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Compressed Sensing
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Compressed Sensing

® Sample using few measurements
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» min ||x||p s.t. y=Ax
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Unique/Stable * min ||x][; s.t. y=Ax
mapping? *
® Orthogonal matching pursuit

B Small RIP constant

B Small coherence
m = O (k(log(n/k) + 1))
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Sparsity Priors
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Sparsity Priors

® Multiband signal:
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® Block-sparse signal:

x= [ -
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More general notion of sparsity needed!



T = UZZ/{Z

where each U; is a subspace

Union Sampling

/ Sampling

Union of subspaces

> Sampling > > Recovery Algorithms > >

Conditions for
Unique/Stable mapping:

B Lu and Do, 08

® Blumensath and Davies, 08

? ?

Goal: Develop stable and efficient recovery
algorithms over a union

Guarantees




Outline

® Key observation: Need structured union

® Finite settings: = Develop recovery algorithms

Prove equivalence guarantees

® Infinite union:  Intro+Application

> Sampling > > Recovery Algorithms > > Guarantees

>

Conditions for . ® Convex relaxation ® Block RIP
Unique/Stable mapping:

¥ Subspace OMP ¥ Block coherence
B Lu and Do, 08

(Eldar and Mishali) DSP’09 paper
® Blumensath and Davies, 08 (Eldar and Bolcskei) ICASSP’09 paper



Examples: Unions of Subspaces
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® Multiband signals B

I B ) y

|
0 INvyq = %

® Block-Sparsity X = -::-
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Structured Model

(Eldar and Mishali, 08)
U=AD..0A; where A; is selected from a given set { A1, ..., A, }

Examples:
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¥ Standard CS: A; is spaned by €;. The coeffcients are scalars.



Structured Model

(Eldar and Mishali, 08)
U=AD..0A; where A; is selected from a given set { A1, ..., A, }

Examples:

— 0. +[a5],-j+0. + ]y 8 € 4.

"

¥ Standard CS: A; is spaned by €;. The coeffcients are scalars.

¥ Block sparsity: A; is spaned by d columns of the identity 1.
The coeffecients are vectors.
® Multiband signals: A; is a frequency bin of width B.

The coetfecients are sequences.




Key Result

Any structured union problem can be translated into block sparsity!

® Define a basis for each A,

* Any z € A; hasarepresentation in terms of a vector c[i] of length
# If A; isnotin the sum then c[¢] =0

® 7 in the union is represented by:

T > —> /> —>

d1=3 d2:4 d3=2 d4:4 d5:2
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A2 .A4
¥ Samples y; = <ai@ are equivalent to y =

May be continuous Finite vector




Block Sparsity

y = Dc c - block sparse

¥ Convex optimization:
m
min ) ||c[i]||l2  s.t. y = Dc
=1
minimize number of blocks with non-zero energy

®  Subspace matching pursuit:
choose block that best matches the residual

Both recover ¢ under suitable conditions
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Convex Relaxation

® [q - optimality is based on RIP
B Extend to block-RIP

(L =d)llellz < [[1Deflz < (14 6x)llell3

For every block-k sparse ¢ over Z = {dy,...,d,}

If 65, < v/2 — 1 then the convex relaxation
1s exact

(Eldar and Mishali, 08)
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Block-RIP

® Block RIP constant is typically smaller than standard RIP
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® Block RIP condition satisfied with high probability it
n =~ k( log(m/k)+ d)
(conventional RIP = 1 ~ k(@log(m /k)+d) )
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Example
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Our algorithm improves recovery over standard basis pursuit
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Robust Recovery

B Suppose c is approximately block sparse and measurements are noisy
y=Dc+z |zl <e

m
e omin ) flefdllz st [ly = Deff < e
i=1

If 65, < v/2 — 1 then
leco = ¢'llz < allco — ¥l + Be

(Eldar and Mishali, 08)

Co - true vector
¢’ - algorithm output
c* - best block approximation

o, 3 - known constants
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Block Coherence

(Eldar and Bolcskei, 08)

B Standard coherence: u = HflaX<dz'adj >

B Block coherence: 7

s = max Lo(DA D)

p(A) - largest singular value

d - block length
D = (D[1] DJ[2]...D[m])

W
d columns

® Properties:
* 0<up=1
# up < [+ Improved recovery results

B Operational meaning: uncertainty relation
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Recovery Conditions

A block sparse ¢ can be recovered from
y = Dc using convex relaxation if kd < %(

(Eldar and Bolcskei, 08)

® If block structure is ignored then the condition becomes kd < %

pt < gt

1<d
®  Same conditions ensure recovery with subspace OMP
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Sparsity vs. Union Sparsity

Standard Sparsity | Union Sparsity

K nonzero elements K nonzero blocks/subspaces
Algorithms

1 Small block coherence

Optimization: [,
Greedy: OMP

Optimization: mixed [,/ [,
Greedy: subspace OMP

Small RIP
Small coherence
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Sparsity vs. Union Sparsity

Standard Sparsity | Union Sparsity

K nonzero elements K nonzero blocks/subspaces

Optimization: [,
Greedy: OMP

Optimization: mixed [,/ [,
Greedy: subspace OMP

Algorithms

1 Small block coherence

Small RIP
Small coherence

Advantage of Union Sparsity:

B Block coherence and block RIP are smaller than coherence and RIP
— weaker equivalence conditions

* Empirical performance improvement
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Can Treat an Infinite Union !

Application: Multipath Identification

Transmitted Signal

rr(t) = > gt — )
nez /

Probing rate

Infinite union of infinite dimensional subspaces

>t

magnitude

(Gedalyahu and Eldar, 09)

Multipath Medium

Received Signal

kth path’s
time-variant gain
coefficient

Known pulse shape ¢(t) — Structure !

(t—@—nT)

\

kth path’s
propagation
delay
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Conclusion

» Efficient recovery for structured union of subspace
® Equivalence and stability using block RIP
® Equivalence using block coherence

® First step: future work should explore other structures

Theory of CS can be extended to subspaces
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