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Minimax Approximation of Representation
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Abstract—Many sources of information are of analog or contin-
uous-time nature. However, digital signal processing applications
rely on discrete data. We consider the problem of approximating
2 inner products, i.e., representation coefficients of a continuous-

time signal, from its generalized samples. Adopting a robust ap-
proach, we process these generalized samples in a minimax optimal
sense. Specifically, we minimize the worst approximation error of
the desired representation coefficients by proper processing of the
given sample sequence. We then extend our results to criteria which
incorporate smoothness constraints on the unknown function. Fi-
nally, we compare our methods with the piecewise-constant ap-
proximation technique, commonly used for this problem, and dis-
cuss the possible improvements by the suggested schemes.

Index Terms—Generalized sampling, interpolation, robust
approximation, smoothness.

I. INTRODUCTION

SIGNAL processing applications are concerned mainly with
digital data, although the origin of many sources of infor-

mation is analog. This is the case for speech and audio, optics,
radar, sonar, biomedical signals, and more. In many cases, anal-
ysis of a continuous-time signal is obtained by evaluating

inner-products for a set of predetermined
analysis functions . For example, one may calculate a
Gabor [1] or wavelet [2] representation of a signal.

Typically, the analysis functions are analytically
known. On the other hand, in many applications of digital
signal processing, there is no knowledge of the continuous-time
signal , but only of its sample sequence. Our problem
is to approximate the required inner-products, by proper
processing of the available samples.

In some cases the sampled version of a signal is sufficient to
calculate the original function. A well known example is the
classical Whittaker-Shannon sampling theorem. See also [3],
[4] for additional shift invariant settings. If the analog input
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can be determined from the sample sequence, then the required
representation coefficients can be calculated as well. Our main
focus here is on situations where the knowledge of the contin-
uous-time function is incomplete, so that only approximations
of the continuous-time inner products can be obtained. A well
known example is the initialization problem in wavelet analysis.
To initialize the pyramid algorithm [5] we need the represen-
tation coefficients of the continuous-time function , in the
initial scale. Unfortunately, these coefficients are typically un-
available, and we only have the samples of , obtained at the
output of an anti-aliasing filter. A common practice in wavelet
analysis is to assume that the available samples are the required
representation coefficients. This false assumption is also known
in the literature as the ‘wavelet crime’ [6]. In [7] the authors ad-
dress this problem by suggesting a digital filter to process the
available sample sequence, prior to applying the pyramid algo-
rithm. In fact, it can be shown that their result is compatible with
a special case of our derivations, presented in Section IV-B.

A common approach to cope with incomplete knowledge of
is to first interpolate the given samples using some syn-

thesis functions. Then, the required inner-products can be
performed using the approximation (see, for example, [8]). Un-
fortunately, the best choice of the synthesis functions is not al-
ways clear. See [9] for error analysis, when approximations of
a function are performed in a shift invariant setup.

Yet another approach to approximate an inner-product is
to perform numerical integration by a Riemann-type sum. As-
suming ideal and uniform sampling, the convergence of such
approximations was studied in [10]. The ideal and uniform sam-
pling case was also considered in [11], [12]. In order to approx-
imate a single representation coefficient , it was
suggested to calculate an inner product in-
stead. The sequence was determined by minimizing an upper
bound on the approximation error. In practice, however, ideal
sampling is impossible to implement. A more practical model
considers generalized samples [4], [13]–[18], which are repre-
sented as the inner products of the signal with a set of sampling
functions . This sampling model is general enough to
describe any linear and bounded acquisition device (Riesz rep-
resentation theorem [19], [20]).

In this paper, we take an approach that is similar in spirit
to the works in [7] and [16]. Given the generalized sam-
ples, we approximate the desired representation coefficients

in a minimax optimal sense. The solution
we obtain can be interpreted as an interpolation of the given
samples, followed by an application of the analysis functions

. The advantage of our framework is that the inter-
polation stage stems naturally from the setup of the problem,
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rather than being pre-specified arbitrarily. Furthermore, the
division of the algorithm into interpolation and analysis stages
is more of conceptual rather than practical nature; both stages
can be performed simultaneously, by digital processing of the
available samples.

Our results extend [11] in several ways. First, by considering
generalized samples our derivations are applicable to practical
acquisition devices. Second, we show how to incorporate prior
knowledge that the generalized samples stem from a smooth
function. Third, our derivations are applicable to a series of rep-
resentation coefficients. Finally, we analyze the performance of
the suggested approach, giving sufficient conditions for it to out-
perform piecewise-constant approximations.

