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Multichannel Sampling of Pulse Streams at the
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Kfir Gedalyahu, Ronen Tur, and Yonina C. Eldar, Senior Member, IEEE

Abstract—We consider minimal-rate sampling schemes for in-
finite streams of delayed and weighted versions of a known pulse
shape. The minimal sampling rate for these parametric signals is
referred to as the rate of innovation and is equal to the number
of degrees of freedom per unit time. Although sampling of infinite
pulse streams was treated in previous works, either the rate of in-
novation was not achieved, or the pulse shape was limited to Diracs.
In this paper we propose a multichannel architecture for sampling
pulse streams with arbitrary shape, operating at the rate of inno-
vation. Our approach is based on modulating the input signal with
a set of properly chosen waveforms, followed by a bank of integra-
tors. This architecture is motivated by recent work on sub-Nyquist
sampling of multiband signals. We show that the pulse stream can
be recovered from the proposed minimal-rate samples using stan-
dard tools taken from spectral estimation in a stable way even at
high rates of innovation. In addition, we address practical imple-
mentation issues, such as reduction of hardware complexity and
immunity to failure in the sampling channels. The resulting scheme
is flexible and exhibits better noise robustness than previous ap-
proaches.

Index Terms—Analog-to-digital conversion, finite rate of inno-
vation, sub-Nyquist sampling, time delay estimation.

I. INTRODUCTION

D IGITAL processing has become ubiquitous, and is the
most common way to process analog signals. Processing

analog signals digitally must be preceded by a sampling stage,
carefully designed to retain the important features of the analog
signal relevant for the processing task at hand. The well known
Shannon-Nyquist theorem states that in order to perfectly recon-
struct an analog signal from its samples, it must be sampled at
the Nyquist rate, i.e., twice its highest frequency. This assump-
tion is required when the only knowledge on the signal is that it
is bandlimited. Other priors on signal structure [1], [2], which
include subspace [3]–[5], sparsity [6]–[8], or smoothness priors
[1], [9], [10], can lead to more efficient sampling.

An interesting class of structured signals was suggested by
Vetterli et al. [11], [12], who considered signals with a finite
number of degrees of freedom per unit time, termed by the au-
thors as signals with finite rate of innovation (FRI). For such
models, the goal is to design a sampling scheme operating at the
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innovation rate, which is the minimal possible rate from which
perfect recovery is possible. A special case that was treated in
detail are signals consisting of streams of short pulses. Pulse
streams are prevalent in applications such as bio-imaging [13],
neuronal activity, and ultrawideband communications. Since the
pulses are highly compact in time, standard sampling methods
require very high sampling rates. The main idea is to exploit the
fact that the pulse shape is known, in order to characterize such
signals by the time-delays and amplitudes of the various pulses.
Targeting these parameters allows to reduce the sampling rate
way beyond that dictated by the Shannon-Nyquist theorem. In
fact, it was shown in [14] that the sampling rate can also be re-
duced for short pulses with unknown shape.

Following this parametric point of view, a sampling scheme
for periodic streams of pulses was developed in [11], [12], which
operates at the innovation rate. It relies on the observation that
the time delays and amplitudes can be recovered from a set of
the signal’s Fourier series coefficients. This follows from the
fact that in the frequency domain, the problem translates into es-
timating the frequencies and amplitudes of a sum of complex si-
nusoids (cisoids), a problem which has been treated extensively
in the context of spectral estimation [15].

In practical applications finite and infinite streams are usually
encountered, rather than periodic streams. For the finite case
Gaussian [11], and polynomials or exponentials reproducing
sampling kernels [16], were introduced. The approaches based
on the first two kernels, are unstable for high rates of innova-
tions [13]. An alternative sampling scheme, based on a new
family of time-limited filters, was presented in [13]. This ap-
proach exhibits better noise robustness than previous methods,
and is stable even for high model orders. Exploiting the com-
pact support of the sampling kernels in [16], [13], both methods
were extended to the infinite case. Unfortunately, neither tech-
niques achieve the minimal sampling rate, which is the rate of
innovation, for infinite pulse streams.

All previous methods were composed of a single sampling
channel. Multichannel sampling schemes offer additional de-
grees of freedom which can be utilized to achieve the rate of
innovation for the infinite setting. In [17] a multichannel exten-
sion of the method in [16] was presented. This scheme allows
reduced sampling rate in each channel, but overall sampling rate
similar to [16]. Another multichannel system, composed of two
first-order resistor-capacitor (RC) networks, was proposed in
[18]. However, this approach assumed that there is a single pulse
per sampling period, an assumption which limits the method’s
time resolution. Two alternative multichannel methods, were
proposed in [19] and [20]. These approaches, which are based
on a chain of integrators [19] and exponential filters [20], allow
only sampling of infinite streams of Diracs at the rate of inno-
vation. In addition, we show in simulations that these methods
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are unstable, especially for high rates of innovation. An alterna-
tive scheme, proposed in [21], can operate at the rate of inno-
vation for pulses with arbitrary shape. However, this approach
constrains the delays to be constant in each period. To the best
of our knowledge, a stable minimal-rate sampling scheme for
infinite pulse streams, with arbitrary shape, is still lacking.

Our first contribution treats finite pulse streams. We design
a multichannel sampling system, based on oscillators, mixers
and integrators. In each channel the signal is modulated by an
appropriate waveform, followed by integration over a compact
time interval. We derive conditions which guarantee that the
output of each channel is a mixture of the Fourier coefficients
of the signal. By properly choosing the mixing parameters, we
show that the Fourier coefficients can be obtained from the sam-
ples. Once the set of Fourier coefficients is known, we use stan-
dard spectral estimation tools in order to recover the unknown
times and amplitudes. As we show, the mixing scheme enables
simple and practical generation of modulating waveforms. Fur-
thermore, mixing the coefficients allows recovering the signal
even when one or more sampling channels fails.

