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Abstract—We address covariance estimation in the sense of
minimum mean-squared error (MMSE) when the samples are
Gaussian distributed. Specifically, we consider shrinkage methods
which are suitable for high dimensional problems with a small
number of samples (large � small �). First, we improve on the
Ledoit-Wolf (LW) method by conditioning on a sufficient statistic.
By the Rao-Blackwell theorem, this yields a new estimator called
RBLW, whose mean-squared error dominates that of LW for
Gaussian variables. Second, to further reduce the estimation
error, we propose an iterative approach which approximates the
clairvoyant shrinkage estimator. Convergence of this iterative
method is established and a closed form expression for the limit
is determined, which is referred to as the oracle approximating
shrinkage (OAS) estimator. Both RBLW and OAS estimators have
simple expressions and are easily implemented. Although the two
methods are developed from different perspectives, their structure
is identical up to specified constants. The RBLW estimator prov-
ably dominates the LW method for Gaussian samples. Numerical
simulations demonstrate that the OAS approach can perform even
better than RBLW, especially when � is much less than �. We also
demonstrate the performance of these techniques in the context of
adaptive beamforming.

Index Terms—Beamforming, covariance estimation, minimum
mean-squared error (MMSE), shrinkage.

I. INTRODUCTION

C OVARIANCE matrix estimation is a fundamental
problem in signal processing and related fields. Many

applications varying from array processing [12] to functional
genomics [17] rely on accurately estimated covariance ma-
trices. In recent years, estimation of high dimensional
covariance matrices under small sample size has attracted
considerable interest. Examples include classification on gene
expression from microarray data [17], financial forecasting
[7], [33], spectroscopic imaging [34], brain activation mapping
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from fMRI [35] and many others. Standard estimation methods
perform poorly in these large small settings. This is the
main motivation for this paper.

The sample covariance is a common estimate for the un-
known covariance matrix. When it is invertible, the sample co-
variance coincides with the classical maximum likelihood es-
timate. However, while it is an unbiased estimator, it does not
minimize the mean-squared error (MSE). Indeed, Stein demon-
strated that superior performance may be obtained by shrinking
the sample covariance [2], [3]. Since then, many shrinkage es-
timators have been proposed under different performance mea-
sures. For example, Haff [4] introduced an estimator inspired by
the empirical Bayes approach. Dey and Srinivasan [5] derived
a minimax estimator under Stein’s entropy loss function. Yang
and Berger [6] obtained expressions for Bayesian estimators
under a class of priors for the covariance. These works addressed
the case of invertible sample covariance when . Recently,
Ledoit and Wolf (LW) proposed a shrinkage estimator for the
case which asymptotically minimizes the MSE [8]. The
LW estimator is well conditioned for small sample sizes and
can thus be applied to high dimensional problems. In contrast
to previous approaches, they show that performance advantages
are distribution-free and not restricted to Gaussian assumptions.

In this paper, we show that the LW estimator can be signifi-
cantly improved when the samples are in fact Gaussian. Specifi-
cally, we develop two new estimation techniques that result from
different considerations. The first follows from the Rao-Black-
well theorem, while the second is an application of the ideas of
[11] to covariance estimation.

We begin by providing a closed form expression for the op-
timal clairvoyant shrinkage estimator under an MSE loss criteria.
This estimator is an explicit function of the unknown covariance
matrix that can be used as an oracle performance bound. Our first
estimator is obtained by applying the well-known Rao-Blackwell
theorem [31] to the LW method, and is therefore denoted by
RBLW. Using several nontrivial Haar integral computations, we
obtain a simple closed form solution which provably dominates
the LW method in terms of MSE. We then introduce an iterative
shrinkage estimator which tries to approximate the oracle. This
approach follows the methodology developed in [11] for the
case of linear regression. Beginning with an initial naive choice,
each iteration is defined as the oracle solution when the unknown
covariance is replaced by its estimate obtained in the previous it-
eration. Remarkably, a closed form expression can be determined
for the limit of these iterations. We refer to the limit as the
oracle approximating shrinkage (OAS) estimator.