The outline of the paper is as follows. In Section II we
describe the notations and the mathematical preliminaries.
Section III discusses situations where the required inner
products can be evaluated exactly, and establishes a minimax
approximation criterion when this is not the case. The minimax
objective is solved in Section IV. In Section V we consider the
problem of incorporating smoothness constraints. Specifically,
if there is prior knowledge of the input to be smooth, then
we show how to alter the minimax solution by recasting the
problem in a proper Sobolev space [21], presenting [11] as
a special setting of our derivations. Section VI discusses the
relations between the errors due to the suggested minimax
approach and approximations by a Riemann-type summation.
We show the possible gain in performance by the proposed
method and derive sufficient conditions for it to dominate the
summation approach. Finally, in Section VII, we conclude with
several simulations.

II. NOTATIONS AND MATHEMATICAL PRELIMINARIES

We denote continuous-time signals by bold lowercase letters,
omitting the time dependence, when possible. The elements of
a sequence will be written with square brackets, e.g.,

. is the continuous-time Fourier
transform of and is the ( peri-
odic) discrete-time Fourier transform (DTFT) of the sequence
. The operator represents the orthogonal projection onto a

closed subspace , and is the orthogonal complement of
. The Moore–Penrose pseudoinverse [22] and the adjoint of

a bounded transformation are written as and , respec-
tively. stands for the real part.

Inner products and norms are denoted by and ,
respectively. Here, stands for the Hilbert space involved. Usu-
ally, we will consider to be or the order-one Sobolev
space , which will be discussed in detail in Section V. When
the derivations are general enough to describe inner products
and norms within any Hilbert space, we will omit the space sub-
script from the notations, i.e., or . All inner products
are linear with respect to the second argument. For example,

.
An easy way to describe linear combinations and inner prod-

ucts is by utilizing set transformations. A set transformation
corresponding to frame [23] vectors is

defined by for all . From the defini-
tion of the adjoint, if , then .

Fig. 1. Filtering with impulse response s(�t) followed by ideal sampling. The
sampling vectors are fs(t � nT )g.

We define by the set transformation corresponding to
the vectors . Accordingly, the generalized samples

can be written as , and the desired
representation coefficients by .
We define to be the sampling space, which is the closure of

. Similarly, is the analysis space, obtained by the
closure of .

To handle well posed problems, we assume that the sample
sequence and the desired representation coefficients have
finite energy, i.e., . This will assure that for any bounded
transformation applied to the generalized samples
, the error sequence is in as well. Accordingly,

criteria that consider the norm of the error sequence are well
defined. One way to enforce is to require that and

form frames [23] for and , respectively, which is an
assumption made throughout this paper.

III. PROBLEM FORMULATION

We are given the generalized samples of a continuous-time
function , modeled by

(1)

An example is an analog to digital converter which performs
prefiltering prior to sampling, as shown in Fig. 1. In such a set-
ting, the sampling vectors are shifted and
mirrored versions of the prefilter impulse response [13].

We wish to evaluate a set of continuous-time inner products
defined by

(2)

where the analysis functions are analytically known. The
input is known only through its generalized samples of (1).
Our goal is to approximate the required representation coeffi-
cients by proper processing of the sample sequence .

A natural question to be first considered is whether there is an
unavoidable error due to our partial knowledge of , or can
we evaluate exactly the required inner products, based on
the generalized samples. The following theorem addresses this
preliminary question.

Theorem 1: Let be an arbitrary function, satisfying
. It is possible to obtain the coefficients by proper

processing of the sample sequence if and only if . In
this case, .

Proof: See Appendix A.
In some cases, we may have additional prior knowledge on

, such that not all signals in should be considered. By re-
stricting our attention to a proper subgroup, it is possible to ob-
tain a zero error, even if . This is true whenever the
knowledge of allows us to determine a bijection (injective and
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surjective transformation) between and its samples. To il-
lustrate this point, suppose that , where is a closed sub-
space of satisfying the direct sum condition
(i.e., can be described by the sum set

with the property ). Then, we can perfectly
reconstruct from its generalized samples by

(3)

where is any bounded set transformation with range [16].
As a result, we can also perfectly evaluate the coefficients

by

(4)

Another example in which a bijection between the signal and
its generalized samples exists is the finite innovation setting con-
sidered in [24].

