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Robust Recovery of Signals From a Structured
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Abstract—Traditional sampling theories consider the problem
of reconstructing an unknown signal x from a series of samples. A
prevalent assumption which often guarantees recovery from the
given measurements is that x lies in a known subspace. Recently,
there has been growing interest in nonlinear but structured signal
models, in which x lies in a union of subspaces. In this paper we
develop a general framework for robust and efficient recovery
of such signals from a given set of samples. More specifically,
we treat the case in which x lies in a sum of k subspaces,
chosen from a larger set of m possibilities. The samples are
modelled as inner products with an arbitrary set of sampling
functions. To derive an efficient and robust recovery algorithm,
we show that our problem can be formulated as that of recovering
a block-sparse vector whose non-zero elements appear in fixed
blocks. We then propose a mixed `2/`1 program for block sparse
recovery. Our main result is an equivalence condition under
which the proposed convex algorithm is guaranteed to recover
the original signal. This result relies on the notion of block
restricted isometry property (RIP), which is a generalization of
the standard RIP used extensively in the context of compressed
sensing. Based on RIP we also prove stability of our approach
in the presence of noise and modeling errors. A special case
of our framework is that of recovering multiple measurement
vectors (MMV) that share a joint sparsity pattern. Adapting our
results to this context leads to new MMV recovery methods as
well as equivalence conditions under which the entire set can be
determined efficiently.

Index Terms—Block sparsity, block restricted isometry prop-
erty, compressed sensing, mixed-norm recovery, multiple mea-
surement vectors (MMV), union of linear subspaces.

I. INTRODUCTION

Sampling theory has a rich history dating back to Cauchy.
Undoubtedly, the sampling theorem that had the most impact
on signal processing and communications is that associated
with Whittaker, Kotelńikov, and Shannon [1], [2]. Their
famous result is that a bandlimited function x(t) can be
recovered from its uniform samples as long as the sampling
rate exceeds the Nyquist rate, corresponding to twice the
highest frequency of the signal [3]. More recently, this basic
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theorem has been extended to include more general classes of
signal spaces. In particular, it can be shown that under mild
technical conditions, a signal x lying in a given subspace can
be recovered exactly from its linear generalized samples using
a series of filtering operations [4]–[7].

Recently, there has been growing interest in nonlinear signal
models in which the unknown x does not necessarily lie in a
subspace. In order to ensure recovery from the samples, some
underlying structure is needed. A general model that captures
many interesting cases is that in which x lies in a union of
subspaces. In this setting, x resides in one of a set of given
subspaces Vi, however, a priori it is not known in which one.
A special case of this framework is the problem underlying
the field of compressed sensing (CS), in which the goal is to
recover a length N vector x from n < N linear measurements,
where x has no more than k non-zero elements in some basis
[8], [9]. Many algorithms have been proposed in the literature
in order to recover x in a stable and efficient manner [9]–
[13]. A variety of conditions have been developed to ensure
that these methods recover x exactly. One of the main tools in
this context is the restricted isometry property (RIP) [9], [14],
[15]. In particular, it can be shown that if the measurement
matrix satisfies the RIP with an appropriate constant, then x
can be recovered by solving an `1 minimization algorithm.

Another special case of a union of subspaces is the setting in
which the unknown signal x = x(t) has a multiband structure,
so that its Fourier transform consists of a limited number of
bands at unknown locations [16], [17]. By formulating this
problem within the framework of CS, explicit sub-Nyquist
sampling and reconstruction schemes were developed in [16],
[17] that ensure perfect-recovery at the minimal possible rate.
This setup was recently generalized in [18], [19] to deal with
sampling and reconstruction of signals that lie in a finite
union of shift-invariant subspaces. By combining ideas from
standard sampling theory with CS results [20], explicit low-
rate sampling and recovery methods were developed for such
signal sets. In [21], an extension was considered to a special
case of an infinite union of shit-invariant subspaces. The
infinite union is a result of the fact that each generator of
the space has an unknown time delay. Another example of a
union of subspaces is the set of finite rate of innovation signals
[21]–[23], that are modelled as a weighted sum of shifts of a
given generating function, where the shifts are unknown.

In this paper, our goal is to develop a unified framework
for efficient recovery of signals that lie in a structured union
of subspaces. Our emphasis is on computationally efficient
methods that are stable in the presence of noise and modeling
errors. In contrast to our previous work [16]–[19], [21], here
we consider unions of finite-dimensional subspaces. Specifi-
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cally, we restrict our attention to the case in which x resides in
a sum of k subspaces, chosen from a given set of m subspaces
Aj , 1 ≤ j ≤ m. However, which subspaces comprise the sum
is unknown. This setting is a special case of the more general
union model treated in [24], [25]. Conditions under which
unique and stable sampling are possible were developed in
[24], [25]. However, no concrete algorithm was provided to
recover such a signal from a given set of samples in a stable
and efficient manner. Here we propose a convex optimization
algorithm that will often recover the true underlying x, and
develop explicit conditions under which perfect recovery is
guaranteed. Furthermore, we prove that our method is stable
and robust in the sense that the reconstruction error is bounded
in the presence of noise and mismodeling, namely when x does
not lie exactly in the union. Our results rely on a generalization
of the RIP which fits the union setting we treat here.

Our first contribution is showing that the problem of recov-
ering x in a structured union of subspaces can be cast as a
sparse recovery problem, in which it is desired to recover a
sparse vector c that has a particular sparsity pattern: the non-
zero values appear in fixed blocks. We refer to such a model as
block sparsity. Clearly any block-sparse vector is also sparse in
the standard sense. However, by exploiting the block structure
of the sparsity pattern, recovery may be possible under more
general conditions.

Next, we develop a concrete algorithm to determine a block-
sparse vector from given measurements, which is based on
minimizing a mixed `2/`1 norm. This problem can be cast
as a convex second order cone program (SOCP), and solved
efficiently using standard software packages. A mixed norm
approach for block-sparse recovery was also considered in
[26], [27]. By analyzing the measurement operator’s null
space, it was shown that asymptotically, as the signal length
grows to infinity, and under ideal conditions (no noise or
modeling errors), perfect recovery is possible with high proba-
bility. However, no robust equivalence results were established
between the output of the algorithm and the true block-sparse
vector for a given finite-length measurement vector, or in the
presence of noise and mismodeling.

Generalizing the concept of RIP to our setting, we introduce
the block RIP, which is a less stringent requirement. We
then prove that if the measurement matrix satisfies the block
RIP, then our proposed convex algorithm will recover the
underlying block sparse signal. Furthermore, under block
RIP, our algorithm is stable in the presence of noise and
mismodeling errors. Using ideas similar to [13], [28] we
then prove that random matrices satisfy the block RIP with
overwhelming probability. Moreover, the probability to satisfy
the block RIP is substantially larger than that of satisfying the
standard RIP. These results establish that a signal x that lies in
a finite structured union can be recovered efficiently and stably
with overwhelming probability if the measurement matrix is
constructed from a random ensemble.

An interesting special case of the block-sparse model is the
multiple measurement vector (MMV) problem, in which there
is a set of unknown vectors that share a joint sparsity pattern.
MMV recovery algorithms were studied in [20], [29]–[32].
Equivalence results based on mutual coherence for a mixed

`p/`1 program were derived in [30]. These results turn out
to be the same as that obtained from a single measurement
problem. This is in contrast to the fact that in practice, MMV
methods tend to outperform algorithms that treat each of the
vectors separately. In order to develop meaningful equivalence
results, we cast the MMV problem as one of block-sparse
recovery. Our mixed `2/`1 method translates into minimizing
the sum of the `2 row-norms of the unknown matrix repre-
senting the MMV set. Our general results lead to RIP-based
equivalence conditions for this algorithm. Furthermore, our
framework suggests a different type of sampling method for
MMV problems which tends to increase the recovery rate. The
equivalence condition we obtain in this case is stronger than
the single measurement setting. As we show, this method leads
to superior recovery rate when compared with other popular
MMV algorithms.

The remainder of the paper is organized as follows. In
Section II we describe the general problem of sampling from a
union of subspaces. The relationship between our problem and
that of block-sparse recovery is developed in Section III. In
Section IV we explore stability and uniqueness issues which
leads to the definition of block RIP. We also present a non-
convex optimization algorithm with combinatorial complexity
whose solution is the true unknown x. A convex relaxation
of this algorithm is proposed in Section V. We then derive
equivalence conditions based on block RIP. The concept of
block RIP is further used to establish robustness and stability
of our algorithm in the presence of noise and modeling errors.
This approach is specialized to MMV sampling in Section VI.
Finally, in Section VII we prove that random ensembles tend
to satisfy the block RIP with high probability.