The OAS and RBLW solutions have similar structure that
is related to a sphericity test as discussed in [18]–[20]. Both
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OAS and RBLW estimators are intuitive, easy to compute and
perform well with finite sample size. The RBLW technique
provably dominates LW. Numerical results demonstrate that
for small sample sizes, the OAS estimator is superior to both
the RBLW and the LW methods.

To illustrate the proposed covariance estimators we apply
them to problems of time series analysis and array signal
processing. Specifically, in the context of time series analysis
we establish performance advantages of OAS and RBLW to
LW for covariance estimation in autoregressive models and
in fractional Brownian motion models, respectively. In the
context of beamforming, we show that RBLW and OAS can be
used to significantly improve the Capon beamformer. In [12],
a multitude of covariance matrix estimators were implemented
in Capon beamformers, and the authors reported that the LW
approach substantially improves performance as compared to
other methods. We show here that even better performance can
be achieved by using the techniques introduced in this paper.

Finally, we would like to point out that the performance gain
achieved in the proposed estimators is only guaranteed when
the samples are approximately Gaussian distributed. Although
this is a common assumption in signal processing, when the
sample distribution is far from Gaussian the proposed estima-
tors may not perform as well as the LW estimator. We illustrate
the performance gap for a heavy tailed multivariate Student-T
distribution.

The paper is organized as follows. Section II formulates the
problem. Section III introduces the oracle estimator together
with the RBLW and OAS methods. Section IV represents nu-
merical simulation results and applications in adaptive beam-
forming. Section V summarizes our principal conclusions. The
proofs of theorems and lemmas are provided in the Appendix.

Notation: In the following, we depict vectors in lowercase
boldface letters and matrices in uppercase boldface letters.
and denote the transpose and the conjugate transpose, re-
spectively. , , and are the trace, the Frobe-
nius norm, and the determinant of a matrix, respectively. Finally,

means that the matrix is positive definite, and
means that the matrix is positive definite.

II. PROBLEM FORMULATION

Let be a sample of independent identical distributed
(i.i.d.) -dimensional Gaussian vectors with zero mean and co-
variance . We do not assume . Our goal is to find an
estimator which minimizes the MSE

(1)

It is difficult to compute the MSE of without
additional constraints and, therefore, we restrict ourselves to a
specific class of estimators that employ shrinkage [1], [7]. The
unstructured classical estimator of is the sample covariance

defined as

(2)

This estimator is unbiased , and is also the maximum
likelihood solution if . However, it does not necessarily
achieve low MSE due to its high variance and is usually ill-
conditioned for large problems. On the other hand, we may
consider a naive but most well-conditioned estimate for

(3)

This “structured” estimate will result in reduced variance with
the expense of increasing the bias. A reasonable tradeoff be-
tween low bias and low variance is achieved by shrinkage of
towards , resulting in the following class of estimators:

(4)

The estimator is characterized by the shrinkage coefficient ,
which is a parameter between 0 and 1 and can be a function
of the observations . The matrix is referred to as the
shrinkage target.1

Throughout the paper, we restrict our attention to shrinkage
estimates of the form (4). Our goal is to find a shrinkage coef-
ficient that minimizes the MSE (1). As we show in the next
section, the optimal minimizing the MSE depends in general
on the unknown and, therefore, in general cannot be imple-
mented. Instead, we propose two different approaches to ap-
proximate the optimal shrinkage coefficient.

III. SHRINKAGE ALGORITHMS

A. The Oracle Estimator

We begin by deriving a clairvoyant oracle estimator that
uses an optimal nonrandom coefficient to minimize the
mean-squared error. In the following subsections we will show
how to approximate the oracle using implementable data-driven
methods.

The oracle estimate is the solution to

(5)

The optimal parameter is provided in the following theorem.
Theorem 1: Let be the sample covariance of a set of -di-

mensional vectors . If are i.i.d. Gaussian vec-
tors with covariance , then the solution to (5) is

(6)

(7)

Proof: Equation (6) was established in [7] for any dis-
tribution of . Under the additional Gaussian assump-

1The convex combination in (4) can be generalized to the linear combination
of � and �. The reader is referred to [13] for further discussion.
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tion, (7) can be obtained from straightforward evaluation of the
expectations

(8)

and

(9)

Equation (7) is a result of using the following identities [27]:

(10)

(11)

and

(12)

Note that (6) specifies the optimal shrinkage coefficient for
any sample distribution while (7) only holds for the Gaussian
distribution. It can be shown that (7) will be a close approxima-
tion to (6) when the sample distribution is close to the Gaussian
distribution in variational norm.