Integration over a finite interval enables a simple extension to
the infinite setting. Our infinite sampling approach leads to per-
fect reconstruction of the signal, while sampling at the rate of
innovation. In addition, our scheme can accommodate general
pulse shapes with finite length support. As we show in simula-
tions, our approach exhibits better noise robustness compared to
previous methods, and allows sampling at high rates of innova-
tion. We also discuss a special case of infinite streams of pulses
having a shift-invariant (SI) structure, a model presented in [21],
and compare our method with the one in [21]. Finally, we de-
scribe how to practically generate the modulating waveforms
and derive conditions on these waveforms which guarantee per-
fect reconstruction of the signal.

The scheme derived in this work follows ideas of a recently
proposed sampling methodology for structured analog signals,
termed Xampling [22], [23], [14]. This framework utilizes
the signal model in order to reduce the sampling rate below
the Nyquist rate. A pioneer sub-Nyquist system for multiband
signals [7], referred to as the modulated wideband converter
(MWC), was proposed in [24]. Although treating a different
signal model, our modulation scheme is based on concepts
presented in [24]. Both works share a similar analog front-end,
so that the hardware prototype of the MWC, designed in [22],
can also be used to implement our method.

The remainder of this paper is organized as follows. In
Section II we derive a multichannel scheme for finite pulse
streams. Section III extends our results to the infinite case.
We discuss the generation of the modulating waveforms in
Section IV, and present a practical sampling scheme which can
be implemented in hardware. In Section V we discuss in more
details the relations of our results to previous work. Numerical
experiments are described in Section VI.

II. FINITE STREAMS OF PULSES

A. Problem Formulation

Throughout the paper, we denote matrices and vectors by bold
font, with lowercase letters corresponding to vectors and up-
percase letters to matrices. The th element of a vector is

written as , and denotes the th element of a matrix
. Superscripts and represent complex conju-

gation, transposition and conjugate transposition, respectively.
The Moore-Penrose pseudoinverse of a matrix is written as

. We denote by a diagonal matrix having the el-
ements of the vector on its diagonal. The continuous-time
Fourier transform (CTFT) of a continuous-time signal

is defined by .
Consider the finite stream of pulses

(1)

where is a known pulse shape, are the unknown
delays and amplitudes, and is a continuous-time interval in

. The pulse can be arbitrary as long as

(2)

i.e., the signal is confined to the time-window . This
condition suggests that the support of the pulse has to be finite
and smaller than . In such cases the effective Nyquist rate will
be quite large since will have a large bandwidth. However,
the sampling rate can be reduced below the Nyquist rate, by
noticing that is uniquely defined by the delays and ampli-
tudes. Since has degrees of freedom, , at least

samples are required in order to represent the signal. Our
goal is to design a sampling and reconstruction method which
perfectly recovers from this minimal number of samples.

B. Relation to Model-Based Complex Sinusoids Estimation

Our sampling problem can be related to the well known
problem of a model-based complex sinusoids (cisoids) param-
eter estimation. This approach was originally taken by Hou and
Wu [25], who were the first to show that time delay estimation
can be converted into a frequency estimation of a sum of cisoids
[15]. This follows from noticing that delays in the time do-
main are converted into modulations in the frequency domain.
However, their method relied on Nyquist rate sampling of the
signal, and their derivations were only approximate. Vetterli et
al. [11] addressed this problem from an efficient sampling point
of view, and derived a low-rate sampling and reconstruction
scheme for periodic streams of Diracs. Their method was based
on the same fundamental relation between the delays in time
and modulations in frequency. Following a similar path, we
show that once a set of Fourier coefficients of the signal are
known, the delays can be retrieved using sinusoidal estima-
tion methods. We then design low-rate sampling schemes for
obtaining the Fourier coefficients.

Since is confined to the interval , it can be
expressed by its Fourier series

(3)

where

(4)
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Substituting (1) into (4) we obtain

(5)

where the second equality stems from the condition in (2), and
denotes the CTFT of .

Denote by a set of consecutive indices for which
. We require that such a set exists,

which is usually the case for short time-support pulses .
Denote by the diagonal matrix with th entry

, and by the matrix with th
element , where is the vector of the
unknown delays. In addition denote by the length- vector
whose th element is , and by the length- vector whose

th element is . We may now write (5) in matrix form as

(6)

The matrix is invertible by construction, and therefore we can
define , which satisfies

(7)

Addressing the th element of the vector in (7) directly, we
obtain

(8)

Given the vector , (7) conforms with the standard problem
of finding the frequencies and amplitudes of a sum of cisoids.
The time-delays can be estimated using nonlinear techniques,
e.g., the annihilating filter [11], matrix-pencil [26], Kumaresan
and Tufts method [27] or ESPRIT [28] (see [15] for a review of
this topic), as long as and the time-delays are distinct,
i.e., for all . Once the time-delays are known, the
linear set of (7) may be solved via least-squares for the unknown
amplitudes. Due to the Vandermonde form of , it is left
invertible as long as , so that .

C. Direct Multichannel Sampling

As we have seen, given a vector of Fourier series co-
efficients , we may use standard tools from spectral analysis to
determine the set . In practice, the signal is sampled
in the time-domain, and therefore we do not have direct access
to samples of . Our goal now is to design a sampling scheme
which will allow to obtain the vector from time-domain sam-
ples.