Throughout the paper, we denote vectors in an arbitrary
Hilbert space H by lower case letters e.g., x, and sets of
vectors in H by calligraphic letters, e.g., S. Vectors in RN

are written as boldface lowercase letters e.g., x, and matrices
as boldface uppercase letters e.g., A. The identity matrix of
appropriate dimension is written as I or Id when the dimension
is not clear from the context, and AT is the transpose of the
matrix A. The ith element of a vector x is denoted by x(i).
Linear transformations from Rn to H are written as upper
case letters A : Rn → H. The adjoint of A is written as A∗.
The standard Euclidean norm is denoted ‖x‖2 =

√
xT x and

‖x‖1 =
∑

i |x(i)| is the `1 norm of x. The Kronecker product
between matrices A and B is denoted A⊗B, and vec(Y) is
the vector obtained by concatenating the columns of Y. The
following variables are used in the sequel: n is the number of
samples, N is the length of the input signal x when it is a
vector, k is the sparsity or block sparsity (to be defined later
on) of a vector c, and m is the number of subspaces. For ease
of notation we assume throughout that all scalars are defined
over the field of real numbers; however, the results are also
valid over the complex domain with appropriate modifications.

II. UNION OF SUBSPACES

A. Subspace Sampling

Traditional sampling theory deals with the problem of
recovering an unknown signal x ∈ H from a set of n samples
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yi = fi(x) where fi(x) is some function of x. The signal x
can be a function of time x = x(t), or can represent a finite-
length vector x = x. The most common type of sampling is
linear sampling in which

yi = 〈si, x〉, 1 ≤ i ≤ n, (1)

for a set of functions si ∈ H [4], [33]–[39]. Here 〈x, y〉
denotes the standard inner product on H. For example, if
H = L2 is the space of real finite-energy signals then

〈x, y〉 =
∫ ∞

−∞
x(t)y(t)dt. (2)

When H = RN for some N ,

〈x,y〉 =
N∑

i=1

x(i)y(i). (3)

Nonlinear sampling is treated in [40]. However, here our focus
will be on the linear case.

When H = RN the unknown x = x as well as the sampling
functions si = si are vectors in RN . Therefore, the samples
can be written conveniently in matrix form as y = ST x, where
S is the matrix with columns si. In the more general case in
which H = L2 or any other abstract Hilbert space, we can
use the set transformation notation in order to conveniently
represent the samples. A set transformation S : Rn → H
corresponding to sampling vectors {si ∈ H, 1 ≤ i ≤ n} is
defined by

Sc =
n∑

i=1

c(i)si (4)

for all c ∈ Rn. From the definition of the adjoint, if c = S∗x,
then c(i) = 〈si, x〉. Note that when H = RN , S = S and
S∗ = ST . Using this notation, we can always express the
samples as

y = S∗x, (5)

where S is a set transformation for arbitrary H, and an
appropriate matrix when H = RN .

Our goal is to recover x from the samples y ∈ Rn. If
the vectors si do not span the entire space H, then there are
many possible signals x consistent with y. More specifically,
if we define by S the sampling space spanned by the vectors
si, then clearly S∗v = 0 for any v ∈ S⊥. Therefore, if S⊥

is not the trivial space then adding such a vector v to any
solution x of (5) will result in the same samples y. However,
by exploiting prior knowledge on x, in many cases uniqueness
can be guaranteed. A prior very often assumed is that x lies in
a given subspace A of H [4]–[7]. If A and S have the same
finite dimension, and S⊥ and A intersect only at the 0 vector,
then x can be perfectly recovered from the samples y [6], [7],
[41].

B. Union of Subspaces

When subspace information is available, perfect reconstruc-
tion can often be guaranteed. Furthermore, recovery can be
implemented by a simple linear transformation of the given
samples (5). However, there are many practical scenarios in

which we are given prior information about x that is not
necessarily in the form of a subspace. One such case studied
in detail in [41] is that in which x is known to be smooth.
Here we focus our attention on the setting where x lies in a
union of subspaces

U =
⋃
i

Vi (6)

where each Vi is a subspace. Thus, x belongs to one of
the Vi, but we do not know a priori to which one [24],
[25]. Note that the set U is no longer a subspace. Indeed,
if Vi is, for example, a one-dimensional space spanned by
the vector vi, then U contains vectors of the form αvi for
some i but does not include their linear combinations. Our
goal is to recover a vector x lying in a union of subspaces,
from a given set of samples. In principle, if we knew which
subspace x belonged to, then reconstruction can be obtained
using standard sampling results. However, here the problem is
more involved because conceptually we first need to identify
the correct subspace and only then can we recover the signal
within the space.

Previous work on sampling over a union focused on invert-
ibility and stability results [24], [25]. In contrast, here, our
main interest is in developing concrete recovery algorithms
that are provably robust. To achieve this goal, we limit
our attention to a subclass of (6) for which stable recovery
algorithms can be developed and analyzed. Specifically, we
treat the case in which each Vi has the additional structure

Vi =
⊕
|j|=k

Aj , (7)

where {Aj , 1 ≤ j ≤ m} are a given set of disjoint subspaces,
and |j| = k denotes a sum over k indices. Thus, each subspace
Vi corresponds to a different choice of k subspaces Aj that
comprise the sum. We assume throughout the paper that m
and the dimensions di = dim(Ai) of the subspaces Ai are
finite. Given n samples

y = S∗x (8)

and the knowledge that x lies in exactly one of the subspaces
Vi, we would like to recover the unknown signal x. In this
setting, there are

(
m
k

)
possible subspaces comprising the union.

An alternative interpretation of our model is as follows.
Given an observation vector y, we seek a signal x for which
y = S∗x and in addition x can be written as

x =
k∑

i=1

xi, (9)

where each xi lies in Aj for some index j.
A special case is the standard CS problem in which x = x

is a vector of length N , that has a sparse representation in a
given basis defined by an invertible matrix W. Thus, x = Wc
where c is a sparse vector that has at most k nonzero elements.
This fits our framework by choosing Ai as the space spanned
by the ith column of W. In this setting m = N , and there are(
N
k

)
subspaces comprising the union.

Another example is the block sparsity model [26], [42] in
which x is divided into equal-length blocks of size d, and at
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most k blocks can be non zero. Such a vector can be described
in our setting with H = RN by choosing Ai to be the space
spanned by the corresponding d columns of the identity matrix.
Here m = N/d and there are

(
N/d

k

)
subspaces in the union.

A final example is the MMV problem [20], [29]–[32] in
which our goal is to recover a matrix X from measurements
Y = MX, for a given sampling matrix M. The matrix X is
assumed to have at most k non-zero rows. Thus, not only is
each column xi k-sparse, but in addition the non-zero elements
of xi share a joint sparsity pattern. This problem can be
transformed into that of recovering a k-block sparse signal
by stacking the rows of X and Y, leading to the relationship

vec(YT ) = (M ⊗ I) vec(XT ). (10)

The structure of X leads to a vector vec(XT ) that is k-block
sparse.

C. Problem Formulation and Main Results

Given k and the subspaces Ai, we would like to address
the following questions:

1) What are the conditions on the sampling vectors si, 1 ≤
i ≤ n in order to guarantee that the sampling is invertible
and stable?

2) How can we recover the unique x (regardless of com-
putational complexity)?

3) How can we recover the unique x in an efficient and
stable manner?

The first question was addressed in [24], [25] in the more
general context of unions of spaces (without requiring a
particular structure such as (7)). However, no concrete methods
were proposed in order to recover x. Here we provide efficient
convex algorithms that recover x in a stable way for arbitrary
k under appropriate conditions on the sampling functions si

and the spaces Ai.
Our results are based on an equivalence between the union

of subspaces problem assuming (7) and that of recovering
block-sparse vectors. This allows us to determine x from the
given samples by first treating the problem of recovering a
block k-sparse vector c from a given set of measurements.
This relationship is established in the next section. In the
reminder of the paper we therefore focus on the block k-sparse
model and develop our results in that context. In particular, we
introduce a block RIP condition that ensures uniqueness and
stability of our sampling problem. We then suggest an efficient
convex optimization problem which approximates an unknown
block-sparse vector c. Based on block RIP we prove that c
can be recovered exactly in a stable way using the proposed
optimization program. Furthermore, in the presence of noise
and modeling errors, our algorithm can approximate the best
block-k sparse solution.