B. The Rao-Blackwell Ledoit-Wolf (RBLW) Estimator

The oracle estimator defined by (5) is optimal but cannot be
implemented, since the solution specified by both (6) and (7) de-
pends on the unknown . Without any knowledge of the sample
distribution, LW [7], [8] proposed to approximate the oracle
using the following consistent estimate of (6):

(13)

They then proved that when both , and ,
, (13) converges to (6) in probability regardless of

the sample distribution. The LW estimator is then defined
by plugging into (4). In [8] LW also showed that the op-
timal (6) is always between 0 and 1. To further improve the
performance, they suggested using a modified shrinkage param-
eter

(14)

instead of .
The Rao-Blackwell LW (RBLW) estimator described below

provably improves on the LW method under the Gaussian
model. The motivation for the RBLW originates from the fact
that under the Gaussian assumption on , a sufficient
statistic for estimating is the sample covariance . Intuitively,
the LW estimator is a function of not only but other statistics

and therefore, by the Rao-Blackwell theorem, can be improved.
Specifically, the Rao-Blackwell theorem [31] states that if
is an estimator of a parameter , then the conditional expecta-
tion of given , where is a sufficient statistic, is
never worse than the original estimator under any convex
loss criterion. Applying the Rao-Blackwell theorem to the LW
estimator yields the following result.

Theorem 2: Let be independent -dimensional
Gaussian vectors with covariance , and let be the sample
covariance of . The conditioned expectation of the LW
covariance estimator is

(15)

(16)

where

(17)

This estimator satisfies

(18)

for every .
The proof of Theorem 2 is given in the Appendix.
Similarly to the LW estimator, we propose the modification

(19)

instead of .

C. The OAS Estimator

The basic idea of the LW estimator is to asymptotically
approximate the oracle, which is designed for large sample
size. For a large number of samples the LW asymptotically
achieves the minimum MSE with respect to shrinkage estima-
tors. Clearly, the RBLW also inherits this property. However,
for very small , which is often the case of interest, there is
no guarantee that such optimality still holds. To illustrate this
point, consider the extreme example when only one sample is
available. For we have both and ,
which indicates that . This, however,
contradicts our expectations since if a single sample is avail-
able, it is more reasonable to expect more confidence to be put
on the more parsimonious rather than .

In this section, we aim at developing a new estimation
method which can approximate the oracle for finite . Rather
than employing asymptotic solutions we consider an alternative
approach based on [11]. In (7), we obtained a closed-form
formula of the oracle estimator under Gaussian assumptions.
The idea behind the OAS is to approximate this oracle via an
iterative procedure. We initialize the iterations with an initial
guess of and iteratively refine it. The initial guess might
be the sample covariance, the RBLW estimate or any other
symmetric nonnegative definite estimator. We replace in the
oracle solution by yielding , which in turn generates

through our proposed iteration. The iteration process is
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continued until convergence. The limit, denoted as , is
the OAS solution. Specifically, the proposed iteration is

(20)

(21)

Comparing to (7), notice that in (20) and are
replaced by and , respectively. Here

is used instead of since the latter would always force
to converge to 1 while the former leads to a more meaningful

limiting value.
Theorem 3: For any initial guess that is between 0 and 1,

the iterations specified by (20), (21) converge as to the
following estimate:

(22)

where

(23)

In addition, .
Proof: Plugging in from (21) into (20) and simplifying

yields

(24)

where

(25)

Since , .
Next we introduce a new variable

(26)

Then

(27)

Substituting (27) to (24), after simplification we obtain that

(28)

which leads to the following geometric series:

(29)

It is easy to see that

if

if
(30)

Therefore also converges as and is given by

if

if
(31)

We can write (31) equivalently as

(32)

Equation (23) is obtained by substituting (25) into (31).
Note that (31) is naturally bounded within . This

is different from and , where the constraint
is imposed in an ad hoc fashion. We also note that the iterative
procedure described in (20) and (21) is only used to establish
the limiting closed form OAS solution. In practice, the OAS
estimate is calculated using (22) and (23), so that iterations are
unnecessary.

