
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 4, APRIL 2011 1827

Innovation Rate Sampling of Pulse Streams With
Application to Ultrasound Imaging
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Abstract—Signals comprised of a stream of short pulses appear
in many applications including bioimaging and radar. The recent
finite rate of innovation framework, has paved the way to low rate
sampling of such pulses by noticing that only a small number of
parameters per unit time are needed to fully describe these sig-
nals. Unfortunately, for high rates of innovation, existing sampling
schemes are numerically unstable. In this paper we propose a gen-
eral sampling approach which leads to stable recovery even in the
presence of many pulses. We begin by deriving a condition on the
sampling kernel which allows perfect reconstruction of periodic
streams from the minimal number of samples. We then design
a compactly supported class of filters, satisfying this condition.
The periodic solution is extended to finite and infinite streams
and is shown to be numerically stable even for a large number
of pulses. High noise robustness is also demonstrated when the
delays are sufficiently separated. Finally, we process ultrasound
imaging data using our techniques and show that substantial rate
reduction with respect to traditional ultrasound sampling schemes
can be achieved.

Index Terms—Analog-to-digital conversion, annihilating filters,
compressed sensing, finite rate of innovation, perfect reconstruc-
tion, sub-Nyquist sampling, ultrasound imaging.

I. INTRODUCTION

S AMPLING is the process of representing a contin-
uous-time signal by discrete-time coefficients, while

retaining the important signal features. The well-known
Shannon-Nyquist theorem states that the minimal sampling
rate required for perfect reconstruction of bandlimited signals
is twice the maximal frequency. This result has since been
generalized to minimal rate sampling schemes for signals lying
in arbitrary subspaces [1] and [2].

Recently, there has been growing interest in sampling of sig-
nals consisting of a stream of short pulses, where the pulse
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shape is known. Such signals have a finite number of degrees
of freedom per unit time, also known as the finite rate of inno-
vation (FRI) property [3]. This interest is motivated by applica-
tions such as digital processing of neuronal signals, bioimaging,
image processing and ultrawideband (UWB) communications,
where such signals are present in abundance. Our work is mo-
tivated by the possible application of this model in ultrasound
imaging, where echoes of the transmit pulse are reflected off
scatterers within the tissue and form a stream of pulses signal
at the receiver. The time-delays and amplitudes of the echoes
indicate the position and strength of the various scatterers, re-
spectively. Therefore, determining these parameters from low
rate samples of the received signal is an important problem.
Reducing the rate allows more efficient processing which can
translate to power and size reduction of ultrasound imaging sys-
tems.

Our goal is to design a minimal rate single-channel sampling
and reconstruction scheme for pulse streams that is stable even
in the presence of many pulses. Since the set of FRI signals
does not form a subspace, classic subspace schemes cannot be
directly used to design low-rate sampling schemes. Mathemat-
ically, such FRI signals conform with a broader model of sig-
nals lying in a union of subspaces [4]–[9]. Although the min-
imal sampling rate required for such settings has been derived,
no generic sampling scheme exists for the general problem.
Nonetheless, some special cases have been treated in previous
work, including streams of pulses.

A stream of pulses can be viewed as a parametric signal,
uniquely defined by the time-delays of the pulses and their am-
plitudes. Efficient sampling of periodic impulse streams, having

impulses in each period, was proposed in [3] and [10]. The
heart of the solution is to obtain a set of Fourier series coef-
ficients, which then converts the problem of determining the
time-delays and amplitudes to that of finding the frequencies
and amplitudes of a sum of sinusoids. The latter is a standard
problem in spectral analysis [11] which can be solved using con-
ventional methods, such as the annihilating filter approach, as
long as the number of samples is at least . This result is in-
tuitive since there are degrees of freedom in each period:
time-delays and amplitudes.

Periodic streams of pulses are mathematically convenient to
analyze, however not very practical. In contrast, finite streams of
pulses are prevalent in applications such as ultrasound imaging.
The first treatment of finite Dirac streams appears in [3], in
which a Gaussian sampling kernel was proposed. The time-de-
lays and amplitudes are then estimated from the Gaussian tails.
This method and its improvement [12] are numerically unstable
for high rates of innovation, since they rely on the Gaussian
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tails which take on small values. The work in [13] introduced a
general family of polynomial and exponential reproducing ker-
nels, which can be used to solve FRI problems. Specifically,
B-spline and E-spline sampling kernels which satisfy the repro-
duction condition are proposed. This method treats streams of
Diracs, differentiated Diracs and short pulses with compact sup-
port. However, the proposed sampling filters result in poor re-
construction results for large . To the best of our knowledge,
a numerically stable sampling and reconstruction scheme for
high-order problems has not yet been reported.

Infinite streams of pulses arise in applications such as UWB
communications, where the communicated data changes fre-
quently. Using spline filters [13] and under certain limitations
on the signal, the infinite stream can be divided into a sequence
of separate finite problems. The individual finite cases may be
treated using methods for the finite setting, at the expense of
above critical sampling rate and suffer from the same instability
issues. In addition, the constraints that are cast on the signal be-
come more and more stringent as the number of pulses per unit
time grows. In a recent work [14] the authors propose a sampling
and reconstruction scheme for , however, our interest here
is in high values of .