III. CONNECTION WITH BLOCK SPARSITY

Consider the model of a signal x in the union of k out of
m subspaces Ai, with di = dim(Ai) as in (6) and (7). To
write x explicitly, we choose a basis for each Ai. Denoting

c
T

=

d1 = 3 d4 = 6d2 = 4 d5 = 1d2 = 2

Fig. 1. A block-sparse vector c over I = {d1, . . . , d5}. The gray areas
represent 10 non-zero entries which occupy two blocks.

by Ai : Rdi → H the set transformation corresponding to a
basis for Ai, any such x can be written as

x =
∑
|i|=k

Aici, (11)

where ci ∈ Rdi are the representation coefficients in Ai, and
|i| = k denotes a sum over a set of k indices. The choice of
indices depend on the signal x and are unknown in advance.

To develop the equivalence with block sparsity, it is useful to
introduce some further notation. First, we define A : RN → H
as the set transformation that is a result of concatenating the
different Ai, with

N =
m∑

i=1

di. (12)

Next, we define the ith sub-block c[i] of a length-N vector
c over I = {d1, . . . , dm}. The ith sub-block is of length di,
and the blocks are formed sequentially so that

cT = [c1 . . . cd1︸ ︷︷ ︸
c[1]

. . . cN−dm+1 . . . cN︸ ︷︷ ︸
c[m]

]T . (13)

We can then define A by

Ac =
m∑

i=1

Aic[i]. (14)

When H = RN for some N , Ai = Ai is a matrix and A = A
is the matrix obtained by column-wise concatenating Ai. If
for a given x the jth subspace Aj does not appear in the sum
(7), or equivalently in (11), then c[j] = 0.

Any x in the union (6), (7) can be represented in terms of k
of the bases Ai. Therefore, we can write x = Ac where there
are at most k non-zero blocks c[i]. Consequently, our union
model is equivalent to the model in which x is represented by
a sparse vector c in an appropriate basis. However, the sparsity
pattern here has a unique form which we will exploit in our
conditions and algorithms: the non-zero elements appear in
blocks.

Definition 1: A vector c ∈ RN is called block k-sparse over
I = {d1, . . . , dm} if c[i] is nonzero for at most k indices i
where N =

∑
i di.

An example of a block-sparse vector with k = 2 is depicted
in Fig. 1. When di = 1 for each i, block sparsity reduces to
the conventional definition of a sparse vector. Denoting

‖c‖0,I =
m∑

i=1

I(‖c[i]‖2 > 0), (15)

where I(‖c[i]‖2 > 0) is an indicator function that obtains the
value 1 if ‖c[i]‖2 > 0 and 0 otherwise, a block k-sparse vector
c can be defined by ‖c‖0,I ≤ k.
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Evidently, there is a one-to-one correspondence between
a vector x in the union, and a block-sparse vector c. The
measurements (5) can also be represented explicitly in terms
of c as

y = S∗x = S∗Ac = Dc, (16)

where D is the n × N matrix defined by

D = S∗A. (17)

We can therefore phrase our problem in terms of D and c as
that of recovering a block-k sparse vector c over I from the
measurements (16).

Note that the choice of basis Ai for each subspace does not
affect our model. Indeed, choosing alternative bases will lead
to x = AWc where W is a block diagonal matrix with blocks
of size di. Defining c̃ = Wc, the block sparsity pattern of c̃
is equal to that of c.

Since our problem is equivalent to that of recovering a block
sparse vector over I from linear measurements y = Dc, in the
reminder of the paper we focus our attention on this problem.

IV. UNIQUENESS AND STABILITY

In this section we study the uniqueness and stability of our
sampling method. These properties are intimately related to
the RIP, which we generalize here to the block-sparse setting.

The first question we address is that of uniqueness, namely
conditions under which a block-sparse vector c is uniquely
determined by the measurement vector y = Dc.

Proposition 1: There is a unique block-k sparse vector c
consistent with the measurements y = Dc if and only if Dc 6=
0 for every c 6= 0 that is block 2k-sparse.

Proof: The proof follows from [24, Proposition 4].
We next address the issue of stability. A sampling operator

is stable for a set T if and only if there exists constants α > 0,
β < ∞ such that

α‖x1 − x2‖2
H ≤ ‖S∗x1 − S∗x2‖2

2 ≤ β‖x1 − x2‖2
H, (18)

for every x1, x2 in T . The ratio κ = β/α provides a
measure for stability of the sampling operator. The operator is
maximally stable when κ = 1. In our setting, S∗ is replaced
by D, and the set T contains block-k sparse vectors. The
following proposition follows immediately from (18) by noting
that given two block-k sparse vectors c1, c2 their difference
c1 − c2 is block-2k sparse.

Proposition 2: The measurement matrix D is stable for
every block k-sparse vector c if and only if there exists C1 > 0
and C2 < ∞ such that

C1‖v‖2
2 ≤ ‖Dv‖2

2 ≤ C2‖v‖2
2, (19)

for every v that is block 2k-sparse.
It is easy to see that if D satisfies (19) then Dc 6= 0 for all
block 2k-sparse vectors c. Therefore, this condition implies
both invertibility and stability.

A. Block RIP

Property (19) is related to the RIP used in several previous
works in CS [9], [14], [15]. A matrix D of size n×N is said
to have the RIP if there exists a constant δk ∈ [0, 1) such that
for every k-sparse c ∈ RN ,

(1 − δk)‖c‖2
2 ≤ ‖Dc‖2

2 ≤ (1 + δk)‖c‖2
2. (20)

Extending this property to block-sparse vectors leads to the
following definition:

Definition 2: Let D : RN → Rn be a given matrix. Then
D has the block RIP over I = {d1, . . . , dm} with parameter
δk|I if for every c ∈ RN that is block k-sparse over I we
have that

(1 − δk|I)‖c‖2
2 ≤ ‖Dc‖2

2 ≤ (1 + δk|I)‖c‖2
2. (21)

By abuse of notation, we use δk for the block-RIP constant
δk|I when it is clear from the context that we refer to blocks.
Block-RIP is a special case of the A-restricted isometry
defined in [25]. From Proposition 1 it follows that if D satisfies
the RIP (21) with δ2k < 1, then there is a unique block-sparse
vector c consistent with (16).

Note that a block k-sparse vector over I is M -sparse in
the conventional sense where M is the sum of the k largest
values in I, since it has at most M nonzero elements. If we
require D to satisfy RIP for all M -sparse vectors, then (21)
must hold for all 2M -sparse vectors c. Since we only require
the RIP for block sparse signals, (21) only has to be satisfied
for a certain subset of 2M -sparse signals, namely those that
have block sparsity. As a result, the block-RIP constant δk|I is
typically smaller than δM (where M depends on k; for blocks
with equal size d, M = kd).

To emphasize the advantage of block RIP over standard RIP,
consider the following matrix, separated into three blocks of
two columns each:

D =


−1 1 0 0 0 1
0 2 −1 0 0 3
0 3 0 −1 0 1
0 1 0 0 −1 1

 · B, (22)

where B is a diagonal matrix that results in unit-norm columns
of D, i.e., B = diag (1, 15, 1, 1, 1, 12)−1/2. In this example
m = 3 and I = {d1 = 2, d2 = 2, d3 = 2}. Suppose that c
is block-1 sparse, which corresponds to at most two non-zero
values. Brute-force calculations show that the smallest value
of δ2 satisfying the standard RIP (20) is δ2 = 0.866. On the
other hand, the block-RIP (21) corresponding to the case in
which the two non-zero elements are restricted to occur in one
block is satisfied with δ1|I = 0.289. Increasing the number of
non-zero elements to k = 4, we can verify that the standard
RIP (20) does not hold for any δ4 ∈ [0, 1). Indeed, in this
example there exist two 4-sparse vectors that result in the same
measurements. In contrast, δ2|I = 0.966 satisfies the lower
bound in (21) when restricting the 4 non-zero values to two
blocks. Consequently, the measurements y = Dc uniquely
specify a single block-sparse c.