D. Shrinkage and Sphericity Statistics

We now turn to theoretical comparisons with RBLW and
OAS. The only difference is in their shrinkage coefficients.
Although derived from distinct approaches, it is easy to see
that shares the same structure as . In fact, they can
both be expressed as the parameterized function

(33)

with defined as

(34)

For , and of (33) are given by

(35)

while for

(36)

Thus the only difference between and is the
choice of and . The statistic arises in tests of sphericity of

[19], [20], i.e., testing whether or not is a scaled identity ma-
trix. In particular, is the locally most powerful invariant test
statistic for sphericity under orthogonal transformations [18].
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The smaller the value of , the more likely that is propor-
tional to an identity matrix . Similarly, in our shrinkage algo-
rithms, the smaller the value of , the more shrinkage occurs in

and .
Under the following asymptotic conditions [8]:

(37)

OAS and RBLW are equivalent, since and con-
verge to each other. In [8] the authors have proved that the LW
estimator is asymptotically optimal under condition (37). Note
that RBLW dominates LW for Gaussian samples. Therefore,
RBLW, OAS, and LW are asymptotically equivalent to each
other when the samples are Gaussian.

It is also important to note that while RBLW and OAS share
the same structure and are asymptotically equivalent, their finite
sample performance may be entirely different, especially when

is small. For example, in the extreme case that only one sample
is available, while , regardless of the
value of the sample. This observation will be further explored
in the numerical simulations later.

IV. NUMERICAL SIMULATIONS

In this section, we implement and test the proposed covari-
ance estimators. We first compare the estimated MSE of the
RBLW and OAS techniques with the LW method. We then con-
sider their application to the problem of adaptive beamforming,
and show that they lead to improved performance of Capon
beamformers.

A. MSE Comparison

To test the MSE of the covariance estimators we designed
two sets of experiments with different shapes of . Such covari-
ance matrices have been used to study covariance estimators in
[10]. We use (14), (19), and (23) to calculate the shrinkage co-
efficients for the LW, the RBLW, and the OAS estimators. For
comparison, the oracle estimator (5) uses the true and is in-
cluded as a benchmark lower bound on MSE for comparison.
For all simulations, we set and let range from 6 to
30. Each simulation is repeated 5000 times and the MSE and
shrinkage coefficients are plotted as a function of . The 95%
confidence intervals of the MSE and shrinkage coefficients were
found to be smaller than the marker size and are omitted in the
figures.

In the first experiment, an autoregressive covariance struc-
tured is used. We let be the covariance matrix of a Gaussian
AR(1) process [32]

(38)

where denotes the entry of in row and column . We take
, 0.5 and 0.9 for the different simulations reported here.

Figs. 1(a)–3(a) show the MSE of the estimators for different
values of . Figs. 1(b)–3(b) show the corresponding shrinkage
coefficients.

In Fig. 4, we plot the MSE of the first three iterations obtained
by the iterative procedure in (21) and (20). For comparison, we
also plot the results of the OAS and the oracle estimator. We set

Fig. 1. AR(1) process: Comparison of covariance estimators when � � ���,
� � ���.

in this example and start the iterations with the initial
guess . From Fig. 4 it can be seen that as the iterations
proceed, the MSE gradually decreases towards that of the OAS
estimator, which is very close to that of the oracle.

In the second experiment, we set as the covariance matrix
associated with the increment process of fractional Brownian
motion (FBM) exhibiting long-range dependence. Such pro-
cesses are often used to model internet traffic [29] and other
complex phenomena. The form of the covariance matrix is
given by

(39)

where is the so-called Hurst parameter. The typical
value of is below 0.9 in practical applications. We choose
equal to 0.6, 0.7, and 0.8. The MSE and shrinkage coefficients
are plotted in Figs. 5(a)–7(a) and 5(b)–7(b), respectively.

From the simulation results in the above two experiments, it is
evident that the OAS estimator performs very closely to the ideal
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Fig. 2. AR(1) process: Comparison of covariance estimators when � � ���,
� � ���.

oracle estimator. When is small, the OAS significantly out-
performs the LW and the RBLW. The RBLW improves slightly
upon the LW, but this is not obvious at the scale of the plots
shown in the figures. As expected, all the estimators converge
to a common value when increases.