Another related work [7] proposes a semiperiodic model,
where the pulse time-delays do not change from period to
period, but the amplitudes vary. This is a hybrid case in which
the number of degrees of freedom in the time-delays is finite,
but there is an infinite number of degrees of freedom in the
amplitudes. Therefore, the proposed recovery scheme generally
requires an infinite number of samples. This differs from the
periodic and finite cases we discuss in this paper which have a
finite number of degrees of freedom and, consequently, require
only a finite number of samples.

In this paper we study sampling of signals consisting of a
stream of pulses, covering the three different cases: periodic,
finite and infinite streams of pulses. The criteria we consider for
designing such systems are: (a) Minimal sampling rate which
allows perfect reconstruction; (b) numerical stability (with suf-
ficiently separated time delays); and (c) minimal restrictions on
the number of pulses per sampling period.

We begin by treating periodic pulse streams. For this set-
ting, we develop a general sampling scheme for arbitrary pulse
shapes which allows to determine the times and amplitudes of
the pulses, from a minimal number of samples. As we show,
previous work [3] is a special case of our extended results. In
contrast to the infinite time-support of the filters in [3], we de-
velop a compactly supported class of filters which satisfy our
mathematical condition. This class of filters consists of a sum
of sinc functions in the frequency domain. We therefore refer to
such functions as Sum of Sincs (SoS). To the best of our knowl-
edge, this is the first class of finite support filters that solve the
periodic case. As we discuss in detail in Section V, these fil-
ters are related to exponential reproducing kernels, introduced
in [13].

The compact support of the SoS filters is the key to extending
the periodic solution to the finite stream case. Generalizing the
SoS class, we design a sampling and reconstruction scheme
which perfectly reconstructs a finite stream of pulses from a
minimal number of samples, as long as the pulse shape has com-

pact support. Our reconstruction is numerically stable for both
small values of and large number of pulses, e.g., . In
contrast, Gaussian sampling filters [3] and [12] are unstable for

and we show in simulations that B-splines and E-splines
[13] exhibit large estimation errors for . In addition, we
demonstrate substantial improvement in noise robustness even
for low values of . Our advantage stems from the fact that
we propose compactly supported filters on the one hand, while
staying within the regime of Fourier coefficients reconstruc-
tion on the other hand. Extending our results to the infinite set-
ting, we consider an infinite stream consisting of pulse bursts,
where each burst contains a large number of pulses. The sta-
bility of our method allows to reconstruct even a large number
of closely spaced pulses, which cannot be treated using existing
solutions [13]. In addition, the constraints cast on the structure
of the signal are independent of (the number of pulses in each
burst), in contrast to previous work and therefore similar sam-
pling schemes may be used for different values of . Finally, we
show that our sampling scheme requires lower sampling rate for

.
As an application, we demonstrate our sampling scheme on

real ultrasound imaging data acquired by GE healthcare’s ul-
trasound system. We obtain high accuracy estimation while re-
ducing the number of samples by two orders of magnitude in
comparison with current imaging techniques.

The remainder of the paper is organized as follows. In
Section II we present the periodic signal model and derive a
general sampling scheme. The SoS class is then developed and
demonstrated via simulations. The extension to the finite case
is presented in Section III, followed by simulations showing
the advantages of our method in high-order problems and noisy
settings. In Section IV, we treat infinite streams of pulses.
Section V explores the relationship of our work to previous
methods. Finally, in Section VI, we demonstrate our algorithm
on real ultrasound imaging data.

II. PERIODIC STREAM OF PULSES

A. Problem Formulation

Throughout the paper we denote matrices and vectors by
bold font, with lowercase letters corresponding to vectors and
uppercase letters to matrices. The element of a vector

is written as and denotes the element of a
matrix . Superscripts , , and represent com-
plex conjugation, transposition and conjugate transposition,
respectively. The Moore-Penrose pseudoinverse of a matrix

is written as . The continuous-time Fourier transform
(CTFT) of a continuous-time signal is defined by

and

(1)

denotes the inner product between two signals.
Consider a -periodic stream of pulses, defined as

(2)



TUR et al.: INNOVATION RATE SAMPLING OF PULSE STREAMS 1829

where is a known pulse shape, is the known period and
are the unknown

delays and amplitudes. Our goal is to sample and recon-
struct it, from a minimal number of samples. Since the signal
has degrees of freedom, we expect the minimal number of
samples to be . We are primarily interested in pulses which
have small time-support. Direct uniform sampling of sam-
ples of the signal will result in many zero samples, since the
probability for the sample to hit a pulse is very low. Therefore,
we must construct a more sophisticated sampling scheme.

Define the periodic continuation of as
. Using Poisson’s summation formula

[15], may be written as

(3)

where denotes the CTFT of the pulse . Substituting
(3) into (2) we obtain

(4)

where we denoted

(5)

The expansion in (4) is the Fourier series representation of the
-periodic signal with Fourier coefficients given by (5).
Following [3], we now show that once or more Fourier

coefficients of are known, we may use conventional tools
from spectral analysis to determine the unknowns .
The method by which the Fourier coefficients are obtained will
be presented in subsequent sections.

Define a set of consecutive indices such that
. We assume such a set exists,

which is usually the case for short time-support pulses .
Denote by the diagonal matrix with entry

and by the matrix with
element , where is the vector of the
unknown delays. In addition denote by the length- vector
whose element is and by the length- vector whose

element is . We may then write (5) in matrix form as

(6)

Since is invertible by construction we define ,
which satisfies

(7)

The matrix is a Vandermonde matrix and therefore has full
column rank [11], [16] as long as and the time-delays
are distinct, i.e., for all .