In the next section, we will see that the ability to recover
c in a computationally efficient way depends on the constant
δ2k|I in the block RIP (21). The smaller the value of δ2k|I ,
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the fewer samples are needed in order to guarantee stable
recovery. Both standard and block RIP constants δk, δk|I are
by definition increasing with k. Therefore, it was suggested
in [13] to normalize each of the columns of D to 1, so as to
start with δ1 = 0. In the same spirit, we recommend choosing
the bases for Ai such that D = S∗A has unit-norm columns,
corresponding to δ1|I = 0.

B. Recovery Method

We have seen that if D satisfies the RIP (21) with δ2k < 1,
then there is a unique block-sparse vector c consistent with
(16). The question is how to find c in practice. Below we
present an algorithm that will in principle find the unique c
from the samples y. Unfortunately, though, it has exponential
complexity. In the next section we show that under a stronger
condition on δ2k we can recover c in a stable and efficient
manner.

Our first claim is that c can be uniquely recovered by
solving the optimization problem

min
c

‖c‖0,I

s. t. y = Dc. (23)

To show that (23) will indeed recover the true value of
c, suppose that there exists a c′ such that Dc′ = y and
‖c′‖0,I ≤ ‖c‖0,I ≤ k. Since both c, c′ are consistent with
the measurements,

0 = D(c − c′) = Dd, (24)

where ‖d‖0,I ≤ 2k so that d is a block 2k-sparse vector.
Since D satisfies (21) with δ2k < 1, we must have that d = 0
or c = c′.

In principle (23) can be solved by searching over all possible
sets of k blocks whether there exists a c that is consistent with
the measurements. The invertibility condition (21) ensures that
there is only one such c. However, clearly this approach is not
efficient.

V. CONVEX RECOVERY ALGORITHM

A. Noise-Free Recovery

We now develop an efficient convex optimization problem
instead of (23) to approximate c. As we show, if D satisfies
(21) with a small enough value of δ2k, then the method we
propose will recover c exactly.

Our approach is to minimize the sum of the energy of the
blocks c[i]. To write down the problem explicitly, we define
the mixed `2/`1 norm over the index set I = {d1, . . . , dm}
as

‖c‖2,I =
m∑

i=1

‖c[i]‖2. (25)

The algorithm we suggest is then

min
c

‖c‖2,I

s. t. y = Dc. (26)

Problem (26) can be written as an SOCP by defining ti =
‖c[i]‖2. Then (26) is equivalent to

min
c,ti

m∑
i=1

ti

s. t. y = Dc

ti ≥ ‖c[i]‖2, 1 ≤ i ≤ m

ti ≥ 0, 1 ≤ i ≤ m, (27)

which can be solved using standard software packages.
The next theorem establishes that the solution to (26) is the

true c as long as δ2k is small enough.
Theorem 1: Let y = Dc0 be measurements of a block k-

sparse vector c0. If D satisfies the block RIP (21) with δ2k <√
2 − 1 then
1) there is a unique block-k sparse vector c consistent with

y;
2) the SOCP (27) has a unique solution;
3) the solution to the SOCP is equal c0.

Before proving the theorem we note that it provides a gain over
standard CS results. Specifically, it is shown in [15] that if c is
k-sparse and the measurement matrix D satisfies the standard
RIP with δ2k <

√
2−1, then c can be recovered exactly from

the measurements y = Dc via the linear program:

min
c

‖c‖1

s. t. y = Dc. (28)

Since any block k-sparse vector is also M -sparse with M
equal to the sum of the k largest values of di, we can find
c0 of Theorem 1 by solving (28) if δ2M is small enough.
However, this standard CS approach does not exploit the fact
that the non-zero values appear in blocks, and not in arbitrary
locations within the vector c0. On the other hand, the SOCP
(27) explicitly takes the block structure of c0 into account.
Therefore, the condition of Theorem 1 is not as stringent as
that obtained by using equivalence results with respect to (28).
Indeed, the block RIP (21) bounds the norm of ‖Dc‖ over
block sparse vectors c, while the standard RIP considers all
possible choices of c, also those that are not 2k-block sparse.
Therefore, the value of δ2k in (21) can be lower than that
obtained from (20) with k = 2M , as we illustrated by an
example in Section III. This advantage will also be seen in
the context of a concrete example at the end of the section.

Our proof below is rooted in that of [15]. However, some
essential modifications are necessary in order to adapt the
results to the block-sparse case. These differences are a result
of the fact that our algorithm relies on the mixed `2/`1
norm rather than the `1 norm alone. This adds another layer
of complication to the proof, and therefore we expand the
derivations in more detail than in [15].

Proof: We first note that δ2k < 1 guarantees uniqueness
of c0 from Proposition 1. To prove parts 2) and 3) we show
that any solution to (26) has to be equal to c0. To this end
let c′ = c0 + h be a solution of (26). The true value c0 is
non-zero over at most k blocks. We denote by I0 the block
indices for which c0 is nonzero, and by hI0 the restriction of
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h to these blocks. Next we decompose h as

h =
`−1∑
i=0

hIi , (29)

where hIi is the restriction of h to the set Ii which consists of
k blocks, chosen such that the norm of hIc

0
over I1 is largest,

the norm over I2 is second largest and so on. Our goal is to
show that h = 0. We prove this by noting that

‖h‖2 = ‖hI0∪I1 +h(I0∪I1)c‖2 ≤ ‖hI0∪I1‖2 + ‖h(I0∪I1)c‖2.
(30)

In the first part of the proof we show that ‖h(I0∪I1)c‖2 ≤
‖hI0∪I1‖2. In the second part we establish that ‖hI0∪I1‖2 =
0, which completes the proof.

Part I:‖h(I0∪I1)c‖2 ≤ ‖hI0∪I1‖2

We begin by noting that

‖h(I0∪I1)c‖2 =

∥∥∥∥∥
`−1∑
i=2

hIi

∥∥∥∥∥
2

≤
`−1∑
i=2

‖hIi‖2. (31)

Therefore, it is sufficient to bound ‖hIi‖2 for i ≥ 2. Now,

‖hIi‖2 ≤ k1/2‖hIi‖∞,I ≤ k−1/2‖hIi−1‖2,I , (32)

where we defined ‖a‖∞,I = maxi ‖a[i]‖2. The first inequality
follows from the fact that for any block k-sparse c,

‖c‖2
2 =

∑
|i|=k

‖c[i]‖2
2 ≤ k‖c‖2

∞,I . (33)

The second inequality in (32) is a result of the fact that the
norm of each block in hIi

is by definition smaller or equal
to the norm of each block in hIi−1 . Since there are at most k
nonzero blocks, k‖hIi

‖∞,I ≤ ‖hIi−1‖2,I . Substituting (32)
into (31),

‖h(I0∪I1)c‖2 ≤ k−1/2
`−2∑
i=1

‖hIi‖2,I (34)

≤ k−1/2
`−1∑
i=1

‖hIi‖2,I = k−1/2‖hIc
0
‖2,I ,

where the equality is a result of the fact that ‖c1 + c2‖2,I =
‖c1‖2,I+‖c2‖2,I if c1 and c2 are non-zero on disjoint blocks.

To develop a bound on ‖hIc
0
‖2,I note that since c′ is a

solution to (26), ‖c0‖2,I ≥ ‖c′‖2,I . Using the fact that c′ =
c0 + hI0 + hIc

0
and c0 is supported on I0 we have

‖c0‖2,I ≥ ‖c0 + hI0‖2,I + ‖hIc
0
‖2,I (35)

≥ ‖c0‖2,I − ‖hI0‖2,I + ‖hIc
0
‖2,I ,

from which we conclude that

‖hIc
0
‖2,I ≤ ‖hI0‖2,I ≤ k1/2‖hI0‖2. (36)

The last inequality follows from applying Cauchy-Schwarz to
any block k-sparse vector c:

‖c‖2,I =
∑
|i|=k

‖c[i]‖2 · 1 ≤ k1/2‖c‖2. (37)

Substituting (36) into (34):

‖h(I0∪I1)c‖2 ≤ ‖hI0‖2 ≤ ‖hI0∪I1‖2, (38)

which completes the first part of the proof.
Part II:‖hI0∪I1‖2 = 0
We next show that hI0∪I1 must be equal to 0. In this part

we invoke the RIP.
Since Dc0 = Dc′ = y, we have Dh = 0. Using the fact

that h = hI0∪I1 +
∑

i≥2 hIi ,

‖DhI0∪I1‖2
2 = −

`−1∑
i=2

〈D(hI0 + hI1),DhIi〉. (39)

From the parallelogram identity and the block-RIP it can be
shown that

|〈Dc1,Dc2〉| ≤ δ2k‖c1‖2‖c2‖2, (40)

for any two block k-sparse vectors with disjoint support. The
proof is similar to [15, Lemma 2.1] for the standard RIP.
Therefore,

|〈DhI0 ,DhIi〉| ≤ δ2k‖hI0‖2‖hIi‖2, (41)

and similarly for 〈DhI1 ,DhIi〉. Substituting into (39),

‖DhI0∪I1‖2
2 =

∣∣∣∣∣
`−1∑
i=2

〈D(hI0 + hI1),DhIi〉

∣∣∣∣∣ (42)

≤
`−1∑
i=2

(|〈DhI0 ,DhIi〉| + |〈DhI1 ,DhIi〉|)

≤ δ2k(‖hI0‖2 + ‖hI1‖2)
`−1∑
i=2

‖hIi‖2.