Nevertheless, in the general case, the condition may
not be satisfied, or there may be no prior knowledge on .
Thus, the coefficients cannot be computed exactly and
instead must be approximated from the given samples . A
common approach is to perform Riemann-type sum approxi-
mations [10]:

(5)

if one implicitly assumes that the generalized samples of are
close to the mean value of the input signal, within an interval of
length . However, this approximation is not generally optimal
in any sense.

Alternatively, to obtain an optimal solution in the squared
error sense we may approximate the continuous-time inner
products by choosing a sequence which minimizes the
squared norm of the error vector . Since
satisfies , by decomposing along and the error
can be written as

(6)

where we used . This leads to the following
objective:

(7)

Unfortunately, the solution of (7) depends on , which is
unknown. To eliminate the dependency on , we may instead
consider a robust approach, where the sequence is optimized
for the worst possible input . Valid inputs must be consistent
with the known samples, i.e., must satisfy . Addition-
ally, if the norm of the input is unbounded, then so is the error.
Therefore, to define a well posed problem, we assume that is
norm bounded by a positive constant , so that the set of pos-
sible inputs is

(8)

We then consider the minimax objective

(9)

In the next sections, we derive a solution for , and compare
its performance with the piecewise-constant approximation ap-
proach given in (5).

IV. MINIMAX APPROXIMATION

The minimax problem of (9) is closely related to the gener-
alized sampling problem considered in ([16, Theorem 3]). Re-
lying on results obtained in that context leads to the following
theorem.

Theorem 2: Consider the problem

where and are bounded set transformations with range
and , respectively. The (unique) solution is

(10)

Before going into the details of the proof, note that we have
not specified the exact Hilbert space in which the bound

and the inner products are calculated, since the
derivations are general enough to be applicable to any Hilbert
space. In Section V we will show how smoothness constraints
can be incorporated by applying Theorem 2 to different Hilbert
spaces. Additionally, the upper norm bound is not expressed
in the solution (10). Thus, one only has to be sure that the signal
has a finite norm, while its exact value is irrelevant to the compu-
tation of . The value of will be used, however, in Section VI
for analyzing the performance of the proposed algorithm.

Proof: First we note that any in of (8) is of the form
for some where

(11)

and

(12)

Thus,

(13)

where we defined . As a result, the
maximum in (13) is achieved when

(14)

Indeed, let be the vector for which the maximum is
achieved. If then (14) is trivially true. Oth-
erwise, we can define

(15)

Clearly, and . In addition,
and so that the ob-
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jective in (13) at is larger than the objective at unless (14)
is satisfied.

Combining (14) and (13), our problem becomes

(16)

Denoting the optimal objective value by , and replacing the
order of minimization and maximization, we get a lower bound

(17)

where we used the fact that , with
equality for of (10). Thus, for any choice of ,

(18)

The proof then follows from the fact that given by (10)
achieves the lower bound (18). Uniqueness of follows from
(16), as the optimal solution must satisfy .

Note that (10) resembles the solution of the Wiener–Hopf
equations, where the Gramian matrix of the autocorrelations
is first inverted (pseudoinverted), and the cross-correlation
Gramian matrix is then applied. Another interesting interpre-
tation of (10) is obtained by noticing that .
This leads to the following corollary.

Corollary 1: The solution (10) can be written as

(19)

This means that our robust approach first approximates the
signal by its orthogonal projection onto the sampling space,
and then applies the analysis functions . Thus, we can
also conclude that the suggested approximation method results
in zero error if or if the prior knowledge exists.
In fact, by identifying of (4) with , the solutions indeed
coincide. Interestingly, is the minimax approximation
of over the set of (8), as incorporated in the following
proposition.

Proposition 1: The unique solution of

with of (8) is .
Proof: Projecting onto and we have

(20)

The maximization is then

(21)

where . Similarly to the proof of
Theorem 2, we can replace by its absolute
value. The minimax objective is then lower bounded by

(22)

where we used the fact that for all we must have
and . The proof then follows
by noticing that is the minimizer which achieves this
lower bound. Furthermore, it is unique, since from (22) the op-
timal solution must satisfy and .

We conclude that the problem of approximating the repre-
sentation coefficients in a minimax sense could be split into two
stages; first obtaining the minimax approximation of itself, and
then applying the analysis operator to the approximation.