Writing the expression for the element of the vector in
(7) explicitly

(8)

Evidently, given the vector , (7) is a standard problem of
finding the frequencies and amplitudes of a sum of complex
exponentials (see [11] for a review of this topic). This problem
may be solved as long as .

The annihilating filter approach used extensively by Vetterli
et al. [3], [10] is one way of recovering the frequencies and is
thoroughly described in [3], [10], and [11]. This method can
solve the problem using the critical number of samples

, as opposed to other techniques such as MUSIC [17], [18],
and ESPRIT [19] which require oversampling. Since we are in-
terested in minimal-rate sampling, we use the annihilating filter
throughout the paper.

B. Obtaining the Fourier Series Coefficients

As we have seen, given the vector of Fourier se-
ries coefficients , we may use standard tools from spectral
analysis to determine the set . In practice, however,
the signal is sampled in the time domain and therefore we do
not have direct access to samples of . Our goal is to design a
single-channel sampling scheme which allows to determine
from time-domain samples. In contrast with previous work [3]
and [10] which focused on a lowpass sampling filter , in this
section we derive a general condition on the sampling kernel al-
lowing to obtain the vector . For the sake of clarity we confine
ourselves to uniform sampling, the results extend in a straight-
forward manner to nonuniform sampling as well.

Consider sampling the signal uniformly with sampling
kernel and sampling period , as depicted in Fig. 1. The
samples are given by

(9)

Substituting (4) into (9) we have

(10)

where is the CTFT of . Choosing any filter which
satisfies

otherwise
(11)

we can rewrite (10) as

(12)
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Fig. 1. Single channel sampling scheme.

In contrast with (10), the sum in (12) is finite. Note that (11)
implies that any real filter meeting this condition will satisfy

and in addition ,
due to the conjugate symmetry of real filters.

Defining the diagonal matrix whose entry is
for all and the length- vector whose

element is , we may write (12) as

(13)

where and is defined as in
(6) with a different parameter and dimensions . The
matrix is invertible by construction. Since is Vandermonde,
it is left invertible as long as . Therefore

(14)

In the special case where and , the recovery
in (14) becomes

(15)

i.e., the vector is obtained by applying the discrete Fourier
transform (DFT) on the sample vector, followed by a correction
matrix related to the sampling filter.

The idea behind this sampling scheme is that each sample is
actually a linear combination of the elements of . The sampling
kernel is designed to pass the coefficients
while suppressing all other coefficients . This is ex-
actly what the condition in (11) means. This sampling scheme
guarantees that each sample combination is linearly indepen-
dent of the others. Therefore, the linear system of equations in
(13) has full column rank which allows to solve for the vector

.
We summarize this result in the following theorem.
Theorem 1: Consider the -periodic stream of pulses of order

Choose a set of consecutive indices for which
. Then the samples

uniquely determine the signal for any satisfying con-
dition (11), as long as .

In order to extend Theorem 1 to nonuniform sampling, we
only need to substitute the nonuniform sampling times in the
vector in (14).

Theorem 1 presents a general single channel sampling
scheme. One special case of this framework is the one proposed

by Vetterli et al. in [3] in which , where
and . In this case is an ideal

low-pass filter of bandwidth with

(16)

Clearly, (16) satisfies the general condition in (11) with
and .

Note that since this filter is real valued it must satisfy
, i.e., the indices come in pairs except for . Since

is part of the set , in this case the cardinality
must be odd valued so that samples, rather
than the minimal rate .

The ideal low-pass filter is bandlimited and therefore has infi-
nite time-support, so that it cannot be extended to finite and infi-
nite streams of pulses. In the next section we propose a class of
nonbandlimited sampling kernels, which exploit the additional
degrees of freedom in condition (11) and have compact support
in the time domain. The compact support allows to extend this
class to finite and infinite streams, as we show in Sections III
and IV, respectively.

C. Compactly Supported Sampling Kernels

Consider the following SoS class which consists of a sum of
sincs in the frequency domain:

(17)

where . The filter in (17) is real valued if and
only if and for all . Since
for each sinc in the sum

(18)

the filter satisfies (11) by construction. Switching to the
time domain

(19)

which is clearly a time compact filter with support .
The SoS class in (19) may be extended to

(20)

where and is any function satisfying

otherwise.
(21)

This more general structure allows for smooth versions of the
rect function, which is important when practically implementing
analog filters.

The function represents a class of filters determined by
the parameters . These degrees of freedom offer a filter
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Fig. 2. The filter ���� with all coefficients � � �.

design tool where the free parameters may be opti-
mized for different goals, e.g., parameters which will result in
a feasible analog filter. In Theorem 2 below, we show how to
choose to minimize the mean-squared error (MSE) in the
presence of noise.

Determining the parameters may be viewed from
a more empirical point of view. The impulse response of any
analog filter having support may be written in terms of a win-
dowed Fourier series as

(22)

Confining ourselves to filters which satisfy , we
may truncate the series and choose

(23)

as the parameters of in (19). With this choice, can
be viewed as an approximation to . Notice that there is an
inherent tradeoff here: using more coefficients will result in a
better approximation of the analog filter, but in turn will require
more samples, since the number of samples must be greater
than the cardinality of the set .