From the Cauchy-Schwarz inequality, any length-2 vector a
satisfies a(1) + a(2) ≤

√
2‖a‖2. Therefore,

‖hI0‖2 + ‖hI1‖2 ≤
√

2
√
‖hI0‖2

2 + ‖hI1‖2
2 =

√
2‖hI0∪I1‖2,

(43)
where the last equality is a result of the fact that hI0 and hI1

have disjoint support. Substituting into (42) and using (32),
(34) and (36),

‖DhI0∪I1‖2
2

(32),(34)

≤
√

2k−1/2δ2k‖hI0∪I1‖2‖hIc
0
‖2,I

(36)

≤
√

2δ2k‖hI0∪I1‖2‖hI0‖2

≤
√

2δ2k‖hI0∪I1‖2
2, (44)

where the last inequality follows from ‖hI0‖2 ≤ ‖hI0∪I1‖2.
Combining (44) with the RIP (21) we have

(1 − δ2k)‖hI0∪I1‖2
2 ≤ ‖DhI0∪I1‖2

2 ≤
√

2δ2k‖hI0∪I1‖2
2.
(45)

Since δ2k <
√

2 − 1, (45) can hold only if ‖hI0∪I1‖2 = 0,
which completes the proof.

We conclude this subsection by pointing out more explicitly
the differences between the proof of Theorem 1 and that of
[15]. The main difference begins in (32); in our formulation
each of the subvectors hIi may have a different number of
non-zero elements, while the equivalent equation in [15] (Eq.
(10)) relies on the fact that the maximal number of non-zero
elements in each of the subvectors is the same. This requires
the use of several mixed-norms in our setting. The rest of
the proof follows the spirit of [15] where in some of the
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inequalities conventional norms are used, while in others the
adaptation to our setting necessitates mixed norms.

B. Robust Recovery

We now treat the situation in which the observations are
noisy, and the vector c0 is not exactly block-k sparse.

Specifically, suppose that the measurements (16) are cor-
rupted by bounded noise so that

y = Dc + z, (46)

where ‖z‖2 ≤ ε. In order to recover c we use the modified
SOCP:

min
c

‖c‖2,I

s. t. ‖y − Dc‖2 ≤ ε. (47)

In addition, given a c ∈ RN , we denote by ck the best
approximation of c by a vector with k non-zero blocks, so that
ck minimizes ‖c − d‖2,I over all block k-sparse vectors d.
Theorem 2 shows that even when c is not block k-sparse and
the measurements are noisy, the best block-k approximation
can be well approximated using (47).

Theorem 2: Let y = Dc0 + z be noisy measurements of a
vector c0. Let ck denote the best block k-sparse approximation
of c0, such that ck is block k-sparse and minimizes ‖c0−d‖2,I
over all block k-sparse vectors d, and let c′ be a solution to
(47). If D satisfies the block RIP (21) with δ2k <

√
2−1 then

‖c0 − c′‖2 ≤ 2(1 − δ2k)
1 − (1 +

√
2)δ2k

k−1/2‖c0 − ck‖2,I (48)

+
4
√

1 + δ2k

1 − (1 +
√

2)δ2k

ε.

Before proving the theorem, note that the first term in (48)
is a result of the fact that c0 is not exactly k-block sparse.
The second expression quantifies the recovery error due to the
noise.

Proof: The proof is very similar to that of Theorem 1 with
a few differences which we indicate. These changes follow the
proof of [15, Theorem 1.3], with appropriate modifications to
address the mixed norm.

Denote by c′ = c0+h the solution to (47). Due to the noise
and the fact that c0 is not block k-sparse, we will no longer
obtain h = 0. However, we will show that ‖h‖2 is bounded.
To this end, we begin as in the proof of Theorem 1 by using
(30). In the first part of the proof we show that ‖h(I0∪I1)c‖2 ≤
‖hI0∪I1‖2 + 2e0 where e0 = k−1/2‖c0 − cI0‖2,I and cI0 is
the restriction of c0 onto the k blocks corresponding to the
largest `2 norm. Note that cI0 = ck. In the second part, we
develop a bound on ‖hI0∪I1‖2.

Part I: Bound on ‖h(I0∪I1)c‖2

We begin by decomposing h as in the proof of Theorem 1.
The inequalities until (35) hold here as well. Instead of (35)
we have

‖c0‖2,I ≥ ‖cI0 + hI0‖2,I + ‖cIc
0

+ hIc
0
‖2,I (49)

≥ ‖cI0‖2,I − ‖hI0‖2,I + ‖hIc
0
‖2,I − ‖cIc

0
‖2,I .

Therefore,

‖hIc
0
‖2,I ≤ 2‖cIc

0
‖2,I + ‖hI0‖2,I , (50)

where we used the fact that ‖c0‖2,I − ‖cI0‖2,I = ‖cIc
0
‖2,I .

Combining (34), (37) and (50) we have

‖h(I0∪I1)c‖2 ≤ ‖hI0‖2 + 2e0 ≤ ‖hI0∪I1‖2 + 2e0, (51)

where e0 = k−1/2‖c0 − cI0‖2,I .
Part II: Bound on ‖hI0∪I1‖2

Using the fact that h = hI0∪I1 +
∑

i≥2 hIi we have

‖DhI0∪I1‖2
2 = 〈DhI0∪I1 ,Dh〉−

`−1∑
i=2

〈D(hI0 + hI1),DhIi〉.

(52)
From (21),

|〈DhI0∪I1 ,Dh〉| ≤ ‖DhI0∪I1‖2‖Dh‖2 (53)

≤
√

1 + δ2k‖hI0∪I1‖2‖Dh‖2.

Since both c′ and c0 are feasible

‖Dh‖2 = ‖D(c0 − c′)‖2 ≤ ‖Dc0 −y‖2 + ‖Dc′ −y‖2 ≤ 2ε,
(54)

and (53) becomes

|〈DhI0∪I1 ,Dh〉| ≤ 2ε
√

1 + δ2k‖hI0∪I1‖2. (55)

Substituting into (52),

‖DhI0∪I1‖2
2 ≤ |〈DhI0∪I1 ,Dh〉| (56)

+
`−1∑
i=2

|〈D(hI0 + hI1),DhIi〉|

≤ 2ε
√

1 + δ2k‖hI0∪I1‖2

+
`−1∑
i=2

|〈D(hI0 + hI1),DhIi〉| .

Combining with (42) and (44),

‖DhI0∪I1‖2
2 ≤ (57)(
2ε

√
1 + δ2k +

√
2δ2kk−1/2‖hIc

0
‖2,I

)
‖hI0∪I1‖2.

Using (37) and (50) we have the upper bound

‖DhI0∪I1‖2
2 ≤ (58)(
2ε

√
1 + δ2k +

√
2δ2k(‖hI0‖ + 2e0)

)
‖hI0∪I1‖2.