A. The Shift Invariant Case

The approximation (10) was derived for general sampling and
analysis subspaces. An interesting special case of this setup is
when in addition, and are real shift invariant (SI) sub-
spaces, each spanned by shifts of length of some fixed gen-
erating function [13], [16]. In this setting, as we will show, the
approximation sequence can be obtained by discrete-time fil-
tering of the sample sequence .

Let and be the real generators of and , respec-
tively. Then, the SI subspaces are

(23)

(24)

In this SI case, the samples , which are given by

(25)

correspond to ideal sampling at times of the output of a
filter with an impulse response and as its input (see
Fig. 1). Here denotes continuous-time convolution
between the signals and , and .

To ensure that the functions and
form frames for and , respectively, a simple condition can
be verified in the frequency domain [23], [25]

(26)

for some and . Here, we
denote

(27)
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where are the continuous-time Fourier trans-
forms of the generators , and are the set of
frequencies for which and ,
respectively.

Letting and be the set transformations of
and , respectively, it is easy to see that is
equivalent to filtering the sequence by a discrete-time
LTI filter with frequency response . Similarly, the
pseudoinverse operator corresponds to applying a
filter with DTFT for and zero otherwise.
Therefore, the sequence can be obtained by
filtering the sample sequence with a digital filter

(28)

We point out that by a proper choice of the sampling and analysis
functions, the filter (28) is compatible with the solution for the
“wavelet crime” problem obtained in [7].

V. IMPOSING SMOOTHNESS BY SOBOLEV SPACES

The objective in Theorem 2 considers functions within the set
. However, sometimes we have

prior knowledge that the input signal is ‘smooth’. By restricting
the set of possible inputs to include only smooth functions, the
performance of the robust objective may be improved.

Sobolev spaces are natural candidates to describe smooth-
ness. For simplicity, our main discussion will concern the
Sobolev space of order one [21].

Definition 1: The Sobolev space of order one is the
Hilbert space of finite energy functions which also have a finite
energy first derivative. A possible choice of inner product in
this space is

(29)

where and stand for the first derivative of and ,
respectively.

If we have prior knowledge that and its first derivative are of
finite energy (which in particular implies that is continuous),
then we may consider the set of possible inputs to be

(30)

where is an upper bound on the norm of . This leads to
the following minimax objective:

(31)

To solve (31) we may use Theorem 2 as its derivations are
general enough to be applicable to any Hilbert space. Note,
however, that objective (31) contains mixed inner products
and norms; and describe inner products, while

is a Sobolev norm constraint. Hence, we will first
recast the whole problem into the order one Sobolev space, and
then apply the results of Theorem 2.

To this end, note that inner products (29) can be com-
pactly written in the Fourier domain by

(32)

where and are the Fourier transforms of and
, respectively. As introduced in [11], we can use (32) to

rewrite inner products as inner products. Specifically,
for any

(33)

where stands for the convolution operation and

(34)

is the inverse Fourier transform of .
Using (33), we can replace the inner products and

using their Sobolev counterparts, which leads to the fol-
lowing theorem.

Theorem 4: Consider the problem

(35)

where and are bounded set transformations with range
and , respectively, and is given by (30). The (unique)

solution is

(36)

where the inner products described by (36) are computed in the
order one Sobolev space, are the set transformations of

and , respectively, and the
function is given by (34).

Before stating the proof, note that (36) describes inner
products. In practice, this means that the th element of the
matrix is

(37)

with as in (34). Similarly, the th element of is

(38)

Proof: Using (33), we can rewrite (35) as

where and are the set transformations of
and , respectively. Since the derivations of
Theorem 2 apply to any Hilbert space, the solution has the same
form as in (10), resulting in (36).

The result of Theorem 4 can be interpreted in several ways.
Rewriting and using (37),
we obtain the following corollary.

Corollary 2: Equation (36) can be written as

(39)
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where is the closure of and stands for the or-
thogonal projection of , in the sense, onto . The oper-
ator describes the usual inner products with the analysis
functions.

Note that we implicitly assume that the possibly infinite sum
involved in the computation of is well defined. This can
be assured if the functions form a frame for the closure of
their span. We address this question in Appendix B.

Another interesting interpretation of Theorem 4 is evident by
rewriting all the inner products in the space. Combining (38)
with (39) we obtain the following corollary.

Corollary 3: Equation (36) can be written as

(40)

where is the oblique projection operator [17], [26], in the
sense, with range space and null space .

In analogy to Proposition 1 it can be shown that
is the unique solution of

Corollary 3 implies that the problem of Theorem 4 could be split
into two parts; first obtaining the Sobolev minimax approxima-
tion of itself (which is an oblique projection in the space),
and only then applying the analysis operator to that approx-
imation.