To demonstrate the filter we first choose
and set all coefficients to one, resulting

in

(24)

where the Dirichlet kernel is defined by

(25)

The resulting filter for and , is depicted in
Fig. 2. This filter is also optimal in an MSE sense for the case

, as we show in Theorem 2. In Fig. 3 we plot for
the case in which the ’s are chosen as a length- symmetric

Hamming window

(26)

Notice that in both cases the coefficients satisfy and
therefore, the resulting filters are real valued.

In the presence of noise, the choice of will effect the
performance. Consider the case in which digital noise is added
to the samples , so that , with denoting a white
Gaussian noise vector. Using (13),

(27)

where is a diagonal matrix, having on its diagonal. To
choose the optimal we assume that the are uncorrelated
with variance , independent of and that are uni-
formly distributed in . Since the noise is added to the sam-
ples after filtering, increasing the filter’s amplification will al-
ways reduce the MSE. Therefore, the filter’s energy must be nor-
malized and we do so by adding the constraint .
Under these assumptions, we have the following theorem.

Theorem 2: The minimal MSE of a linear estimator of from
the noisy samples in (27) is achieved by choosing the coeffi-
cients

(28)

where and are arranged in an in-
creasing order of

(29)

and is the smallest index for which .
Proof: See the Appendix.

An important consequence of Theorem 2 is the following
corollary.
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Fig. 3. The filter ���� with Hamming window coefficients.

Corollary 1: If then the optimal
coefficients are .

Proof: It is evident from (28) that if then
. To satisfy the trace constraint , cannot be

chosen such that all . Therefore, for all
.

From Corollary 1 it follows that when , the op-
timal choice of coefficients is for all and . We there-
fore use this choice when simulating noisy settings in the next
section.

Our sampling scheme for the periodic case consists of sam-
pling kernels having compact support in the time domain. In the
next section we exploit the compact support of our filter and ex-
tend the results to the finite stream case. We will show that our
sampling and reconstruction scheme offers a numerically stable
solution, with high noise robustness.

D. Simulations

1) Demonstration of Our Sampling Scheme: To demonstrate
our results, we consider an input consisting of de-
layed and weighted versions of a Gaussian pulse

(30)

with parameter and period . The time-de-
lays and amplitudes were chosen randomly. In order to demon-
strate near-critical sampling we choose the set of indices

with cardinality . We filter
with of (26). The filter output is sampled uniformly
times, with sampling period , where .
The sampling process is depicted in Fig. 4. The vector is
obtained using (14) and the delays and amplitudes are deter-
mined by the annihilating filter method. Reconstruction results
are depicted in Fig. 5. The estimation and reconstruction are
both exact to numerical precision.

Analog filtering operations are carried out by discrete approx-
imations over a fine grid. The analog signal and filters are mim-
icked by high rate digital signals. Since the sampling rate which
constructs the fine grid is between 2 and 3 orders of magnitude

higher than the final sampling rate , the simulations reflect very
well the analog results.

2) Noisy Case: We now consider the case in which the sam-
ples are corrupted by noise. Our signal consists of pulses

. The period was set to ,
and samples were taken, sampled uniformly
with sampling period . We choose given by
(24). As explained earlier, only the values of the filter at points

affect the samples (see (11)). Since the values
of the filter at the relevant points coincide and are equal to one
for the low-pass filter [3] and , the resulting samples for
both settings are identical. Therefore, we present results for our
method only and state that the exact same results are obtained
using the approach of [3].

In our setup white Gaussian noise with variance is added
to the samples, where we define the SNR as

(31)

with denoting the clean samples. In our experiments the noise
variance is set to give the desired SNR.

The simulation consists of 1000 experiments for each SNR,
where in each experiment a new noise vector is created. We
choose and , where these vec-
tors remain constant throughout the experiments. We define the
error in time-delay estimation as the average of , where

and denote the true and estimated time-delays, respectively,
sorted in increasing order. The error in amplitudes is similarly
defined by . In Fig. 6 we show the error as a function of
SNR for both delay and amplitude estimation. Estimation of the
time-delays is the main interest in FRI literature, due to special
nonlinear methods required for delay recovery. Once the delays
are known, the standard least-squares method is typically used
to recover the amplitudes, therefore, we focus on delay estima-
tion in the sequel.

Finally, for the same setting we can improve reconstruction
accuracy at the expense of oversampling, as illustrated in Fig. 7.
Here we show recovery performance for oversampling factors
of 1, 2, 4, and 8. The oversampling was exploited using the total
least-squares method, followed by Cadzow’s iterative denoising
(both described in detail in [10]).
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Fig. 4. Compressed samples of pulse streams. (a) Original periodic signal consisting of 5 Gaussians (3 periods are shown). (b) Sampling filter. (c) Low rate
samples depicted over the filtered signal.

Fig. 5. (a) Estimated time-delays and amplitudes depicted over the original signal. (b) Reconstructed signal versus original one. The reconstruction is exact to
numerical precision.

III. FINITE STREAM OF PULSES

A. Extension of SoS Class

Consider now a finite stream of pulses, defined as

(32)

where, as in Section II, is a known pulse shape and
are the unknown delays and amplitudes. The

time-delays are restricted to lie in a finite time interval
. Since there are only degrees of freedom, we wish to

design a sampling and reconstruction method which perfectly
reconstructs from samples. In this section we assume
that the pulse has finite support , i.e.