For simplicity, we set to be an odd number, and choose
the set . However, our results ex-
tend to any set of consecutive indices, as long as .
The Fourier coefficients can be obtained using the multi-

Fig. 1. Multichannel direct sampling of the Fourier series coefficients
����� � � �.

channel sampling scheme depicted in Fig. 1. Each channel con-
sists of modulating with a complex exponential, followed
by an integrator over the window . The sample taken by
the th channel is exactly , as in (4). This direct sampling
scheme is straightforward, and may be implemented using 3
basic building blocks: oscillators, mixers and integrators. How-
ever, from a practical point of view this approach has the dis-
advantage that it requires many oscillators, having frequencies
which must be exact multiples of some common base frequency.

D. Mixing the Fourier Coefficients

We now generalize our framework, towards a more practical
sampling scheme by mixing several Fourier coefficients, rather
than limiting ourselves to one coefficient per channel. The ad-
ditional degrees of freedom offered by this extension will allow
the design of waveforms that are easy to implement. Our ap-
proach is motivated by the hardware reported in [24], where
similar modulators are used to sample multiband signals at sub-
Nyquist rates.

In addition, in real-life scenarios one or more channels might
fail, due to malfunction or noise corruption, and therefore we
lose the information stored in that channel. Unique recovery
of the signal parameters from (6), relies on having a consecu-
tive set of Fourier coefficients [12]. Hence, when using the di-
rect scheme, loss of Fourier coefficients, prevents us from re-
covering the signal. In contrast, when mixing the coefficients
we distribute the information about each Fourier coefficient be-
tween several sampling channels. Consequently, when one or
more channels fail, the required Fourier coefficients may still
be recovered from the remaining operating channels. If their
number is greater than , the signal can be still perfectly recov-
ered from the samples. We discuss this feature more thoroughly
in Section IV.

Consider a multichannel sampling scheme with channels,
as depicted in Fig. 2. In each channel, we modulate the signal
using a weighted sum of cisoids given by

(9)

where the weights vary from channel to channel. The re-
sulting sample of the th channel is

(10)
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Fig. 2. Mixing the Fourier coefficients differently in each channel.

To relate the samples and the Fourier coefficients, we define
the matrix with as its th element, and by the
length- sample vector with th element . We may now write
(10) in matrix form as

(11)

As long as has full column rank, where is a necessary
condition, we can recover from the samples by . The
direct sampling scheme presented earlier is a special case of this
more general approach, with and . In Section IV
we exploit the degrees of freedom this general scheme offers,
and present sampling schemes which can simplify the hardware
design, and are more robust to malfunctions in the sampling
channels.

We summarize this result in the following theorem.
Theorem 1: Consider a finite stream of pulses given by

where is a known pulse shape, and condition (2) is satisfied.
Choose a set of consecutive indices for which

. Consider the multichannel sampling scheme de-
picted in Fig. 2, for some choice of coefficients

. Then, the signal can be perfectly reconstructed
from the samples with

(12)

as long as , and the coefficients matrix in (11)
is left invertible.

As we discuss in Section V-A, the method in [13] can be
viewed as a special case of Fig. 2. Since our work is a general-
ization of [13], it benefits from the high noise robustness exhib-
ited by [13], in contrast to previous work [11], [16]. It should be
noted that Theorem 1 holds for a periodic pulse stream as well,
since it can be similarly represented by a Fourier series, and all
derivations remain intact.

We now demonstrate several useful modulating waveforms.

1) Cosine and Sine Waveforms: First we set . Then,
we choose the first waveforms to be , the
next to be , and the last to be the constant
function 1. Clearly, these waveforms fit the form in (9). It is
easily verified that this choice yields an invertible matrix . The
practical advantage of the mixing scheme is already evident,
since sine and cosine waves are real valued, whereas the direct
multichannel scheme requires complex exponentials.

2) Periodic Waveforms: Every periodic waveform can be
expanded into a Fourier series. Transferring such a waveform
through some shaping filter, e.g., a low-pass filter, we can reject
most of the coefficients, leaving only a finite set intact. Con-
sequently, such a scheme meets the form of (9). In Section IV
we elaborate on this concept, discuss design considerations, and
show that properly chosen periodic waveforms yield a left in-
vertible matrix .

One simple choice is periodic streams of rectangular pulses
modulated by [24]. The strength of the mixing scheme
over the direct one will be emphasized in Section IV-B. We
show that one periodic stream is sufficient for all channels,
while each channel uses a delayed version of this common
waveform. Therefore, the requirement for multiple oscillators
and the need for accurate multiples of the basic frequency,
are both removed. In addition, periodic streams are easily
designed and implemented digitally, rather than somewhat
complicated analog design of oscillators combined with analog
circuits intended to create exact frequency multiples. Finally,
if the period changes, the analog circuit has to be modified
substantially, whereas the flexibility of the digital design allows
simple modifications.

III. INFINITE STREAMS OF PULSES

A. General Model

We now consider an infinite stream of pulses defined by

(13)

We assume that there are no more than pulses in any interval
. We further assume that within

each interval condition (2) holds, and consequently, the intervals
are independent of one another. The maximal number of degrees
of freedom per unit time, also known as the rate of innovation
[11], [12], is . We now present a multichannel sampling
and reconstruction scheme which operates at the minimal rate
possible, i.e., the rate of innovation.