In this section we have considered the Sobolev space of
order one. It is possible to extend the derivations to higher order
Sobolev spaces, if a sufficient degree of smoothness is known to
be present. The order Sobolev space is composed of finite
energy functions with finite energy derivatives; inner
products can be written as ,
where the superscript stands for the th derivative. Thus, we
can obtain similar results, which only require the replacement
of the function in (34) with the inverse Fourier transform
of .

As a concluding remark, we note that our solution takes the
form of applying the analysis functions to

, which is the minimax approximation of within the
space . This space is determined by the sampling functions

and the smoothness constraint (manifested by ). Thus,
we have obtained a nice counterpart to methods that arbitrarily
choose the interpolation space.

A. Smoothness and the Shift Invariant Case

In the special case where and are real SI subspaces, as
in (23) and (24), the sample sequence may be processed by a
digital filter in order to obtain the minimax approximation (36).
Let of (34), be the inverse Fourier transform of

and define . Then, the frequency response of the
minimax filter of Theorem 4 takes on the form

(41)

where is the Fourier trans-
form of defines the support of , and

are defined according to (27).

B. Extension of the Ideal Sampling Results

In this section, we show how Theorem 4 extends the results
of [11], [12]. In these works it was assumed that a single rep-
resentation coefficient is to be approximated by
linearly processing the ideal sample sequence of some
function . Denoting by the ideal sampling operator

(42)

the processing is performed by calculating an inner product
with some sequence . To determine , the approxi-

mation error was upper bounded by

where is a constant that depends on and the function
of (34). Then, was minimized with respect to .

Reinterpreting the derivations in [11], the approximation
problem of ([11, Theorem 3]) can be restated as a minimax
objective

(43)

where is some (finite) upper bound on the norm of . In
[11] it is found that the optimal sequence satisfies

(44)

where is the orthogonal projection, in the sense, onto ,
which is the closure of .

We now show that this result of [11] is a special case of The-
orem 4. First, define to be the set transformation of the func-
tion set . It is not hard to show that on is the
adjoint of the ideal sampling operator , i.e., using operator
notations

We note that (as well as ) is a well-defined bounded
operator in ([9, App. C]). Additionally, the single repre-
sentation coefficient can be written as the order one
Sobolev inner product , with being the set transform of

. Identifying with , we have from (36)

(45)

where we denote . As a result, is exactly
the orthogonal projection of onto the space , which
is compatible with (44).
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VI. ERROR ANALYSIS

In this section we investigate the error resulting from the
minimax method. We then derive sufficient conditions for our
method to outperform the sum approximation (5). Although we
use the and operators (as opposed to their Sobolev coun-
terparts ), all derivations are applicable to Sobolev spaces
by considering the appropriate inner products.

Let

(46)

be the error sequence due to the minimax approach. Using (19)
we can express the error as

(47)

Define to be the error sequence due to the sum approxima-
tion method (5). The th element of satisfies

(48)

where is the ideal sampling operator (42). Note that to make
(48) well defined, we implicitly assume . We also
note that and depend on the input signal . However,
to simplify the exposition, we omit this dependence from the
notations.

We now examine the conditions which will assure that
for all possible inputs. In the following

lemma we first introduce tight bounds for the difference
. Clearly, if the difference is positive, then

the minimax method is preferable to the sum approximation
method, and vice versa.

Lemma 1: Let . Then

(49)

where the bounds are tight. Here

(50)

and

(51)

Proof: Using (46) and (48) we can relate the two error se-
quences by

(52)

with given by (51). Note that since the sample sequence is
available, and so are and , the sequence is known as
well. Furthermore, . The latter is evident by rewriting

. Since , it is sufficient to show
that is a bounded operator. Indeed, since

is bounded on ([9, App. C]), so is . Additionally,
and are bounded due to the frame assumptions.

Taking the squared norm of both sides of (52) and rearranging
terms, we get

The bounds (50) then follow from

We now show that the bounds are tight. Assume to the con-
trary that for all

Define

using some . Clearly . However,
satisfies

thus, contradicting our initial assumption. The proof of tightness
for the lower bound is similar.