(33)

This is a rather weak condition, since our primary interest is in
very short pulses which have wide, or even infinite, frequency
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Fig. 6. Performance as a function of SNR, using our periodic approach. Estimation error in (a) delays and (b) amplitudes.

Fig. 7. The effect of oversampling on estimation error. Oversampling by a
factor of 1, 2, 4, and 8.

support and therefore cannot be sampled efficiently using clas-
sical sampling results for bandlimited signals. We now investi-
gate the structure of the samples taken in the periodic case and
design a sampling kernel for the finite setting which obtains pre-
cisely the same samples , as in the periodic case.

In the periodic setting, the resulting samples are given by (10).
Using of (19) as the sampling kernel we have

(34)

where we defined

(35)

Since in (19) vanishes for all and satisfies
(33), the support of is , i.e.

(36)

Using this property, the summation in (34) will be over nonzero
values for indices satisfying

(37)

Sampling within the window , i.e., and
noting that the time-delays lie in the interval

, (37) implies that

(38)

Here we used the triangle inequality and the fact that
in our setting. Therefore,

(39)

i.e., the elements of the sum in (34) vanish for all but the
values in (39). Consequently, the infinite sum in (34) reduces to
a finite sum over so that (34) becomes

(40)

where in the last equality we used the linearity of the inner
product. Defining a function which consists of periods
of

(41)

we conclude that

(42)

Therefore, the samples can be obtained by filtering the ape-
riodic signal with the filter prior to sampling. This
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Fig. 8. Application of the filter � ��� on a finite stream of � � � ����	
.

filter has compact support equal to . Since the finite
setting samples (42) are identical to those of the periodic case
(34), recovery of the delays and amplitudes is performed exactly
the same as in the periodic setting.

We summarize this result in the following theorem.
Theorem 3: Consider the finite stream of pulses given by

where has finite support . Choose a set of consecutive
indices for which . Then, samples
given by

where is defined in (39) and is compactly supported
and defined by (41) [based on the filter in (17)], uniquely
determine the signal as long as .

If, for example, the support of satisfies then
we obtain from (39) that . Therefore, the filter in this case
would consist of 3 periods of

(43)

Practical implementation of the filter may be carried out using
delay-lines. The relation of this scheme to previous approaches
will be investigated in Section V.

B. Simulations

1) Demonstration of the Sampling Scheme: The input signal
consists of delayed and weighted versions of the

pulse . The delays and weights were chosen ran-
domly. We choose , so that .
Since the support of satisfies the parameter in
(39) equals 1 and therefore we filter with defined in
(43). The coefficients were all set to one. The output
of the filter is sampled uniformly times, with sampling pe-
riod , where . Perfect reconstruction

Fig. 9. High-order problems: Application of the filter � ��� on a finite stream
of � � �� ����	
.

is achieved as can be seen in Fig. 8. The estimation is exact to
numerical precision.

2) High-Order Problems: The same simulation was carried
out with diracs. The results are shown in Fig. 9. Here
again, the reconstruction is perfect even for large .

3) Noisy Case: We now consider the performance of our
method in the presence of noise. In addition, we compare our
performance to the B-spline and E-spline methods proposed in
[13] and to the Gaussian sampling kernel [3]. We examine 4 sce-
narios, in which the signal consists of , 3, 5, 20 diracs1. In
our setup, the time-delays are equally distributed in the window

, with and remain constant throughout the experi-
ments. All amplitudes are set to one.

The index set of the SoS filter is . Both
B-splines and E-splines are taken of order and for
E-splines we use purely imaginary exponents, equally dis-
tributed around the complex unit circle. The sampling period
for all methods is .

The method of noise corruption is the same as in
Section II-D-II. In order to maintain the same SNR condi-
tions throughout all methods, the noise level is chosen with
respect to the resulting sequence of samples. In other words,

in (31) is method-dependent and is determined by the
desired SNR and the samples of the specific technique. Hard
thresholding was implemented in order to improve the spline
methods, as suggested by the authors in [13]. The threshold
was chosen to be , where is the standard deviation of
the white Gaussian noise. For the Gaussian sampling kernel the
parameter was optimized and took on the value of ,
0.28, 0.32, 0.9, respectively.

The results are given in Fig. 10. For all methods
are stable, where E-splines exhibit better performance than
B-splines and Gaussian and SoS approaches demonstrate the
lowest errors. As the value of grows, the advantage of the
SoS filter becomes more prominent, where for , the

1Due to computational complexity of calculating the time-domain expression
for high-order E-splines, the functions were simulated up to order 9, which al-
lows for � � � ��
�
.
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Fig. 10. Performance in the presence of noise: Finite stream case. Our method versus B-spline, E-spline [13], and Gaussian [3] sampling kernels. (a) � � � dirac
pulses are present. (b) � � � pulses. (c) High value of � � � pulses. (d) Performance for a very high value of � � �� (without E-spline simulation, due to
computational complexity of calculating the time-domain expression for high values of �).

performance of Gaussian and both spline methods deteriorate
and have errors approaching the order of . In contrast, the
SoS filter retains its performance nearly unchanged even up to

, where the B-spline and Gaussian methods are unstable.
The improved version of the Gaussian approach presented in
[12] would not perform better in this high-order case, since it
fails for , as noted by the authors. A comparison of our
approach to previous methods will be detailed in Section V.

