eigenvector subspace is proposed in Sec-
tion 4.2.3. In Section 4.2.2, we will use the frEBME as the basis for
our proposed recursive estimator.

To facilitate low computational requirements, we choose a dis-
crimination factor of b = −2. With this choice, and using parts
of the already calculated RLS equations, calculation of the estima-
tor is reduced to 6m2 multiplications per time step. By contrast,
RLS requires 2m2 multiplications per time step. Further note that,
for b = −2, no positive-part correction is needed if ‖x̂LS‖2 ≥
tr(P 2(λmax(P )I − P ))/λ2

min(P ). This includes cases where Q
is a scalar matrix and cases in which x itself is very large. From var-
ious simulations conducted, we observed that almost always k = 0,
with k > 1 being an extreme rarity.
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4.2.2. Mathematical formulation

In order to compute the recursive full-rank ellipsoidal blind mini-
max estimator (RfrEBME) we first note that the matrix P 2

n can be
updated as

P 2
n = P 2

n−1 − γφφHPn−1 − γPn−1φφ
H + γ2φφHφφH

where γ and φ are obtained from (3.17) and (3.16). After Pn and
P 2

n have been calculated, x̂RfrEBM is obtained by

r̃1 = tr(P 2
n)

r̃2 = tr(P 3
n) = 11×N · (P 2

n)T .∗ Pn · 1N×1

α̃ =
r̃1

r̃2 + σ−2
w ‖x̂LS‖2

P 2
n

x̂RfrEBM = (I − α̃Pn)x̂LS

where 1A×B denotes anA×B matrix whose elements are all ones and
.∗ denotes element-by-element matrix multiplication.

4.2.3. Further improvement

At the cost of computation time, the estimator can be improved by
applying some or all of the necessary positive-part corrections. This
can be done even without a complete EVD of Pn, as follows.

Given the r largest eigenvalues λ1 ≥ · · · ≥ λr of Pn and their
corresponding normalized eigenvectors v1, . . . ,vr , it is possible to
apply the positive-part correction if k ≤ r. The EBME then takes
the form

P̃ = (P −W (L− ˜̃α−1Ik)WH)

˜̃α =
r̃1 −

∑k
i=1 λ

2
i

r̃2 −
∑k

i=1 λ
3
i + σ−2

w ‖x̂LS‖2P
x̂REBM = (I − ˜̃αP̃ )x̂LS

where k is determined by (3.12)

k = arg maxλk+1, subject to αλk+1 ≤ 1. (4.1)

HereW = [v1, . . . ,vk] and L = diag(λ1, . . . , λk).
It is possible to utilize a low-complexity major-subspace tracker

(e.g. [9][10][11]) to obtainW andL. Note that it may be preferable
to start from r = 0 and increment it at each step if (4.1) does not
hold.

5. USAGE EXAMPLE AND NUMERICAL RESULTS

A classical application of the recursive parameter estimation sce-
nario (2.1) is channel estimation for an autoregressive model with
exogenous input (ARX) [2]. Given the known input signal un, an
ARX model of orders (p, q) is

yn =

p∑
i=1

aiyn−i +

q∑
i=1

biun−i + wn (5.1)
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Fig. 1. MSE/‖x‖2 as a function of the number of observations
for RLS, SBME and RfrEBME. The input is a square wave with
a period of 2π. The filter is a 19th order FIR whose coefficients
are proportional to the eigendirection having minimal variance. The
effective dimension and modified effective dimension rise steadily
with n and converge to 9.3 and 6.9, respectively.

where {ai}pi=1 and {bi}qi=1 are unknown filter coefficients andwn is
additive white Gaussian noise with variance σ2

w. Casting the above
as an on-line parameter estimation problem (2.1) gives

x = [a1, ..., ap, b1, ..., bp]T

ρn = {Hn}:,n = [yn−1, ..., yn−p, un−1, ..., un−q]
T . (5.2)

We assume that ui = yi = 0 for i < 0. The length of the parameter
vector is m = p+ q.