Since the tight upper bound is nonnegative for all choices
of , we conclude that the sum approximation method cannot
outperform the proposed minimax approach, for all possible in-
puts. On the other hand, in some cases, it is possible to have
better performance by the minimax approach, for all possible in-
puts. To assure this, the lower bound must be positive. In the
following lemma, we provide a tight upper bound on
assuming that the set is orthonormal. Using this bound,
we then state a sufficient condition for the minimax method to
outperform the standard sum approximation approach for all

.
Lemma 2: Let be an orthonormal set, and let .

Then

(53)

where

(54)

is the norm of and .
Before giving the proof, we mention that is related

to the largest angle [13], [16] between the spaces. An explicit
expression for in the case of SI spaces is given in
[13].

Proof: From the definition of

(55)

where we utilized the orthonormality of the analysis set
to write . For any we have

, where is given by (54). Thus, we can bound
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Fig. 2. Regions of ke k � ke k for the case where fw (t)g is an or-
thonormal set. If the maximal norm of the minimax error (53) is smaller than
kak =2, then the minimax approach is superior to the sum method, for all pos-
sible inputs.

where . From [13],
[27] and the proof fol-
lows.

Corollary 4: Let be an orthonormal set. A sufficient
condition for the minimax method to outperform the sum ap-
proach for all is , where and are
given by (51) and (53), respectively.

Proof: Using Lemma 1, the Cauchy–Schwartz inequality
and Lemma 2, we have

from which the proof follows.
The error analysis is summarized in Fig. 2.
Another interesting case, which is easy to evaluate, is when a

single representation coefficient is to be approximated.
In this setting, and are all scalars. It can then be
shown that

(56)

where the bounds are tight. Furthermore, the input that achieves
both upper bounds is

(57)

A sufficient condition for the minimax method to outperform
the sum approach becomes

(58)

The proof is provided in Appendix C.
To conclude, when the spaces and are close (such that

is close to one), or when most of the signal’s energy
lies within the sampling space (such that is small), then the
minimax method will outperform the standard approach. Sim-
ilarly, for large sampling intervals can become large
enough, assuring better performance by the minimax method.

VII. SIMULATIONS

In this section, we simulate an example of approximating a
single representation coefficient . The analysis func-
tion is a modulated and normalized Gaussian

(59)

Fig. 3. The analysis function w(t) and the input signal x(t).

with chosen such that . The input is set to be

(60)

i.e., it is composed of two Gaussians, synchronized with
the analysis function (see Fig. 3). For this example

. We will consider two separate sampling
schemes: zero-order-hold (ZOH) and resistor-capacitor (RC).
In both schemes, we approximate the single representation
coefficient based on the generalized samples.

A. ZOH Sampling

Assume that the generalized samples of are obtained by
averaging the value of within a small interval of length ,
i.e.

(61)

In this setting, the th sampling vector of (1) is

(62)

By processing the generalized samples
using the transformation (10), we obtain the minimax approxi-
mation of . The approximation can be obtained in the

space, or transformed into a proper Sobolev space using
(36), when smoothness is of concern. Note that the input signal
of the example (60) indeed satisfies . Subsequently,
as we will show, the minimax solution with the smoothness
constraint outperforms the standard minimax method.

Interpreting the minimax solutions as the application of the
analysis operator to the approximates and
[(19) and (40), respectively], it is interesting to observe the
signal approximations. Fig. 4 depicts the generator functions

and for . In Fig. 5 we plot a
section of with its projections onto the appropriate sampling
spaces. The parameters and were set to 0.1[sec] and
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Fig. 4. ZOH sampling with � = 0:05. Shown are s (t) (62) and ~s (t) =
s (t) � e =2, which are the generators for the shift invariant spaces S and
~S , respectively. For presentation purposes the plots are scaled.

Fig. 5. A section of x and its approximation in the sampling space. The L
orthogonal projection onto S yields rectangular pulses. The oblique projection
onto S yields a smooth function, which is very close to the original input.

0.05[sec], respectively. In this example, the space captures
most of the signal’s energy. Indeed, as can be seen in Fig. 5,
the approximation is very close to the original input.

For comparison, we also processed the samples using the
standard sum approach (5). In Fig. 6, we present the errors for
the input (60) using several choices of . The minimax solu-
tion is optimized for the worst possible input within the consid-
ered set, which is different than (60). As a result, for some sam-
pling intervals, the suggested robust solutions are better, while
for others they are outperformed by the sum approximation.