IV. INFINITE STREAM OF PULSES

We now consider the case of an infinite stream of pulses

(44)

We assume that the infinite signal has a bursty character, i.e., the
signal has two distinct phases: (a) bursts of maximal duration
containing at most pulses and (b) quiet phases between bursts.
For the sake of clarity we begin with the case . For
this choice the filter in (41) reduces to of (43).

Since the filter has compact support we are as-
sured that the current burst cannot influence samples taken
seconds before or after it. In the finite case we have confined
ourselves to sampling within the interval . Similarly, here,
we assume that the samples are taken during the burst duration.

Fig. 11. Bursty signal ����. Spacing of ���� between bursts ensures that the
influence of the current burst ends before taking the samples of the next burst.
This is due to the finite support, �� of the sampling kernel � ����.

Therefore, if the minimal spacing between any two consecutive
bursts is , then we are guaranteed that each sample taken
during the burst is influenced by one burst only, as depicted in
Fig. 11. Consequently, the infinite problem can be reduced to a
sequential solution of local distinct finite order problems, as in
Section III. Here the compact support of our filter comes into
play, allowing us to apply local reconstruction methods.

In the above argument we assume we know the locations
of the bursts, since we must acquire samples from within the
burst duration. Samples outside the burst duration are contami-
nated by energy from adjacent bursts. Nonetheless, knowledge
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of burst locations is available in many applications such as syn-
chronized communication where the receiver knows when to
expect the bursts, or in radar or imaging scenarios where the
transmitter is itself the receiver.

We now state this result in a theorem.
Theorem 4: Consider a signal which is a stream of bursts

consisting of delayed and weighted diracs. The maximal burst
duration is and the maximal number of pulses within each
burst is . Then, the samples given by

where is defined by (43), are a sufficient characterization
of as long as the spacing between two adjacent bursts is
greater than and the burst locations are known.

Extending this result to a general pulse is quite straight-
forward, as long as is compactly supported with support
and we filter with as defined in (41) with the appropriate

from (39). If we can choose a set of consecutive indices for
which and we are guaranteed that
the minimal spacing between two adjacent bursts is greater than

, then the above theorem holds.

V. RELATED WORK

In this section we explore the relationship between our ap-
proach and previously developed solutions [3], [10], [13], and
[14].

A. Periodic Case

The work in [3] was the first to address efficient sampling of
pulse streams, e.g., diracs. Their approach for solving the peri-
odic case was ideal lowpass filtering, followed by uniform sam-
pling, which allowed to obtain the Fourier series coefficients of
the signal. These coefficients are then processed by the annihi-
lating filter to obtain the unknown time-delays and amplitudes.
In Section II, we derived a general condition on the sampling
kernel (11), under which recovery is guaranteed. The lowpass
filter of [3] is a special case of this result. The noise robustness
of both the lowpass approach and our more general method is
high as long as the pulses are well separated, since reconstruc-
tion from Fourier series coefficients is stable in this case. Both
approaches achieve the minimal number of samples.

The lowpass filter is bandlimited and consequently has infi-
nite time-support. Therefore, this sampling scheme is unsuitable
for finite and infinite streams of pulses. The SoS class introduced
in Section II consists of compactly supported filters which is
crucial to enable the extension of our results to finite and infi-
nite streams of pulses. A comparison between the two methods
is shown in Table I.

B. Finite Pulse Stream

The authors of [3] proposed a Gaussian sampling kernel for
sampling finite streams of diracs. The Gaussian method is nu-
merically unstable, as mentioned in [12], since the samples are
multiplied by a rapidly diverging or decaying exponent. There-
fore, this approach is unsuitable for . Modifications pro-
posed in [12] exhibit better performance and stability. However,
these methods require substantial oversampling and still exhibit
instability for .

TABLE I
PERIODIC CASE—COMPARISON WITH PREVIOUS WORK.

In [13] the family of polynomial reproducing kernels was in-
troduced as sampling filters for the model (32). B-splines were
proposed as a specific example. The B-spline sampling filter en-
ables obtaining moments of the signal, rather than Fourier co-
efficients. The moments are then processed with the same an-
nihilating filter used in previous methods. However, as men-
tioned by the authors, this approach is unstable for high values
of . This is due to the fact that in contrast to the estimation of
Fourier coefficients, estimating high-order moments is unstable,
since unstable weighting of the samples is carried out during the
process.

Another general family introduced in [13] for the finite model
is the class of exponential reproducing kernels. As a specific
case, the authors propose E-spline sampling kernels. The CTFT
of an E-spline of order is described by

(45)

where are free parameters. In order to
use E-splines as sampling kernels for pulse streams, the authors
propose a specific structure on the ’s, . Choosing
exponents having a nonvanishing real part results in unstable
weighting, as in the B-spline case. However, choosing the spe-
cial case of pure imaginary exponents in the E-splines, already
suggested by the authors, results in a reconstruction method
based on Fourier coefficients, which demonstrates an interesting
relation to our method. The Fourier coefficients are obtained by
applying a matrix consisting of the exponent spanning coeffi-
cients , (see [13]), instead of our Vandermonde matrix re-
lation (14). With this specific choice of parameters the E-spline
function satisfies (11).

