Block Sparsity and Sampling over a Union of Subspaces

Yonina Eldar and Moshe Mishali

DSP July 5, 2009

Subspace Sampling

Sampling

Recovery Algorithms

Guarantees

 $\theta < 90^{\circ}$: unique x

 $\theta \ll 90^{\circ}$: stable inversion

Oblique projection

 $\theta < 90^{\circ}$ Perfect Reconstruction

Compressed Sensing

Sample using few measurements

Sampling

Recovery Algorithms

Guarantees

$$y \longleftrightarrow x$$

Unique/Stable mapping?

Compressed Sensing

Sample using few measurements

Sampling

Recovery Algorithms

Guarantees

- $y \longleftrightarrow x$
- Unique/Stable mapping?
- $\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} = \mathbf{A}\mathbf{x}$
- Orthogonal matching pursuit

- Small RIP constant
- Small coherence

$$m = O\left(k(\log(n/k) + 1)\right)$$

Sparsity Priors

Sparsity Priors

Multiband signal:

■ Block-sparse signal:

More general notion of sparsity needed!

Union Sampling

Sampling

Conditions for Unique/Stable mapping:

- **■** *Lu and Do, 08*
- Blumensath and Davies, 08

Recovery Algorithms

Guarantees

?

Goal: Develop stable and efficient recovery algorithms over a union

Outline

Key observation: Need <u>structured</u> union

Finite settings: Develop recovery algorithms

Prove equivalence guarantees

Infinite union: Intro+Application

Sampling

Conditions for Unique/Stable mapping:

- **■** *Lu and Do, 08*
- Blumensath and Davies, 08

Recovery Algorithms

- Convex relaxation
- Subspace OMP

Guarantees

- Block RIP
- Block coherence

(Eldar and Mishali) DSP'09 paper

(Eldar and Bolcskei) ICASSP'09 paper

Examples: Unions of Subspaces

 $x \in \bigcup_i \mathcal{U}_i$ where each \mathcal{U}_i is a subspace

2 - sparse

$$\mathcal{U}_{\ell}$$
 $\ell = \left(\begin{array}{c} 8 \\ 2 \end{array}\right)$

Multiband signals

Block-Sparsity

Structured Model

(Eldar and Mishali, 08)

 $\mathcal{U} = \mathcal{A}_1 \oplus ... \oplus \mathcal{A}_k$ where \mathcal{A}_i is selected from a given set $\{\mathcal{A}_1, ..., \mathcal{A}_m\}$ Examples:

■ Standard CS: A_i is spaned by e_i . The coeffcients are <u>scalars</u>.

Structured Model

(Eldar and Mishali, 08)

 $\mathcal{U} = \mathcal{A}_1 \oplus ... \oplus \mathcal{A}_k$ where \mathcal{A}_i is selected from a given set $\{\mathcal{A}_1, ..., \mathcal{A}_m\}$ Examples:

- Standard CS: A_i is spaned by e_i . The coeffcients are <u>scalars</u>.
- Block sparsity: A_i is spaned by d columns of the identity I.

 The coeffecients are <u>vectors</u>.
- Multiband signals: A_i is a frequency bin of width B.

 The coeffecients are <u>sequences</u>.

Key Result

Any structured union problem can be translated into block sparsity!

- Define a basis for each A_i
- Any $x \in \mathcal{A}_i$ has a representation in terms of a vector c[i] of length $d_i = \dim(\mathcal{A}_i)$
- If A_i is not in the sum then c[i] = 0
- lacksquare x in the union is represented by:

Samples $y_i = \langle a_i (x) \rangle$ are equivalent to $y = D_C$ May be continuous Finite vector

Block Sparsity

$$y = Dc$$
 c - block sparse

Convex optimization:

$$\min \sum_{i=1}^{m} ||c[i]||_2$$
 s.t. $y = Dc$

minimize number of blocks with non-zero energy

Subspace matching pursuit: choose block that best matches the residual

Both recover *c* under suitable conditions

Convex Relaxation

- l_1 optimality is based on RIP
- Extend to block-RIP

$$(1 - \delta_k) \|c\|_2^2 \le \|Dc\|_2^2 \le (1 + \delta_k) \|c\|_2^2$$

For every block-k sparse c over $\mathcal{I} = \{d_1, ..., d_m\}$

Theorem:

If $\delta_{2k} < \sqrt{2} - 1$ then the convex relaxation is exact

(Eldar and Mishali, 08)

Block-RIP

Block RIP constant is typically smaller than standard RIP

Block RIP condition satisfied with high probability if

$$n \approx k(\log(m/k) + d)$$
 (conventional RIP $\implies n \approx k(d\log(m/k) + d)$)

Example

Our algorithm improves recovery over standard basis pursuit

Robust Recovery

lacktriangle Suppose c is approximately block sparse and measurements are noisy

$$y = Dc + z$$
 $||z|| \le \varepsilon$

 $\min \sum_{i=1}^{m} ||c[i]||_2 \quad \text{s.t. } ||y - Dc|| \le \varepsilon$

Theorem:

If
$$\delta_{2k} < \sqrt{2} - 1$$
 then
$$\|c_0 - c'\|_2 \le \alpha \|c_0 - c^k\| + \beta \varepsilon$$

(Eldar and Mishali, 08)

 c_0 - true vector

 c^\prime - algorithm output

 c^k - best block approximation

 α, β - known constants

Block Coherence

(Eldar and Bolcskei, 08)

- Standard coherence: $\mu = \max_{i \neq j} \langle d_i, d_j \rangle$
- Block coherence:

$$\mu_B = \max_{i \neq j} \frac{1}{d} \rho(D^H[i]D[j])$$

 $\rho(A)$ - largest singular value

d - block length

$$D = (\underbrace{D[1]} \ D[2]...D[m])$$

$$d \text{ columns}$$

- Properties:
 - $0 \le \mu_B \le 1$
 - $\mu_B \le \mu$ Improved recovery results
 - Operational meaning: uncertainty relation

Recovery Conditions

Theorem:

A block sparse c can be recovered from y = Dc using convex relaxation if $kd < \frac{1}{2}(\mu_B^{-1}) + (d)$ (Eldar and Bolcskei, 08)

- If block structure is ignored then the condition becomes $kd < \frac{1}{2}(\mu^{-1})$
 - $\mu^{-1} \le \mu_B^{-1}$ $1 \le d$

Same conditions ensure recovery with subspace OMP

Sparsity vs. Union Sparsity

Standard Sparsity

K nonzero elements

Optimization: l_1 Greedy: OMP

Small RIP Small coherence

Union Sparsity

K nonzero blocks/subspaces

Optimization: mixed l_2/l_1 Greedy: subspace OMP

Small block RIP Small block coherence

Sparsity vs. Union Sparsity

Advantage of Union Sparsity:

- Block coherence and block RIP are smaller than coherence and RIP
 - → weaker equivalence conditions
- Empirical performance improvement

Can Treat an Infinite Union!

(Gedalyahu and Eldar, 09)

Application: Multipath Identification

Infinite union of infinite dimensional subspaces

Known pulse shape $g(t) \longrightarrow Structure!$

Conclusion

- Efficient recovery for structured union of subspace
- Equivalence and stability using block RIP
- Equivalence using block coherence
- First step: future work should explore other structures

Theory of CS can be extended to subspaces

References

- Y. C. Eldar and M. Mishali, "Robust Recovery of Signals From a Structured Union of Subspaces", arXiv.org 0807.4581, submitted to *IEEE Trans. Inform. Theory*, July 2008.
- Y. C. Eldar and H. Bolcskei, "Block Sparsity: Uncertainty Relations and Efficient Recovery," *ICASSP* 2009.
- Y. C. Eldar, P. Kuppinger and H. Bolcskei, "Compressed Sensing of Block-Sparse Signals: Uncertainty Relations and Efficient Recovery", submitted to IEEE Transactions on Signal Processing, June 2009.
- Y. C. Eldar, "Uncertainty Relations for Analog Signals", submitted to *IEEE Trans. Inform. Theory*, Sept. 2008.
- K. Gedalyahu and Y. C. Eldar, "Low Rate Sampling Schemes for Time Delay Estimation", submitted to *IEEE Trans. Signal Proc.*, 2009.

Thank you!