Consider an extension of the sampling scheme presented in
Section II-D, where we sample every seconds. Upon each
sample we reset the integrator, so that the th sample corre-
spond to an integral over the interval . The resulting sampling
scheme is depicted in Fig. 3. Since the th sample is influenced
by the interval only, the infinite problem may be reduced into
a sequence of finite streams of pulses. The resulting samples are
given by

(14)

where the vector contains the Fourier series coefficients of
the signal within the th interval, . As long as is chosen
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Fig. 3. Extended sampling scheme using modulating waveforms for an infinite
pulse stream.

so that it is left invertible, we can obtain the sequence of Fourier
series coefficients by . Extending (7) to the in-
finite case we obtain

(15)

where and are the times and amplitudes of the pulses
in the interval , respectively, and the matrix remains as in
(6). For each , (15) represents a sum of cisoids problem, and
thus may be solved as long as . By choosing

we present a sampling scheme which operates at the rate of
innovation, and allows for perfect reconstruction of an infinite
stream of pulses.

We state our result in a theorem.
Theorem 2: Consider an infinite stream of pulses given by

where is a known pulse shape. Assume that there
are no more than pulses within any interval

, and that (2) holds for all inter-
vals . Choose a set of consecutive indices for
which . Consider the multichannel
sampling scheme depicted in Fig. 3, for some choice of coef-
ficients . Then, the signal can be
perfectly reconstructed from the samples with

(16)

as long as , and the coefficients matrix in (11)
is left invertible.

To the best of our knowledge Theorem 2 presents the first
sampling scheme for pulse streams with arbitrary shape, oper-
ating at the rate of innovation. Furthermore, as we show in sim-
ulations, our method is more stable than previous approaches.

B. Stream of Pulses With Shift-Invariant Structure

We now focus on a special case of the infinite model (13), pro-
posed in [21], where the signal has an additional shift-invariant
(SI) structure. This structure is expressed by the fact that in each

period , the delays are constant relative to the beginning of the
period. Such signals can be described as

(17)

where denotes the th pulse amplitude on the th
period. Assuming condition (2) holds here as well, (15) can be
rewritten as

(18)

since now the relative delays in each period are constant. Here,
denotes the length- vector with th element .

Clearly, the condition for the general model is a suf-
ficient condition here also, however the additional prior on the
signal’s structure can be used to reduce the number of sampling
channels. The results obtained in [21], for a similar set of equa-
tions, provide the following sufficient condition for unique re-
covery of the delays and vectors from (18):

(19)

where

(20)

denotes the dimension of the minimal subspace containing the
vector set . This condition implies that in some
cases , and eventually the number of channels (since

), can be reduced beyond the lower limit for the general
model, depending on the value of .

Similar to [21], recovery of the delays from (18) can be
performed using the ESPRIT [28] or MUSIC [29] algorithms.
These approaches, known as subspace methods, require that

. In this case they achieve the lower bound of (19),
namely recover the delays using only sampling
channels. In cases where , an additional smoothing [30]
stage is required prior to using the subspace methods, and

sampling channels are needed.
To conclude, when the pulse amplitudes vary sufficiently

from period to period, which is expressed by the condition
, the common information about the delays can be uti-

lized to reduce the sampling rate to . Moreover, the
approach presented here can improve the delays estimation in
the presence of noise, compared to the one used for the general
model, since it uses the mutual information between periods,
rather than recovering the delays for each period separately.
Will demonstrate this improvement in Section IV-B.

This result is summarized in the following theorem.
Theorem 3: Consider the setup of Theorem 2, where now

The signal can be perfectly reconstructed from the samples
as long as the coefficients matrix in (11)

is left invertible and

when
when
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where denotes the dimension
of the minimal subspace containing the vector set

.

C. Channel Synchronization

The sampling scheme of Fig. 3 has two main disadvan-
tages relative to single channel-based schemes: each sampling
channel requires additional hardware components, and precise
synchronization of the channel’s sampling times is required. In
this subsection we treat the synchronization issue, and discuss
the approaches to overcome it.

One way to synchronize the channels, is on the hardware
level, for example by using a zero-delay synchronization device
[24], [31]. Such a device produces accurate trigger signals for
the samplers and integrators in all the channels. An alternative
approach is to perform a prior calibration process, in which the
relative delay of each channel is measured. The calibration can
be performed at the system manufacturing stage or during its
power-on, by stimulating the system with a known signal. As
we now show, once the time offsets between the channels are
known, they can be compensated.

Suppose that the th channel has a time offset of
relative to the optimal sampling in-

stants , where is the maximal possible offset. We
assume that for each time interval

(21)

This condition ensures that the intervals can be processed inde-
pendently using the approach we now propose.

The effective delay of the th pulse measured in the th
channel is . Substituting into (5), the th Fourier coeffi-
cient measured in the th channel satisfies

(22)

Therefore, from (10)

(23)

where we defined

(24)

From (24) we conclude that when the time offsets between the
channels are known, the effective mixing matrix of the system
is , a matrix whose th element is . The misalignment be-
tween the sampling channels can be compensated by inverting

. We will further discuss the effects of channel misalignment,
with unknown delays, in Section VI-C.

IV. MODULATION WAVEFORMS

We now thoroughly treat the example in Section II-D of gen-
erating the modulation waveforms using periodic signals. We

first address the case of general periodic waveforms, and then
focus on the special case of pulse sequences.