It is also of interest to examine the signals that cause the
highest value of the cost function. In Fig. 7, we plot these worst

Fig. 6. The errors as a function of T for the specific input (60).

inputs. In both cases, the worst possible input is calculated ac-
cording to (57), and is given by a projection of onto the sam-
pling space, and a vector in , which has the smallest angle
with the analysis function . As can be seen in Fig. 7(a), the
worst possible input in the set
is a highly nonsmooth function. This input is indeed possible in
the space, but it is not likely to appear if we know the signal
to be smooth. If we consider only order one Sobolev functions,
then the worst input is a smooth function and is much closer
to the original input, as depicted in Fig. 7(b). The exceptionally
good results of Fig. 7(b) are due to the fact that for this example,
most of the signal’s energy lies within the space (alternatively,

is small). As a result, the approximation de-
scribes well the original input.

Note that in all cases, the worst inputs look the same for the
acquisition device, as they both produce the same generalized
samples. To illustrate the last point, in Fig. 8 we plot a section
of and the worst possible inputs (for the and the sets).
In addition, we present the orthogonal projection , in the
sense, which is composed of rectangular pulses describing the
integration zones due to the sampling functions (62). As can be
seen, all signals yield the same generalized samples, as they all
have the same area within the rectangular pulses.

In Fig. 9 we plot the upper bounds of the performance for the
different approximation methods. The upper two curves are due
to (56). If in addition the input is known to be smooth, then we
can perform all the inner products and norms in the order one
Sobolev space. As a result, the value of the upper bound
changes, and so does (the lower two curves of Fig. 9).
The upper bounds are obtained by the worst possible inputs
plotted in Fig. 7. Specifically, the signal of Fig. 7(b) achieves
the lower two curves of Fig. 9 (with the lowest curve for the
minimax method with the smoothness constraints, and the one
above it for the sum approach). Similarly, when smoothness
is not of concern, the signal of Fig. 7(a) achieves the top two
error bound curves of Fig. 9 (with the higher curve for the sum
approximation).
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Fig. 7. The original input and the worst possible counterpart in (a) L .
(b) Sobolev space of order one.

B. RC Sampling

Suppose now that the acquisition device is a low-pass RC cir-
cuit, followed by an ideal sampler with interval (Fig. 10). The
frequency response of the acquisition filter is given by

, and the th sampling vector is a shifted and mirrored
version of the impulse response

(63)

Fig. 11 is similar to Fig. 7, when using the RC circuit sampling
function (63) with . Here as well, the sampling func-
tions posses discontinuities, giving rise to a nonsmooth worst-
case function, as shown in Fig. 11(a). When we expect the input
to be smooth, the minimax objective with the smoothness con-
straint can be used. For such a criterion, the worst-case input
function behaves accordingly [Fig. 11(b)].

Fig. 8. A section of x and the worst possible counterpart in (a)L . (b) Sobolev
space of order one. Both are plotted against P x to describe the integration
zones.

Fig.12showstheapproximationerror for the input of(60).
Since is a smooth function, imposing the smoothness con-
straint indeedimprovestheperformanceof theminimaxmethods.
Here as well, the proposed robust criteria do not always outper-
form the Rieman sum approximation [Fig. 12(a)]. However, by
considering the worst possible input, the superiority of the min-
imax methods is guaranteed. In Fig. 13 we show the upper error
boundsfor severalvaluesof andRC.Asexpected, the robustap-
proaches outperform the sumcounterpart. Additionally,when we
restrict the set of possible inputs to order one Sobolev functions,
the worst case errors are smaller. As with the previous simulation,
the presented error bounds are tight. For example, the worst case
inputs of Fig. 11 achieve the error bounds of Fig. 13(b).

As a final remark, note that the worst-case signal (57) depends
on the sampling and analysis functions. Therefore, when either
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Fig. 9. Upper error bounds according to (56). The sampling functions are given
by (62).

Fig. 10. An RC circuit, followed by ideal sampler, serves as the acquisition
device.

of them is nonsmooth, the worst-case function might be non-
smooth as well, being the sum of functions with discontinuities.
As a result, if we have prior knowledge that the input is
smooth, then it is recommended to implement the minimax so-
lution with the smoothness constraint.

VIII. SUMMARY

A minimax approach has been introduced for approximating
inner-product calculations within the continuous-time domain,
while having the generalized samples of the signal as the only
available data. We have shown that if the input signal is known
to be a smooth function, then a smoothness constraint can be in-
corporated into the minimax criterion. The latter was achieved
by recasting the problem into a proper Sobolev space. A compar-
ison of our proposed robust methods with a piecewise-constant
approximation has been presented. Error bounds for the dif-
ferent methods were derived, showing the possible improve-
ment by the minimax methods. The derivations presented herein
extend recent results concerning the ideal sampling case, al-
lowing for practical acquisition devices to be incorporated.