Interestingly, with a proper choice of spanning coefficients, it
can be shown that the SoS class can reproduce exponentials with
frequencies and therefore satisfies the general ex-
ponential reproduction property of [13]. However, the SoS filter
proposes a new sampling scheme which has substantial advan-
tages over existing methods including E-splines. The first ad-
vantage is in the presence of noise, where both methods have
the following structure:

(46)

where is the noise vector. While the Fourier coefficients
vector is common to both approaches, the linear transforma-
tion is method dependent and therefore the sample vector
is different. In our approach with of (24), is the DFT
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TABLE II
FINITE CASE—COMPARISON

matrix, which for any order has a condition number of 1.
However, in the case of E-splines the transformation matrix

consists of the E-spline exponential spanning coefficients,
which has a much higher condition number, e.g., above 100
for . Consequently, some Fourier coefficients will have
much higher values of noise than others. This scenario of
high variance between noise levels of the samples is known
to deteriorate the performance of spectral analysis methods
[11], the annihilating filter being one of them. This explains
our simulations which show that the SoS filter outperforms the
E-spline approach in the presence of noise.

When the E-spline coefficients are pure imaginary, it can
be easily shown that (45) becomes a multiplication of shifted
sincs. This is in contrast to the SoS filter which consists of a
sum of sincs in the frequency domain. Since multiplication in
the frequency domain translates to convolution in the time do-
main, it is clear that the support of the E-spline grows with its
order and in turn with the order of the problem . In contrast,
the support of the SoS filter remains unchanged. This observa-
tion becomes important when examining the infinite case. The
constraint on the signal in [13] is that no more than pulses be
in any interval of length , being the support of the filter
and the sampling period. Since grows linearly with , the
constraint cast on the infinite stream becomes more stringent,
quadratically with . On the other hand, the constraint on the
infinite stream using the SoS filter is independent of .

We showed in simulations that typically for the estima-
tion errors, using both B-spline and E-spline sampling kernels,
become very large. In contrast, our approach leads to stable re-
construction even for very high values of , e.g., . In
addition, even for low values of we showed in simulations
that although the E-spline method has improved performance
over B-splines, the SoS reconstruction method outperforms both
spline approaches. A comparison is described in Table II.

C. Infinite Streams

The work in [13] addressed the infinite stream case, with
. They proposed filtering the signal with a polyno-

mial reproducing sampling kernel prior to sampling. If the signal
has at most diracs within any interval of duration , where

denotes the support of the sampling filter and the sampling
period, then the samples are a sufficient characterization of the
signal. This condition allows to divide the infinite stream into
a sequence of finite case problems. In our approach the quiet
phases of between the bursts of length enable the reduc-
tion to the finite case.

Fig. 12. Recorded ultrasound imaging signal. The data was acquired by GE
healthcare’s Vivid-i ultrasound imaging system.

TABLE III
INFINITE CASE—COMPARISON

Since the infinite solution is based on the finite one, our
method is advantageous in terms of stability in high-order prob-
lems and noise robustness. However, we do have an additional
requirement of quiet phases between the bursts.

Regarding the sampling rate, the number of degrees of
freedom of the signal per unit time, also known as the rate of
innovation, is , which is the critical sampling rate.
Our sampling rate is and therefore we oversample by a
factor of 2.5. In the same scenario, the method in [13] would
require a sampling rate of , i.e., oversampling by a
factor of . Properties of polynomial reproducing kernels
imply that , therefore, for any , our method
exhibits more efficient sampling. A table comparing the various
features is shown in Table III.

Recent work [14] presented a low complexity method for
reconstructing streams of pulses (both infinite and finite cases)
consisting of diracs. However the basic assumption of this
method is that there is at most one dirac per sampling period.
This means we must have prior knowledge about a lower limit
on the spacing between two consecutive deltas, in order to
guarantee correct reconstruction. In some cases such a limit
may not exist; even if it does it will usually force us to sample
at a much higher rate than the critical one.

VI. APPLICATION—ULTRASOUND IMAGING

An interesting application of our framework is ultrasound
imaging. In ultrasonic imaging an acoustic pulse is transmitted



TUR et al.: INNOVATION RATE SAMPLING OF PULSE STREAMS 1839

Fig. 13. Applying our � ��� filter method on real ultrasound imaging data. Results are shown versus full demodulated signal which uses all 4160 samples.
Reconstructed signal: (a) using � � �� samples only and hard-thresholding; and (b) using � � �� samples without thresholding.

into the scanned tissue. The pulse is reflected due to changes in
acoustic impedance which occur, for example, at the boundaries
between two different tissues. At the receiver, the echoes are
recorded, where the time-of-arrival and power of the echo indi-
cate the scatterer’s location and strength, respectively. Accurate
estimation of tissue boundaries and scatterer locations allows for
reliable detection of certain illnesses and is therefore of major
clinical importance. The location of the boundaries is often more
important than the power of the reflection. This stream of pulses
is finite since the pulse energy decays within the tissue. We now
demonstrate our method on real 1-dimensional (1D) ultrasound
data.

The multiple echo signal which is recorded at the receiver can
be modeled as a finite stream of pulses, as in (32). The unknown
time-delays correspond to the locations of the various scatterers,
whereas the amplitudes correspond to their reflection coeffi-
cients. The pulse shape in this case is a Gaussian defined in (30),
due the physical characteristics of the electroacoustic transducer
(mechanical damping). We assume the received pulse-shape is
known, either by assuming it is unchanged through propaga-
tion, through physically modeling ultrasonic wave propagation,
or by prior estimation of received pulse. Full investigation of
mismatch in the pulse shape is left for future research.