A. General Periodic Waveforms

Our aim is to show how to obtain the required modulating
waveforms (9) using a set of periodic functions, given by .
Such waveforms can be expressed using their Fourier series ex-
pansion as

(25)

where the th Fourier series coefficient of is given by

(26)

The sum in (25) is generally infinite, in contrast to the finite
sum in (9). Therefore, we propose filtering with a filter

which rejects the unwanted elements in the sum (25). The
filtered waveforms at the output of are given by

(27)

and are also periodic. Therefore they can be written as

(28)

where it can be easily verified that

(29)

Here denotes the CTFT of . From (29), the shaping
filter has to satisfy

nonzero

arbitrary elsewhere
(30)

so that for . This condition is similar to that ob-
tained in [13] for single channel sampling. Therefore, the class
of filters developed there, can also be used here as a shaping
filter.

Note that (30) implies that the frequency response of is
specified only on the set of discrete points , of-
fering large freedom when designing a practical analog filter.
For instance, when implementing a lowpass filter (LPF) this al-
lows a smooth transition band between the passband and the
stopband of the filter, with a width of .

The resulting scheme is depicted in Fig. 4. The corresponding
elements of the mixing matrix are given by

(31)

The invertibility of can be ensured by proper selection of the
periodic waveforms . In the next subsection we discuss one
special case, which allows simple design .
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Fig. 4. Proposed sampling scheme, using modulating waveforms.

B. Pulse Sequence Modulation

We follow practical modulation implementation ideas pre-
sented in [22], [24], and consider the set of waveforms

(32)

for , where is some pulse shape and is
a length- sequence. Our aim is to calculate the mixing matrix

, when using the filtered version of (32) as modulating wave-
forms. To this end, we first compute the Fourier series coeffi-
cients of as

(33)

where denotes the CTFT of .
Combining (33) with (31) and (29)

(34)

where we defined . The resulting matrix
can be decomposed as

(35)

where is a matrix with th element equal to
is an matrix with th element equal to , and

is a diagonal matrix with th diagonal element

(36)

From this decomposition it is clear that has to be invertible
and the matrix has to be left invertible, in order to guar-
antee the left invertibility of . We now examine each one of
these matrices.

We start with the matrix . From (30), for
. Therefore, we only need to require that

for in order for to be invertible. A necessary con-
dition for the matrix to be left invertible, is that has
full column rank. The matrix is a Vandermonde matrix, and
therefore has full column rank as long as [32]. The left
invertibility of the matrix can be ensured, by proper
selection of the sequences , where a necessary condition is
that .

We summarize our results in the following proposition.
Proposition 1: Consider the system depicted in Fig. 4, where

the modulation waveforms are given by (32). If the following
conditions hold:

1) ;
2) The frequency response of the shaping pulse satisfies

(30);
3) The frequency response of the pulse satisfies

for ;
4) The sequences are chosen such that the matrix

has a full column rank;
then the mixing matrix in (11) is left invertible.

We now give two useful configurations, that satisfy the con-
ditions of Proposition 1.

1) Single Generator: We create the th sequence, by taking
a cyclic shift of one common sequence as

(37)

where we assume . Clearly, the corresponding waveforms
can be created by using only one pulse generator, where the
waveform at the th channel is a delayed version of the generator
output, delayed by time units. This suggests, that in
contrast to the direct scheme in Fig. 1, which requires multiple
frequency sources, here only one pulse generator is required
which simplifies the hardware design. It is easy to see that with
this choice, will be a circulant matrix. Such a matrix can be
decomposed [33] as

(38)

where is a unitary discrete Fourier transform (DFT)
matrix, and is a length- vector containing the elements of
the sequence . Therefore, for to be invertible the DFT of
the sequence can not take on the value zero.

We now give an example for such a selection of the system’s
parameters. We set , and choose

(39)

The frequency response of this pulse satisfies

(40)

Therefore

(41)

which is nonzero for . In addition we choose the se-
quences as sequences of s, created from cyclic shifts
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Fig. 5. Modulating waveform in the time domain, before and after filtering.

Fig. 6. Modulating waveform in the frequency domain.

of one basic sequence, in a way that yields an invertible ma-
trix . Such rectangular pulses with alternating signs can be
easily implemented in hardware [22]. In Figs. 5 and 6, one mod-
ulating waveform is shown in the time and frequency domains,
for . The original time-domain waveform is
comprised of rectangular pulses, whereas lowpass filtering re-
sults in a smooth modulating waveform. Switching to the fre-
quency domain, the Fourier series coefficients are shaped by

, the CTFT of the pulse shape. The shaping filter frequency
response, , is designed to transfer only the Fourier coeffi-
cients whose index is a member of the set ,
suppressing all other coefficients.

2) Robustness to Sampling Channels Failure: Next we pro-
vide a setup which can overcome failures in a given number of
the sampling channels. The identification of the malfunctioning
channels is assumed to be performed by some external hard-
ware.

We consider a maximal number of malfunctioning chan-
nels and assume that . In order to ensure unique
recovery of from the remaining channels, the submatrix ,

Fig. 7. Robustness to sampling channels failure example, � � � � �� � �

��, two pulse generators.

obtained from by omitting of the corresponding rows, should
be left invertible. Since this has to be satisfied for every possible
selection of rows, we need to design such that any
rows will form a rank- matrix. Following our ideas from the
previous discussion, we demonstrate how to reduce the number
of required generators, for the current setting. For simplicity, we
assume and that two different generators are used. The
first half of the sampling channels use delayed versions of the
first generator output, and the second half uses the second gen-
erator. By proper selection of the two sequences, the condition
mentioned above can be satisfied.