On the other hand, the RIP results in the lower bound

‖DhI0∪I1‖2
2 ≥ (1 − δ2k)‖hI0∪I1‖2

2. (59)

From (58) and (59),

(1−δ2k)‖hI0∪I1‖2 ≤ 2ε
√

1 + δ2k +
√

2δ2k(‖hI0∪I1‖+2e0),
(60)

or

‖hI0∪I1‖2 ≤ 2
√

1 + δ2k

1 − (1 +
√

2)δ2k

ε+
2
√

2δ2k

1 − (1 +
√

2)δ2k

e0. (61)
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The condition δ2k <
√

2 − 1 ensures that the denominator in
(61) is positive. Substituting (61) results in

‖h‖2 ≤ ‖hI0∪I1‖2 + ‖h(I0∪I1)c‖2 ≤ 2‖hI0∪I1‖2 + 2e0,
(62)

which completes the proof of the theorem.
To summarize this section we have seen that as long as D

satisfies the block-RIP (21) with a suitable constant, any block-
k sparse vector can be perfectly recovered from its samples
y = Dc using the convex SOCP (26). This algorithm is
stable in the sense that by slightly modifying it as in (47)
it can tolerate noise in a way that ensures that the norm of the
recovery error is bounded by the noise level. Furthermore, if c
is not block k-sparse, then its best block-sparse approximation
can be approached by solving the SOCP. These results are
summarized in Table I. In the table, δ2k refers to the block
RIP constant.

TABLE I
COMPARISON OF ALGORITHMS FOR SIGNAL RECOVERY FROM

y = Dc0 + z

Algorithm (26) Algorithm (47)
c0 block k-sparse arbitrary

Noise z none (z = 0) bounded ‖z‖2 ≤ ε

Condition on D δ2k ≤
√

2 − 1 δ2k ≤
√

2 − 1
Recovery c′ c′ = c0 ‖c0 − c′‖2 small; see (48)

C. Advantage of Block Sparsity

The standard sparsity model considered in CS assumes that
x has at most k non-zero elements, however it does not impose
any further structure. In particular, the non-zero components
can appear anywhere in the vector. There are many practical
scenarios in which the non-zero values are aligned to blocks,
meaning they appear in regions, and are not arbitrarily spread
throughout the vector. One example in the structured union of
subspaces model we treat in this paper. Other examples are
considered in [27].

Prior work on recovery of block-sparse vectors [26] as-
sumed consecutive blocks of the same size. It was sown that
in this case, when n,N go to infinity, the algorithm (26)
will recover the true block-sparse vector with overwhelming
probability. Their analysis is based on characterization of the
null space of D. In contrast, our approach relies on RIP which
allows the derivation of uniqueness and equivalence conditions
for finite dimensions and not only in the asymptotic regime.
In addition, Theorem 2 considers the case of mismodeling
and noisy observations while in [26] only the ideal noise-free
setting is treated.

To demonstrate the advantage of our algorithm over standard
basis pursuit (28), consider the matrix D of (22). In Section V,
the standard and block RIP constants of D were calculated and
it was shown that block RIP constants are smaller. This sug-
gests that there are input vectors x for which the mixed `2/`1
method of (26) will be able to recover them exactly from mea-
surements y = Dc while standard `1 minimization will fail.
To illustrate this behavior, let x = [0, 0, 1,−1,−1, 0.1]T be a
4-sparse vector, in which the non-zero elements are known to
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Fig. 2. Recovery rate of block-sparse signals using standard `1 minimization
(basis pursuit) and the mixed `2/`1 algorithm.

appear in blocks of length 2. The prior knowledge that x is 4-
sparse is not sufficient to determine x from y. In contrast, there
is a unique block-sparse vector consistent with y. Furthermore,
our algorithm which is a relaxed version of (23), finds the
correct x while standard `1 minimization fails in this case; its
output is x̂ = [−0.0289, 0, 0.9134,−1.0289,−1.0289, 0].

We further compare the recovery performance of `1 mini-
mization (28) and our algorithm (26) for an extensive set of
random signals. In the experiment, we draw a matrix D of size
25 × 50 from the Gaussian ensemble. The input vector x is
also randomly generated as a block-sparse vector with blocks
of length 5. We draw 1 ≤ k ≤ 25 non-zero entries from a
zero-mean unit variance normal distribution and divide them
into blocks which are chosen uniformly at random within x.
Each of the algorithms is executed based on the measurements
y = Dx. In Fig. 2 we plot the fraction of successful
reconstructions for each k over 500 experiments. The results
illustrate the advantage of incorporating the block-sparsity
structure into the optimization program. An interesting feature
of the graph is that when using the block-sparse recovery
approach, the performance is roughly constant over the block-
length (5 in this example). This explains the performance
advantage over standard sparse recovery.

VI. APPLICATION TO MMV MODELS

We now specialize our algorithm and equivalence results
to the MMV problem. This leads to two contributions which
we discuss in this section: The first is an equivalence result
based on RIP for a mixed-norm MMV algorithm. The second
is a new measurement strategy in MMV problems that leads to
improved performance over conventional MMV methods, both
in simulations and as measured by the RIP-based equivalence
condition. In contrast to previous equivalence results, for this
strategy we show that even if we choose the worst possible
X, improved performance over the single measurement setting
can be guaranteed.
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A. Equivalence Results

As we have seen in Section II, a special case of block
sparsity is the MMV model, in which we are given a ma-
trix of measurements Y = MX where X is an unknown
L × d matrix that has at most k non-zero rows. Denoting
by c = vec(XT ),y = vec(YT ), D = MT ⊗ Id we can
express the vector of measurements y as y = Dc where c
is a block sparse vector with consecutive blocks of length d.
Therefore, the results of Theorems 1 and 2 can be specified
to this problem.

Recovery algorithms for MMV using convex optimization
programs were studied in [30], [32] and several greedy algo-
rithms were proposed in [29], [31]. Specifically, in [29]–[32]
the authors study a class of optimization programs, which we
refer to as M-BP:

M-BP(`q): min
L∑

i=1

‖Xi‖p
q s. t. Y = MX, (63)

where Xi is the ith row of X. The choice p = 1, q = ∞
was considered in [32], while [30] treated the case of p = 1
and arbitrary q. Using p ≤ 1 and q = 2 was suggested
in [29], [43], leading to the iterative algorithm M-FOCUSS.
For p = 1, q = 2, the program (63) has a global minimum
which M-FOCUSS is proven to find. A nice comparison
between these methods can be found in [32]. Equivalence for
MMV algorithms based on RIP analysis does not appear in
previous papers. The most detailed theoretical analysis can be
found in [30] which establishes equivalence results based on
mutual coherence. The results imply equivalence for (63) with
p = 1 under conditions equal to those obtained for the single
measurement case. Note that RIP analysis typically leads to
tighter equivalence bounds than mutual coherence analysis.

In our recent work [20], we suggested an alternative ap-
proach to solving MMV problems. Our strategy is based on
merging the d measurement columns with random coefficients
and in such a way transforming the multiple measurement
problem into a single measurement counterpart. As proved
in [20], this technique preserves the non-zero location set
with probability one thus reducing computational complexity.
Moreover, we showed that this method can be used to boost
the empirical recovery rate by repeating the random merging
several times.

Using the block-sparsity approach we can alternatively cast
any MMV model as a single measurement vector problem
by deterministically transforming the multiple measurement
vectors into the single vector model vec(YT ) = (M ⊗
Id) vec(XT ). Here c = vec(XT ) is block-k sparse with
consecutive blocks of length d. In contrast to [20] this does
not reduce the number of unknowns so that the computational
complexity of the resulting algorithm is on the same order as
previous approaches, and also does not offer the opportunity
for boosting. However, as we see in the next subsection, with
an appropriate choice of measurement matrix this approach
results in improved recovery capabilities.

Since we can cast the MMV problem as one of block-sparse
recovery, we may apply our equivalence results of Theorem 1
to this setting leading to RIP-based equivalence. To this end

we first note that applying the SOCP (26) to the effective
measurement vector y is the same as solving (63) with p =
1, q = 2. Thus the equivalence conditions we develop below
relate to this program. Next, if z = Dc where c is a block
2k-sparse vector and D = M ⊗ Id, then taking the structure
of D into account, Z = MX where X is a size L× d matrix
whose ith row is equal to c[i], and similarly for Z. The block
sparsity of c implies that X has at most 2k non-zero rows.
The squared `2 norm ‖z‖2

2 is equal to the squared `2 norm of
the rows of Z which can be written as

‖z‖2
2 = ‖Z‖2

F = Tr(ZT Z), (64)

where ‖Z‖F denotes the Frobenius norm. Since ‖c‖2
2 = ‖X‖2

F

the RIP condition becomes

(1−δ2k)Tr(XT X) ≤ Tr(XT MT MX) ≤ (1+δ2k) Tr(XT X),
(65)

for any L × d matrix X with at most 2k non-zero rows.
We now show that (65) is equivalent to the standard RIP

condition

(1 − δ2k)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1 + δ2k)‖x‖2
2, (66)

for any length L vector x that is 2k-sparse. To see this,
suppose first that (65) is satisfied for every matrix X with
at most 2k non-zero rows and let x be an arbitrary 2k-sparse
vector. If we define X to be the matrix whose columns are all
equal to x, then X will have at most 2k non-zero rows and
therefore satisfies (65). Since the columns of X are all equal,
Tr(XT X) = d‖x‖2

2 and Tr(XT MT MX) = d‖Mx‖2
2 so that

(66) holds. Conversely, suppose that (66) is satisfied for all
2k-sparse vectors x and let X be an arbitrary matrix with at
most 2k non-zero rows. Denoting by xj the columns of X,
each xj is 2k-sparse and therefore satisfies (66). Summing
over all values j results in (65).