APPENDIX A
PROOF OF THEOREM 1

In this appendix, we show that for a general , satisfying
, it is possible to obtain the required inner products

if and only if . The proof is similar to the

Fig. 11. The original input and the worst possible counterpart in (a) L .
(b) Sobolev space of order one. The sampling functions are given by (63).

proof of a sampling problem, considered in ([16, Sec. 3]). For
completeness, we detail the derivations here.

Assume and let where

(64)

We now show that . Indeed, since for any function
we have . Substi-

tuting

(65)

where we used the fact that since .
Now, assume that and suppose that there exists a

transformation achieving . Consider the
signal defined by where is in but
not in (such a function always exists since ) and



DVORKIND et al.: REPRESENTATION COEFFICIENTS FROM GENERALIZED SAMPLES 4441

Fig. 12. Concrete approximation errors for the input (60) processed by the RC
circuit. (a) RC = 0:05. (b) RC = 0:5.

. For this choice, but
. Since we assumed

and we also have

(66)

which implies that , contradicting our assumption.

APPENDIX B
FRAME CONDITION IN THE SOBOLEV SPACE

In this appendix we address the following question: Assuming
that the sampling functions constitute a frame for

, do the modified functions constitute
a frame for ? As we will show, this is not always the
case, but we give a sufficient condition for this to hold.

Fig. 13. Upper error bounds. The sampling functions are given by (63) with
(a) RC = 0:05. (b) RC = 0:5.

Since the sampling functions form a frame for the
closure of their span, there exist such that

(67)

Defining the modified functions to be ,
where is given by (34), and setting to be the
closure of , we wish to examine whether for all
there are constants such that

(68)

If the number of sampling functions is finite, then (68) always
holds, as any finite set of functions which spans is a frame for .
However, in the infinite dimensional case, this is no longer true.
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We first show that the upper bound in (68) is always satisfied
with . To see this, let . Recalling that for any

, we have , we can rewrite the
middle term of (68) as . Since is a frame
for ,

Using

we conclude that with , the upper bound in (68) is always
satisfied.

Unfortunately, satisfying the lower bound of (68) is not al-
ways possible. As an example, consider the case where for each

has the Fourier transform

This is an orthonormal set of sampling functions, and hence it
is a tight frame for with frame bounds . However,
there is no strictly positive lower bound satisfying the left
hand side inequality of (68); notice that for the choice

Defining we have from the orthonormality of the
expansion

(69)

Recalling (68), its left hand side should satisfy for this
particular example. However, by increasing we can construct a
sequence , which is strictly positive, and converges to zero.
Thus, for this example we must have .

Nevertheless, assuming that the sampling functions have a
shift invariant structure, i.e., that for each
(and naturally also ), we can state a suffi-
cient condition that will assure the existence of a strictly posi-
tive lower bound .

Proposition 2: Let be a frame for . If the partial
sums

(70)

converge uniformly, then is a frame for .
Proof: Relying on known results for the shift invariant

setup [23], the frame condition for is satisfied if

(71)

where

(72)

is the DTFT of the correlation function
and are the set of frequencies for

which . We now show that if the partial sums (70)
converge uniformly, then the lower bound in (71) is satisfied.
Indeed, choose , where is the lower frame bound
of . Then, there is an index , such that the partial sum

satisfies

(73)

for all . Therefore

where we define the strictly positive constant
. Combining with (73),

where we used and the frame bound
of in the last inequality.

APPENDIX C
ERROR BOUNDS FOR THE SCALAR CASE

In this appendix, we prove (56), (57), and (58).
To prove (56), note that for a single representation coefficient

we have

(74)

where we used the Cauchy–Schwartz inequality and the norm
constraint , with given by (54). The bound is
tight, since

(75)

is a valid input which achieves (74) with equality. Similarly, we
can bound the error due to the sum method. Using (52),

(76)

This upper bound is obtained by setting as in (57).
In fact, the signal of (57) also achieves the upper bound
in (74). Thus, there is a valid input which makes both the sum
and the minimax methods to operate as worst as possible.

To prove (58), we must find a sufficient condition that ensures
that the lower bound of (50) is positive. Using (50) and (74)
we have that from which (58)
follows.
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