We now give a numerical example for a such choice. We as-
sume and set and sampling
channels, which are based on two generators only. Each gen-
erator produces a different sequence of , chosen randomly.
In Fig. 7 we plot the log of the maximal condition number of

, obtained when going over all possible options for omitting
rows from . It can be seen that for a relatively low

condition number of the matrix is achieved in the worst case,
suggesting that its rank is as required and is not ill-condi-
tioned. Therefore, we can overcome failure in up to 6 sampling
channels, using this system. In this case the required con-
secutive Fourier coefficients can be obtained from the remaining
channels, allowing the perfect recovery of the pulses. In
contrast, when channels fail in the direct scheme of Fig. 1, a set
of consecutive Fourier coefficients cannot always be ob-
tained. Therefore, perfect recovery of the signal using methods
such as annihilating filter or matrix pencil is not guaranteed.

V. RELATED WORK

A. Single-Channel Sampling With the SoS Filter

The work in [13] considered single-channel sampling
schemes for pulse streams, based on a filter which is comprised
of a Sum of Sincs (SoS) in the frequency domain. This filter
can be expressed in the time domain as

(42)
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Fig. 8. Single-channel sampling scheme using the SoS filter.

where is the chosen index set, and the coefficients
have arbitrary nonzero values.

To explore the relation of our method to [13], we first focus
on periodic streams of pulses with period . By sampling a pe-
riodic stream of pulses using the scheme depicted in Fig. 8, the
following samples are obtained:

(43)

where is the sampling period. Using the matrix
defined in (6) only now with parameter

, and defining the diagonal matrix with th diagonal
element , (43) can be written in matrix form as

(44)

Therefore, this is a special case of our multichannel sampling
scheme in (11) with mixing matrix . The matrix

is invertible by construction, and is a Vandermonde
matrix with distinct times, so that is left-invertible as long as

. Using this choice of , the samples taken over one
period in [13], are equal to the samples at the output of the
channels in our scheme.

Exploiting the compact support of the SoS filter, the method
was extended to the finite and infinite settings as well [13]. The
extension is based on using an -fold periodic continuation of
the SoS filter , where the parameter depends on the sup-
port of the pulse-shape . For the infinite case, the samples
of the two schemes still coincide. However, since [13] is a fil-
tering based scheme, proper separation of at least between
periods is required in order to obtain independent processing of
each period. While keeping the same sampling rate of , the
model in [13] has a rate of innovation of . Hence the
single channel configuration of [13] does not achieve the rate of
innovation in the infinite case.

We now examine the modulation waveforms that result from
[13]. Since

(45)

It is easily shown that these waveforms can be expressed as

(46)

where is the periodic continuation of the SoS filter .
Therefore, in each channel the signal is modulated by a de-
layed version of the periodic SoS filter. The equivalence of the
schemes is easy to explain: sampling the convolution between
the input signal and the SoS filter in [13], is equivalent to per-
forming inner products (multiplication followed by integration)
with delayed and reflected versions of this filter. This relation
provides another valid class of modulation waveforms.

Fig. 9. Proposed sampling scheme in [21].

B. Multichannel Schemes for Shift-Invariant Pulse Streams

Another related work is [21] which treats the SI signal model
(17) presented in Section III-B. The sampling scheme proposed
in [21] is depicted in Fig. 9. In each channel, the input signal
is filtered by a band-limited sampling kernel followed
by a uniform sampler operating at a rate of . After sam-
pling, a properly designed digital filter correction bank, whose
frequency response in the DTFT domain is denoted here by

, is applied on the sampling sequences. The exact form
of this filter bank is detailed in [21]. It was shown in [21], that
the ESPRIT algorithm can be applied on the corrected samples,
in order to recover the unknown delays.

The sampling rate achieved by the method in [21] is generally
, where for certain signals it can be reduced to .

Such signals satisfy , where
the vectors contain the samples at the output of the scheme
depicted in Fig. 9. This condition is different than (19), which
directly depends on the vectors . Therefore the sampling
rate, when using the scheme in [21], can be reduced to
for different signals. This fact is not surprising, since each ap-
proach has a different analog sampling stage. In both methods,
the worst-case minimal sampling rate is .

The approach in [21] has two main advantages over the pro-
posed method in this work. The first is that condition (2) is not
required. Therefore [21] can also treat pulses with infinite time
support, in contrast to our method. Another advantage is that it
can support single channel configurations. It was shown in [21],
[34], that one sampling channel followed by a serial to parallel
converter, can be used in order to produce the parallel sampling
sequences in Fig. 9.

On the other hand, the method depicted in Fig. 3 has several
advantages over [21]. First, the equivalent stage for the digital
correction in [21], is replaced by inversion of the matrices
and , since

(47)

This operation can be viewed as a one-tap digital correction filter
bank, in contrast to the filter , which generally has a
larger number of taps. Therefore, the proposed correction stage,
is much simpler and requires lower computational complexity,
than the one in [21].

An additional advantage of our scheme, is that the approach
of [21] requires collection of an infinite number of samples, even
when the input signal contains a finite number of periods. This
requirement is due to the infinite time support of the band-lim-
ited sampling kernels. Moreover, if one is interested only in a
finite time interval of the signal, the method in [21] does not
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Fig. 10. Multiband signal model.

allow processing it separately. This is in contrast to the pro-
posed scheme, which integrates finite time intervals, and can
collect samples only from the relevant periods. We will demon-
strate this advantage in Section VI.

C. Modulated Wideband Converter

The concept of using modulation waveforms, is based on
ideas which were presented in [22]–[24] and [35]. We now
briefly review the sampling problem treated in [24] and its
relation to our setup. As we show the practical hardware imple-
mentation of both systems is similar.