To summarize, if M satisfies the conventional RIP condition
(66), then the algorithm (63) with p = 1, q = 2 will recover the
true unknown X. This requirement reduces to that we would
obtain if we tried to recover each column of X separately,
using the standard `1 approach (28). As we already noted,
previous equivalence results for MMV algorithms also share
this feature. Although this condition guarantees that processing
the vectors jointly does not harm the recovery ability, in
practice exploiting the joint sparsity pattern of X via (63)
leads to improved results. Unfortunately, this behavior is not
captured by any of the known equivalence conditions. This
is due to the special structure of D = M ⊗ I. Since each
measurement vector yi is affected only by the corresponding
vector xi, it is clear that in the worst-case we can choose
xi = x for some vector x. In this case, all the yis are
equal so that adding measurement vectors will not improve our
recovery ability. Consequently, worst-case analysis based on
the standard measurement model for MMV problems cannot
lead to improved performance over the single measurement
case.

B. Improved MMV Recovery

We have seen that the pessimistic equivalence results for
MMV algorithms is a consequence of the fact that in the
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worst-case scenario in which xi = x, using a separable
measurement strategy will render all observation vectors equal.
In this subsection we introduce an alternative measurement
technique for MMV problems that can lead to improved worst-
case behavior, as measured by RIP, over the single channel
case.

One way to improve the analytical results is to consider
an average case analysis instead of a worst-case approach. In
[44] we show that if the unknown vectors xi are generated
randomly, then the performance improves with increasing
number of measurement vectors. The advantage stems from
the fact that the situation of equal vectors has zero probability
and therefore does not affect the average performance. Here
we take a different route which does not involve randomness
in the unknown vectors, and leads to improved results even in
the worst-case (namely without requiring an average analysis).

To enhance the performance of MMV recovery, we note
that when we allow for an arbitrary (unstructured) D, the
RIP condition of Theorem 1 is weaker than the standard RIP
requirement for recovering k-sparse vectors. This suggests that
we can improve the performance of MMV methods by con-
verting the problem into a general block sparsity problem, and
then sampling with an arbitrary unstructured matrix D rather
than the choice D = MT ⊗ Id. The tradeoff introduced is
increased computational complexity since each measurement
is based on all input vectors. The theoretical conditions will
now be looser, since block-RIP is weaker than standard RIP.
Furthermore, in practice, this approach often improves the
performance over separable MMV measurement techniques as
we illustrate in the following example.

In the example, we compare the performance of several
MMV algorithms for recovering X in the model Y = MX,
with our method based on block sparsity in which the measure-
ments y are obtained via y = Dc where c = vec(XT ) and D
is a dense matrix. Choosing D as a block diagonal matrix with
blocks equal to M results in the standard MMV measurement
model. The effective matrices D have the same size in the case
in which it is block diagonal and when it is dense. To compare
the performance of (26) with a dense D to that of (63) with a
block diagonal D, we compute the empirical recovery rate of
the methods in the same way performed in [20]. The matrices
M and D are drawn randomly from a Gaussian ensemble.
In our example, we choose ` = 20, L = 30, d = 5 where
` is the number of rows in Y. The matrix X is generated
randomly by first selecting the k non-zero rows uniformly at
random, and then drawing the elements in these rows from
a normal distribution. The empirical recovery rates using the
methods of (63) for different choices of q and p, ReMBO
[20] and our algorithm (26) with dense D are depicted in
Fig. 3. When the index p is omitted it is equal to 1. Evidently,
our algorithm performs better than most popular optimization
techniques for MMV systems. We stress that the performance
advantage is due to the joint measurement process rather than
a new recovery algorithm.

VII. RANDOM MATRICES

Theorems 1 and 2 establish that a sufficiently small block
RIP constant δ2k|I ensures exact recovery of the coefficient
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Fig. 3. Recovery rate for different number k of non-zero rows in X. Each
point on the graph represents an average recovery rate over 500 simulations.

vector c. We now prove that random matrices are likely to sat-
isfy this requirement. Specifically, we show that the probability
that δk|I exceeds a certain threshold decays exponentially in
the length of c. Our approach relies on results of [13], [28]
developed for standard RIP, however, exploiting the block
structure of c leads to a much faster decay rate.

Proposition 3: Suppose D is an n × N matrix from the
Gaussian ensemble, namely [D]ik ∼ N (0, 1

n ). Let δk|I be the
smallest value satisfying the block RIP (21) over I = {d1 =
d, . . . , dm = d}, assuming N = md for some integer m. Then,
for every ε > 0 the block RIP constant δk|I obeys (for n,N
large enough, and fixed d)

Prob
(√

1 + δk|I > 1 + (1 + ε)f(r)
)
≤ (67)

2e−NH(r)ε · e−m(d−1)H(r).

Here, the ratio r = kd/N is fixed, f(r) =√
N
n

(√
r +

√
2H(r)

)
, and H(q) = −q log q − (1 −

q) log(1 − q) is the entropy function defined for 0 < q < 1.
The assumption that di = d simplifies the calculations in

the proof. Following the proof, we shortly address the more
difficult case in which the blocks have varying lengths. We
note that Proposition 3 reduces to the result of [13] when
d = 1. However, since f(r) is independent of d, it follows
that for d > 1 and fixed problem dimensions n,N, r, block-
RIP constants are smaller than the standard RIP constant. The
second exponent in the right-hand side of (67) is responsible
for this behavior.

Proof: Let λ = (1 + ε)f(r) and define

σ̄ = max
|T |=k,d

σmax(DT ), σ = min
|T |=k,d

σmin(DT ), (68)

where σmax(DT ), σmin(DT ), are the largest and the smallest
singular values of DT , respectively. We use |T | = k, d to
denote a column subset of D consisting of k blocks of length
d. For brevity we omit subscripts and denote δ = δk|I . The
inequalities in the definition of block-RIP (21) imply that

1 + δ ≥ σ̄2 (69)
1 − δ ≤ σ2. (70)
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Since δ is the smallest number satisfying these inequalities we
have that 1 + δ = max(σ̄2, 2 − σ2). Therefore,

Prob
(√

1 + δ > 1 + λ
)

= Prob
(√

max(σ̄2, 2 − σ2) > 1 + λ
)

(71)

≤ Prob(σ̄ > 1 + λ) + Prob(
√

2 − σ2 > 1 + λ). (72)

Noting that σ ≥ 1−λ implies
√

2 − σ2 ≤ 1+λ we conclude
that

Prob
(√

1 + δ > 1 + λ
)
≤ Prob(σ̄ > 1+λ)+Prob(σ < 1−λ).

(73)
We now bound each term in the right-hand-side of (73)

using a result of Davidson and Szarek [45] regarding the
concentration of the extreme singular values of a Gaussian
matrix. It was proved in [45] that an m × n matrix X with
n ≥ m satisfies

Prob(σmax(X) > 1 +
√

m/n + t) ≤ e−nt2/2 (74)

Prob(σmin(X) < 1 −
√

m/n − t) ≤ e−nt2/2. (75)

Applying a union bound leads to

Prob

(
σ̄ > 1 +

√
kd

n
+ t

)

≤
∑

|T |=k,d

Prob

(
σmax(DT ) > 1 +

√
kd

n
+ t

)
(76)

≤
∑

|T |=k,d

e−nt2/2 (77)

=
(

m

k

)
e−nt2/2. (78)

Using the well-known bound on the binomial coefficient (for
sufficiently large m) (

m

k

)
≤ emH(k/m), (79)

we conclude that

Prob

(
σ̄ > 1 +

√
kd

n
+ t

)
≤ emH(k/m)e−nt2/2. (80)

To utilize this result in (73) we rearrange

1 + λ = 1 + (1 + ε)f(r) (81)

= 1 + (1 + ε)

(√
kd

n
+

√
2N

n
H(r)

)
(82)

≥ 1 +

√
kd

n
+

√
(1 + ε)

2N

n
H(r) (83)

and obtain that

Prob (σ̄ > 1 + λ) (84)

≤ Prob

(
σ̄ > 1 +

√
kd

n
+

√
(1 + ε)

2N

n
H(r)

)
.