As indicated in (5) and shown from simulation results, the or-
acle shrinkage coefficient decreases in the sample number .
This makes sense since can be regarded as a measure
of “confidence” assigned to . Intuitively, as more observations
are available, one acquires higher confidence in the sample co-
variance and therefore decreases. This characteristic is ex-
hibited by but not by and . This may partially
explain why OAS outperforms RBLWandLW for small samples.

It can be shown that all the estimators perform better when the
sphericity of increases, corresponding to small values of and

. Indeed, the eigenvalues of are more dispersed as and in-
creases. As the dispersion of the eigenvalues is inversely related
to the sphericity, larger sphericity in indicates that better per-
formance can be obtained by shrinking the sample covariance
towards identity.

Fig. 3. AR(1) process: Comparison of covariance estimators when � � ���,
� � ���.

Fig. 4. AR(1) process: Comparison of MSE in different iterations, when � �

���, � � ���.
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Fig. 5. Incremental FBM process: Comparison of covariance estimators when
� � ���, � � ���.

Our experience through numerous simulations with arbitrary
parameters suggests that in practice the OAS is preferable to the
RBLW. However, as the RBLW is provably better than the LW
there exists counter examples. For the incremental FBM covari-
ance in (39), we set , , . The simula-
tion is repeated for 5000 times and the result is shown in Table I,
where . The
differences are very small but establish that the OAS estimator
does not always dominate the RBLW. However, we suspect that
this will only occur when has a very small sphericity, a case of
less interest in practice as small sphericity of would suggest
a different shrinkage target than .

Finally, we would like to point out that there is no free lunch.
The superiority of the RBLW and OAS methods over the LW
is only guaranteed when the samples are truly Gaussian. When
the Gaussian assumption does not hold, RBLW and OAS may
perform worse than LW. We performed an experiment (data not
shown) with a heavy tailed (multivariate Student-T) sample dis-
tribution that tends to produce outliers. We observed that the

TABLE I
INCREMENTAL FRM PROCESS: COMPARISON OF MSE AND SHRINKAGE

COEFFICIENTS WHEN � � ���, � � ��, � � ���

Fig. 6. Incremental FBM process: Comparison of covariance estimators when
� � ���, � � ���.

RBLW no longer dominates the LW, due to outliers in the data,
and the OAS outperforms the LW only when . Thus
outlier resistant modifications of OAS and RBLW are a worthy
topic of investigation.

B. Application to the Capon Beamformer

Next we applied the proposed shrinkage estimators to the
signal processing problem of adaptive beamforming. Assume
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Fig. 7. Incremental FBM process: Comparison of covariance estimators when
� � ���, � � ���.

that a narrowband signal of interest impinges on an unper-
turbed uniform linear array (ULA) [30] comprised of sensors.
The complex valued vector of snapshots of the array output is

(40)

where is parameter vector determining the location of the
signal source and is the array response for a generic source
location . Specifically

(41)

where is the spatial frequency. The noise/interference vector
is assumed to be zero mean i.i.d. Gaussian distributed. We

model the unknown as a zero mean i.i.d. Gaussian process.
In order to recover the unknown the Capon beamformer

[30] linearly combines the array output using a vector of
weights , calculated by

(42)

where is the covariance of . The covariance is unknown
while the array response and the source direction-of-arrival
(DOA) are known. After obtaining the weight vector , the
signal of interest is estimated by .

To implement (42) the matrix needs to be estimated. In
[12] it was shown that using the LW estimator could substan-
tially improve Capon beamformer performance over conven-
tional methods. As we will see below, the OAS and the RBLW
shrinkage estimators can yield even better results.

Note that the signal and the noise processes are complex
valued and is thus a complex (Hermitian symmetric) co-
variance matrix. To apply the OAS and RBLW estimators
we use the same approach as used in [12] to extend the real
LW covariance estimator to the complex case. Given a
complex random vector , we represent it as a vector
of its real and imaginary parts

(43)

Then the estimate of the complex covariance can be represented
as

(44)

where , , and are sub-matrices. The real
representation (44) can be mapped to the full complex covari-
ance matrix as

(45)

Using this representation we can easily extend the real valued
LW, RBLW, and OAS estimators to complex scenarios. As
pointed in [12], this approach does not preserve the circular
property of , i.e.