The model in [24] is of multiband signals: signals whose
CTFT is concentrated on frequency bands, and the width
of each band is no greater than . The location of the bands is
unknown in advance. An example of such a signal is depicted in
Fig. 10. A low rate sampling scheme allowing recovery of such
signals at a rate of was proposed in [7]. This scheme
exploits the sparsity of multiband signals in the frequency do-
main, to reduce the sampling rate well below the Nyquist rate. In
[22]–[24], this approach was extended to a more practical sam-
pling scheme, which uses a modulation stage and referred to as
the Modulated Wideband Converter (MWC). In each channel of
the MWC, the input is modulated with some periodic waveform,
and then sampled using a LPF followed by a low rate uniform
sampler. The main idea is that in each channel, the spectrum of
the signal is scrambled, such that a portion of the energy of all
bands appears at baseband. Mixing of the frequency bands in
[24] is analogous to mixing the Fourier coefficients in Fig. 3.

We note here some differences between the methods. First,
following the mixing stage, we use an integrator in contrast to
the LPF used in [24]. This difference is a result of the different
signal quantities measured: Fourier coefficients in our work as
opposed to the frequency bands content in [24]. The second dif-
ference is in the purpose of the mixing procedure. In [24] mixing
is performed in order to reduce the sampling rate relative to the
Nyquist rate. In our setting, the mixing is used in order to sim-
plify the hardware implementation and to improve robustness to
failure in one of the sampling channels.

Nonetheless, the hardware considerations in the mixing stage
in both systems is similar. Recently, a prototype of the MWC has
been implemented in hardware [22]. This design is composed
of sampling channels, where the repetition rate of the
modulating waveforms is MHz. In each period there
are rectangular pulses. This prototype, with certain
modifications, can be used to implement our sampling scheme
as well. These modifications mainly include adding shaping fil-
ters on modulating waveforms lines, and reducing the number
of rectangular pulses in each period.

VI. SIMULATIONS

In this section we provide several experiments in which we
examine various aspects of our method. The simulations are di-
vided into 4 parts:

1) Evaluation of the performance in the presence of noise, and
comparison to other techniques;

2) Demonstration of the recovery method for pulse streams
with SI structure;

3) Evaluation of the effects of synchronization errors between
the channels;

4) Examination of the use of practical shaping filters.

A. Performance in the Presence of Noise

We demonstrate the performance of our approach in the pres-
ence of white Gaussian noise, when working at the rate of in-
novation. We compare our results to those achieved by the in-
tegrators [19] and exponential filters [20] based methods, since
these are the only approaches which can work at the same rate,
for infinite stream of pulses.

We examine three modulation waveforms presented in
Sections II-D and V-A: cosine and sine waveform (tones),
filtered rectangular alternating pulses (rectangular) and wave-
forms obtained from delayed versions of the SoS filter (SoS).
For the rectangular pulses scheme, the modulation wave-
forms are generated using a single generator, as discussed in
Section IV-B. The shaping filter is an ideal LPF with
transition band of width . Following [20], the parameters
defining the impulse response of the exponential filters are
chosen as and .

We focus on one period of the input signal, which consists
of Diracs with , and amplitudes

. We set the system parameters as
. The estimation error of the time-delays versus the SNR

is depicted in Fig. 11, for the various approaches. Evidently,
our technique outperforms the integrators and exponential fil-
ters based methods in terms of noise robustness, for all config-
urations. There is a slight advantage of 2 dB for the schemes
based on tones and SoS, over alternating pulses, where the first
two configurations have similar performance.

Turning to higher order problems, in Fig. 12 we show the re-
sults for Diracs with times chosen in the interval
and amplitudes equal one, with . The insta-
bility of the integrators and exponential filters based methods
becomes apparent in this simulation. Our approach in contrast
achieves good estimation results, demonstrating that our method
is stable even for high model orders.

The performance advantage of the tones and SoS based
schemes is now around 3.5 dB. We conclude that from a noise
robustness point of view, using multiple frequency sources or
SoS waveforms is preferable over a single pulse generator.
However, as discussed in Section II-D, pulse sequences based
schemes can be advantageous from practical implementa-
tion considerations, and reduce the hardware complexity. In
addition, the performance degradation is reasonable, and the es-
timation error is still significantly lower than that of competing
approaches. Therefore, the flexibility of our architecture, allows
the system designer to decide between better performance in
the presence of noise, or lower hardware complexity.
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Fig. 11. Performance in the presence of noise, at the rate of innovation. The
signal consists of � � � Diracs.

Fig. 12. Performance in the presence of noise, at the rate of innovation. The
signal consists of � � �� Diracs.

Next, we compare our scheme to the one presented in [16].
This approach, which is based on B-splines [36] and E-splines
[37] sampling kernels, operates at a rate higher than the rate of
innovation. According to the main theorem in [16], an infinite
stream of Diracs is uniquely determined from uniform samples
taken at the output of a B-spline or E-spline sampling kernel, if
there are at most Diracs in an interval of size . Here
is the sampling interval, and is the time support of the
sampling kernel. In our setting there are Diracs in an interval
of size requiring at least samples per period .

We choose Diracs, with delays
and amplitudes

. We compare our tones based configura-
tion to the both B-spline and E-spline techniques of [16]. The
parameters defining the E-spline kernel [16], [37] were chosen
in order to obtain real valued sampling kernels, and were tuned
empirically to obtain the best performance. For all algorithms

samples are used. In order to exploit the oversampling

Fig. 13. Performance in the presence of noise, using � � �� samples. The
signal consists of � � � Diracs.

in our approach, the Kumaresan and Tufts method [27] is used
for the delays recovery. The estimation error of the time-delays
versus SNR is depicted in Fig. 13. From the figure it can be
seen that our scheme exhibits better noise robustness than both
B-spline and E-spline based methods.