Using (80) leads to

Prob (σ̄ > 1 + λ) ≤ emH(k/m)e−
n(1+ε)2NH(r)

2n (85)

= eNH(r)−m(d−1)H(r)−(1+ε)NH(r) (86)

≤ e−NH(r)εe−m(d−1)H(r). (87)

Similar arguments are used to bound the second term in (73),
completing the proof.

The proof of Proposition 3 can be adapted to the case in
which di are not equal. In this case, the notation |T | = k, d
is replaced by |T | = k|I and has the following meaning: T
indicates a column subset of D consisting of k blocks from
I. Since I contains variable-length blocks, |T | is not constant
and depends on the particular column subset. Consequently, in
order to apply the union bounds in (76) we need to consider the
worst-case scenario corresponding to the maximal block length
in I. Proposition 3 thus holds for d = max(di). However, it
is clear that the resulting probability bound will not be as
stringent as in the case of equal di = d, especially when the
ratio max(di)/ min(di) is large.

Proposition 3 holds as is for matrices D from the Bernoulli
ensemble, namely [D]ik = ± 1√

n
with equal probability. In

fact, the proposition is true for any ensemble for which the
concentration of extreme singular values holds.

The following corollary emphasizes the asymptotic behavior
of block-RIP constants per given number of samples.

Corollary 3: Consider the setting of Proposition 3, and
define g(r) =

√
N
n

(√
r +

√
2H(r)d−1

)
. Then,

Prob
(√

1 + δk|I > 1 + (1 + ε)g(r)
)
≤ 2e−mH(r)ε. (88)

Proof: Let λ = (1 + ε)g(r). The result then follows by
replacing (81)-(83) with

1 + λ ≥ 1 +

√
kd

n
+

√
(1 + ε)

2N

nd
H(r), (89)

which leads to Prob(σ̄ > 1 + λ) ≤ e−mH(r)ε.
To evaluate the asymptotic behavior of block-RIP we note

that for every ε > 0 the right-hand side of (88) goes to zero
when N = md → ∞. Consequently, for fixed d

δk|I < ρ(r)
4
= − 1 + [1 + g(r)]2, (90)

with overwhelming probability. In Fig. 4 we compute ρ(r) for
several problem dimensions and compare it with standard RIP
which is obtained when d = 1. Evidently, as the non-zero
entries are forced to block structure, a wider range of sparsity
ratios r satisfy the condition of Theorem 1.

Although Fig. 4 shows advantage for block-RIP, the absolute
sparsity ratios predicted by the theory are pessimistic as also
noted in [13], [28] in the case of d = 1. To offer a more
optimistic viewpoint, the RIP and block-RIP constants were
computed brute-force for several instances of D from the
Gaussian ensemble. Fig. 5 plots the results and qualitatively
affirms that block-RIP constants are more “likely” to be
smaller than their standard RIP counterparts, even when the
dimensions n,N are relatively small.

An important question is how many samples are needed
roughly in order to guarantee stable recovery. This question is
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Fig. 5. The standard and block-RIP constants δk|I for three different dimensions n, N . Each graph represent an average over 10 instances of random matrix
D. Each instance of D is scaled by a factor such that (18) is satisfied with α + β = 2.
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equivalence derived in Theorem 1.

addressed in the following proposition, which quotes a result
from [46] based on the proofs of [47]; we rephrase the result
to match our notation.

Proposition 4 ( [46, Theorem 3.3]): Consider the setting
of Proposition 3, namely a random Gaussian matrix D of size
n×N and block sparse signals over I = {d1 = d, . . . , dm =
d}, where N = md for some integer m. Let t > 0 and
0 < δ < 1 be constant numbers. If

n ≥ 36
7δ

(
ln(2L) + kd ln

(
12
δ

)
+ t

)
, (91)

where L =
(
m
k

)
, then D satisfies the block-RIP (21) with

restricted isometry constant δk|I = δ, with probability at least
1 − e−t.

As observed in [46], the first term in (91) has the dominant
impact on the required number of measurements in an asymp-
totic sense. This term quantifies the amount of measurements
that are needed to code the exact subspace in which the sparse

signal resides. Specifically, for block sparse signals

(m/k)k ≤ L =
(

m

k

)
≤ (em/k)k. (92)

Thus, for a given fraction of nonzeros r = kd/N , roughly
n ≈ k log(m/k) = −k log(r) measurements are needed.
For comparison, to satisfy the standard RIP a larger number
n ≈ −kd log(r) is required. Block-sparsity reduces the total
number of subspaces and therefore requires d times less
measurements to code the signal subspace. The second term in
(91) has a smaller contribution to the number of measurements.
This term is proportional to kd, which is the number of
nonzero values. Since the number of nonzeros is the same
regardless of the sparsity structure, this term is not reduced in
the block setting.

Note that Corollary 4 puts the emphasis on the required
problem dimensions to satisfy a given RIP level. In contrast,
Proposition 3 provides a tail bound on the expected isometry
constant for given problem dimensions.

VIII. CONCLUSION

In this paper, we studied the problem of recovering an
unknown signal x in an arbitrary Hilbert space H, from a given
set of n linear samples. The signal x is known to lie in a union
of subspaces, so that x ∈ Vi where each of the subspaces
Vi is a sum of k subspaces Ai chosen from an ensemble
of m possibilities. While previous treatments of this model
considered invertibility conditions, here we provide concrete
recovery algorithms for a signal over a structured union.

We began by showing that recovering x can be reduced to
a sparsity problem in which the goal is to recover a block-
sparse vector c from measurements y = Dc where the non-
zero values in c are grouped into blocks. The measurement
matrix D is equal to S∗A where S∗ is the sampling operator
and A is a set transformation corresponding to a basis for
the sum of all Ai. To determine c we suggested a mixed
`2/`1 convex optimization program that takes on the form of
an SOCP. Relying on the notion of block-RIP, we developed
sufficient conditions under which c can be perfectly recovered
using the proposed algorithm. We also proved that under the
same conditions, the unknown c can be stably approximated
in the presence of noise. Furthermore, if c is not exactly
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block-sparse, then its best block-sparse approximation can be
approached using the proposed method. We then showed that
when D is chosen at random, the recovery conditions are
satisfied with high probability.

Specializing the results to MMV systems, we proposed a
new method for sampling in MMV problems. In this approach
each measurement vector depends on all the unknown vectors.
As we showed, this can lead to better recovery rate. Further-
more, we established equivalence results for a class of MMV
algorithms based on RIP.

Throughout the paper, we assumed a finite union of sub-
spaces as well as finite dimension of the underlying spaces.
An interesting future direction to explore is the extension of
the ideas developed herein to the more challenging problem of
recovering x in a possibly infinite union of subspaces, which
are not necessarily finite-dimensional. Recovery methods for
sparse signals in infinite dimensions have been addressed
in some of our previous work [16]–[20]. In particular, we
have shown that a signal lying in a union of shift-invariant
subspaces can be recovered efficiently from certain sets of
sampling functions. A first step in the direction of treating
infinite unions of infinite subspaces is the example studied
in [21] in which we treat an infinite union resulting from
unknown time delays. In our future work, we intend to
combine these results with those in the current paper in order
to develop a more general theory for recovery from a union
of subspaces.

A recent preprint [48] that was posted online after the
submission of this paper proposes a new framework called
model-based compressive sensing (MCS). The MCS approach
assumes a vector signal model in which only certain predefined
sparsity patterns may appear. In general, obtaining efficient
recovery algorithms in such scenarios is difficult, unless further
structure is imposed on the sparsity patterns. Therefore, the
authors consider two types of sparse vectors: block sparsity as
treated here, and a wavelet tree model. For these settings, they
propose generalizations of several known greedy algorithms.
The union model developed in this paper is broader than the
block-sparse setting treated in [48] in the sense that it allows to
model linear dependencies between the nonzero values rather
than only between their locations, by appropriate choice of
subspaces in (6), (7). In addition, we aim at optimization-
based recovery algorithms (26),(47) which require selecting
the objective in order to promote the model properties.
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