For the special case p = 0, the model (5.1) reduces to an FIR
filter with additive noise. The problem is then to estimate the filter
coefficients based on the known input and known (but noisy) output.
In this case, the matrix Hn contains only deterministic values un,
and (5.2) corresponds precisely to the on-line setting (2.1). Thus, the
proposed recursive BME methods are guaranteed to achieve lower
MSE than the standard RLS solution for all values of n.

This is demonstrated in Fig. 1, in which the performance of RLS,
SBME, and RfrEBME are compared in an FIR estimation scenario.
In this simulation, an SNR of 5 dB was chosen, where the SNR is
defined as

SNR ,
‖zn‖2

E{‖gn‖2}
. (5.3)

with zn , yn|wn≡0 and gn , yn|un≡0. The MSE was calcu-
lated by averaging the performance over 100 noise realizations. The
plotted MSE is normalized by ‖x‖2 to demonstrate that reasonable
performance is achieved relative to the trivial estimator x̂ ≡ 0. This
is because the low SNR value is compensated by the large number
of observations.

In the general ARX case, the model matrix Hn contains mea-
surements of both the input signal un and the output signal yn.
Therefore, Hn is random, so that x̂LS

n is no longer distributed as
N (x,Q−1

n ); consequently, the dominance results of the blind mini-
max estimators no longer hold in this case. Furthermore, in this case,
the effective dimension (3.13) also depends on the measurements,
and thus is not known in advance. However, even in the general
ARX case, x̂LS

n converges in distribution toN (x,Q−1
n ) as n→∞,
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Fig. 2. MSE/‖x‖2 as a function of the number of observations for
RLS, SBME and RfrEBME. The input is a randomly generated IID
signal. The filter is a 10th order Butterworth low-pass with a cut-
off frequency of π/2. The SNR is −20 dB. The average effective
dimension and average modified effective dimension converge to 9.5
and 7.5, respectively. The inlaid graph displays the same results in a
different scale.

so that dominance over RLS can be expected for large n. In fact,
simulations show that when the effective dimension satisfies the re-
spective dominance conditions, the SBME and RfrEBME typically
produce lower MSE than RLS. One example is provided in Fig. 2, in
which the different methods are used to estimate the parameters of
an IIR filter. The SNR in this case is −20 dB. Apart from the filter
and input signal, the settings are identical to those of Fig. 1.

While the dominance of the BMEs is clearly visible for all n, the
difference becomes less pronounced as the number of measurements
increases. This is because the LS estimator is optimal in terms of
MSE in the limit n→∞, so that all methods approach this optimal
estimate for large n.

6. DISCUSSION

In this paper we surveyed several possible uses of the recently pro-
posed BME [6] framework in an on-line model (2.1). The first is
the easily calculated SBME, performing a scalar shrinkage of the
LS estimator x̂LS, requiring additional m + 1 multiplications on
top of RLS’s 2m2. However, the use of scalar shrinkage is sub-
optimal in that all components of x̂LS receive equal treatment, re-
gardless of their variance. To improve performance, we introduced
the RfrEBME, which allows for non-scalar shrinkage, and requires
6m2 multiplications. Although RfrEBME poses, in our opinion, a
reasonable trade-off between computational requirements and per-
formance, we suggest a means for improving its performance, at the
cost of additional computations. We recommend considering this
modification when only a few noisy directions of x̂LS cause a large
MSE [6].

We observed from simulations that, in many system identifica-
tion scenarios, SBME and RfrEBME produce a lower MSE even
when the dominance conditions do not hold. Considerable improve-

ment in MSE is achieved under a variety of operating conditions,
with the difference being most pronounced for low SNR.

In summary, we have presented several methods for on-line
computation of a deterministic parameter, which are guaranteed to
improve on the standard RLS approach. For applications in which
the SNR is relatively low, we recommend using the RfrEBME for it
generally produces better results than SBME at a reasonable compu-
tational cost.
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