In our setting, a phantom consisting of uniformly spaced pins,
mimicking point scatterers, was scanned by GE Healthcare’s
Vivid-i portable ultrasound imaging system [20], [21], using a
3S-RS probe. We use the data recorded by a single element in
the probe, which is modeled as a 1D stream of pulses. The center
frequency of the probe is , The width of the
transmitted Gaussian pulse in this case is and
the depth of imaging is corresponding to a time
window of2 .

In this experiment all filtering and sampling operations are
carried out digitally in simulation. The analog filter required by
the sampling scheme is replaced by a lengthy Finite Impulse
Response (FIR) filter. Since the sampling frequency of the el-
ement in the system is , which is more than 5
times higher than the Nyquist rate, the recorded data represents

2The speed of sound within the tissue is 1550 m/sec.

the continuous signal reliably. Consequently, digital filtering of
the high-rate sampled data vector (4160 samples) followed by
proper decimation mimics the original analog sampling scheme
with high accuracy. The recorded signal is depicted in Fig. 12.
The band-pass ultrasonic signal is demodulated to baseband,
i.e., envelope-detection is performed, before inserted into the
process.

We carried out our sampling and reconstruction scheme on
the aforementioned data. We set , looking for the strongest
4 echoes. Since the data is corrupted by strong noise we over-
sampled the signal, obtaining twice the minimal number of sam-
ples. In addition, hard-thresholding of the samples was imple-
mented, where we set the threshold to 10% of the maximal
value. We obtained samples by decimating the output of
the lengthy FIR digital filter imitating from (43), where
the coefficients were all set to one. In Fig. 13(a) the recon-
structed signal is depicted versus the full demodulated signal
using all 4160 samples. Clearly, the time-delays were estimated
with high precision. The amplitudes were estimated as well,
however the amplitude of the second pulse has a large error.
This is probably due to the large values of noise present in its
vicinity. However, as mentioned earlier, the exact locations of
the scatterers is often more important than the accurate reflec-
tion coefficients. We carried out the same experiment only now
oversampling by a factor of 4, resulting in samples.
Here no hard-thresholding is required. The results are depicted
in Fig. 13(b) and are very similar to our previous results. In both
simulations, the estimation error in the pulse location is around
0.1 mm.

Current ultrasound imaging technology operates at the high
rate sampled data, e.g., in our setting. Since
there are usually 100 different elements in a single ultrasonic
probe each sampled at a very high rate, data throughput becomes
very high and imposes high computational complexity to the
system, limiting its capabilities. Therefore, there is a demand
for lowering the sampling rate, which in turn will reduce the
complexity of reconstruction. Exploiting the parametric point
of view, our sampling scheme reduces the sampling rate by 2
orders of magnitude, from 4160 to around 30 samples in our
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setting, while estimating the locations of the scatterers with high
accuracy.

VII. CONCLUSIONS

We presented efficient sampling and reconstruction schemes
for streams of pulses. For the case of a periodic stream of pulses,
we derived a general condition on the sampling kernel which al-
lows a single-channel uniform sampling scheme. Previous work
[3] is a special case of this general result. We then proposed a
class of filters, satisfying the condition, with compact support.
Exploiting the compact support of the filters, we constructed a
new sampling scheme for the case of a finite stream of pulses.
Simulations show this method exhibits better performance than
previous techniques [3] and [13], in terms of stability in high-
order problems and noise robustness. An extension to an infi-
nite stream of pulses was also presented. The compact support
of the filter allows for local reconstruction and thus lowers the
complexity of the problem. Finally, we demonstrated the advan-
tage of our approach in reducing the sampling and processing
rate of ultrasound imaging, by applying our techniques to real
ultrasound data.
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APPENDIX

PROOF OF THEOREM 2

The MSE of the optimal linear estimator of the vector from
the measurement vector is known to be [22]

(47)

The covariance matrices in our case are

(48)

(49)

where we used (27) and the fact that since is
a white Gaussian noise vector. Under our assumptions on
and , denoting and using (5)

(50)

Denoting by a diagonal matrix with element
we have

(51)

Since the first term of (47) is independent of , minimizing
the MSE with respect to is equivalent to maximizing the
second term in (47). Substituting (48), (49) and (51) into this
term, the optimal is a solution to

(52)

Using the matrix inversion formula [23],

(53)

It is easy to verify from the definition of in (13) that

(54)

Therefore, the objective in (52) equals

(55)

where we used the fact that and are diagonal.
We can now find the optimal by maximizing (55), which

is equivalent to minimizing the negative term

(56)

Denoting , (56) becomes a convex optimization
problem

(57)

subject to

(58)

(59)

To solve (57) subject to (58) and (59), we form the Lagrangian:

(60)
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where from the Karush-Kuhn-Tucker (KKT) conditions [24],
and . Differentiating (60) with respect to

and equating to 0

(61)

so that , since by construction of (see Theorem
1). If then and therefore, from
KKT. If then from (61) and

(62)

The optimal is therefore

(63)

where is chosen to satisfy (59). Note that from (63),
if and , then as well, since are in
an increasing order. We now show that there is a unique that
satisfies (59). Define the function

(64)

so that is a root of . Since the ’s are in an increasing
order, . It is clear from (63) that is
monotonically decreasing for . In ad-
dition, for and for

. Thus, there is a unique for which (59) is satisfied.
Substituting (63) into (59) and denoting by the smallest

index for which , we have

(65)

completing the proof of the theorem.
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