B. Sampling of Pulses With SI Structure

We now consider sampling of streams of Diracs with SI
structure. We compare our method to the one presented in [21].
For our scheme, we examine two recovery options. The first
is to process each period separately, namely, to recover the
delays from each period independently (standard recovery).
The second is to follow the approach presented in Section III-B
and to recover the common delays from all periods using the
ESPRIT [28] algorithm (SI recovery).

We consider 25 periods with Diracs per period, and
relative delays of .
The amplitudes in each period were taken as an independent
Gaussian random variables, with means
and standard deviation For the method in [21], we
chose a single channel scheme with an ideal LPF as sampling
kernel. For both methods samples per period were taken.
The technique in [21] requires theoretically infinite number of
samples, due to the infinite time support of the sampling kernel.
However, to compare between the two methods, we used only

samples (25 periods, with 8 samples per period).
The estimation error of the time-delays versus the SNR is

depicted in Fig. 14. For SNR levels above 15 dB, there is a
clear advantage to the SI recovery method, over the standard
approach. Hence, as expected, the use of the mutual informa-
tion between periods on the delays, improves the estimation
significantly. Comparing the performance of our approach to
the one of [21], it can be seen that up to SNR levels of 20 dB
both methods achieve similar performance. However, for higher
SNRs, the method in [21] suffers from a dominant error caused
by the fact that only a finite number of samples were used. This
demonstrates the advantage of our scheme, which operates on
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Fig. 14. Sampling of pulses with SI structure. The signal consists of 25 periods,
each with � � � Diracs.

finite time intervals, in cases where the signal consists of a finite
number of periods.

C. Synchronization Errors

We now study the error caused by synchronization errors be-
tween the channels. We consider sampling of Diracs,
with delays and am-
plitudes , using sampling channels. We
set the sampling time of the last channel to be shifted by
relative to the first channel. The offsets of the other channels are
drawn uniformly on the interval . We plot the standard
deviation of the estimated time delays error, as a function of the
maximal offset , for different SNR values. We note that in
this experiment, the misalignment between the sampling chan-
nels is not being compensated using the approach discussed in
Section III-C.

The results are shown in Fig. 15. The dash-dotted line denotes
the linear curve . First, it can be seen that when the syn-
chronization error is less than 10 percent of the estimation error,
the synchronization error is negligible, and the error is mainly
due to the noise. When the synchronization error becomes large,
the time delay estimation error degrades linearly. In general, the
estimation error is bounded from below by the synchronization
error (for ).

D. Practical Shaping Filters

We now explore the use of practical shaping filters, for the
rectangular pulses scheme, rather than the ideal ones used
above. Once practical filters are used, the rejection of coeffi-
cients whose index is not in the set is not perfect. We set
the shaping filter to be a Chebyshev (Type I) LPF [38]
of various orders, with ripple 3 dB. The Chebyshev filter is a
good choice for our requirements since it has a steeper roll-off
than other filters, resulting in better rejection of the undesired
coefficients. The rapid transition between the pass-band and
stopband of the Chebyshev filter comes at the expense of larger
ripple in the pass-band, however, ripple is of minor concern for
our method since it is digitally corrected when inverting the

Fig. 15. Standard deviation of the time-delays estimation error, as a function
of the maximal offset between channels, for various SNR levels.

Fig. 16. Frequency responses of the shaping filters: ideal shaping filter versus
practical Chebyshev filters.

matrix . The cutoff frequency was set to . The
frequency response of the various filters is shown in Fig. 16.

The estimation error of the time-delays versus the SNR is de-
picted in Fig. 17, for various filter orders. The simulation con-
sists of Diracs with , and am-
plitudes . Clearly, a Chebyshev filter of order 10
closely approaches the performance of an ideal LPF. In addi-
tion, for SNR levels below 50 dB, using a Chebyshev filter of
order 6 provides good approximation. Therefore, the modula-
tion waveform generation stage of our proposed method can be
implemented using practical analog filters.

VII. CONCLUSION

In this work, we proposed a new class of sampling schemes
for pulse streams. Our approach allows recovery of the delays
and amplitudes defining such a signal, while operating at the rate
of innovation. In contrast to previous works [18]–[20] which
achieved the rate of innovation, our approach supports general
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Fig. 17. Performance of practical shaping filters of various orders versus ideal
filtering.

pulse shapes, rather than Diracs only. In addition, as we demon-
strate by simulations, our method exhibits better noise robust-
ness than previous methods [16], [19], [20], and can accommo-
date high rates of innovation.

The proposed scheme is based on multiple channels, each
comprised of mixing with a properly chosen waveform fol-
lowed by an integrator. We exploit the degrees of freedom in the
waveforms selection, and provide several useful configurations,
which allow simplified hardware implementation and robust-
ness to channel failure. Using simulations we further explored
practical issues, such as effects of misalignment between the
sampling channels and usage of standard analog filters, in the
waveform generation stage.

Our method can be viewed as a part of a broader frame-
work for sub-Nyquist sampling of analog signals, referred to
as Xampling [22], [23]. We draw connections with the work in
[22]–[24], which proposed a Xampling architecture for multi-
band signals. We showed that the hardware prototype of the
analog front-end, implemented for the multiband model, can be
used in our scheme as well with certain modifications.
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