(46)

We note that exploiting the circular property in would yield
better estimators for complex covariance matrices. For purposes
of this simple illustration we implement the simple method-
ology described above for a beamforming problem.

We conduct the beamforming simulation as follows. A ULA
of sensor elements with half wavelength spacing is as-
sumed and three signals were simulated as impinging on the
array. The signal of interest has a DOA and a power

dB above the complex Gaussian sensor noise. The
other two signals are mutually independent interferences. One
is at DOA angle of and the other one is close to
the source of interest with its angular location corresponding to
a spatial frequency of

where is set to 0.9. Each signal has power 15 dB above the
sensor noise.
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Fig. 8. Comparison between different covariance shrinkage estimators in
the Capon beamformer. SINR is plotted versus number of snapshots �. OAS
achieves as much as 1 dB improvement over the LW.

We implemented the complex versions of the LW, the RBLW
and the OAS covariance estimators, described above, and used
them in place of in the Capon beamformer expression (42).
The beamforming performance gain is measured by the SINR
defined as [12]

(47)

where is the number of Monte Carlo simulations and is
the weight vector obtained by (42) in the th simulation. Here

and varies from 10 to 60 in step of 5 snap shots.
The gain is shown in Fig. 8. In [12] it was reported that the LW
estimator achieves the best SINR performances among several
contemporary Capon-type beamformers. It can be seen in Fig. 8
that the RBLW and the OAS do even better, improving upon the
LW estimator. Note also that the greatest improvement for OAS
in the small regime is observed.

V. CONCLUSION

In this paper, we introduced two new shrinkage algorithms
to estimate covariance matrices when the samples are Gaussian
distributed. The RBLW estimator was shown to improve upon
the state-of-the-art LW method by virtue of the Rao-Blackwell
theorem. The OAS estimator was developed by iterating on
the optimal oracle estimate, where the limiting form was de-
termined analytically. The RBLW provably dominates the LW,
and the OAS empirically outperforms both the RBLW and the
LW in most experiments we have conducted. The proposed
OAS and RBLW estimators have simple explicit expressions
and are easy to implement. Furthermore, they share similar
structure differing only in the form of the shrinkage coeffi-
cients. We applied these estimators to the Capon beamformer
and obtained significant gains in performance as compared to
the LW Capon beamformer implementation.

Throughout the paper we set the shrinkage target as the scaled
identity matrix. The theory developed here can be extended to
other nonidentity shrinkage targets. An interesting question for
future research is how to choose appropriate targets in specific
applications.

Another important future direction is to explore the outlier
resistant modifications to the OAS and RBLW estimators pre-
sented here. We will investigate more robust shrinkage estima-
tors in our future work.

APPENDIX

In this Appendix we prove Theorem 2. Theorem 2 is non-
trivial and requires careful treatment using results from the
theory of Haar measure and singular Wishart distributions. The
proof will require several intermediate results stated as lemmas.
We begin with a definition.

Definition 1: Let be a sample of -dimensional
i.i.d. Gaussian vectors with mean zero and covariance . Define
a matrix as

(48)

Denote and define the singular value decompo-
sition on as

(49)

where is a matrix such that , is a
diagonal matrix in probability 1, comprised of the singular

values of , and is a matrix such that .
Next we state and prove three lemmas.

Lemma 1: Let be matrices defined in Definition
1. Then is independent of and .

Proof: For the case , is a matrix, is a
square diagonal matrix and is a orthogonal matrix. The
pdf of is

(50)

Since , the joint pdf of is

(51)

where is the Jacobian converting from to
. According to [21, Lemma 2.4]

(52)

where denotes the th diagonal element of and
and are functions of and defined in [21].

Substituting (52) into (51), can be factorized into
functions of and . Therefore, is independent of
and .
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Similarly, one can show that is independent of and
when .

Lemma 2: Let be a matrix defined in Definition 1. De-
note as an arbitrary column vector of and as the th
element of . Then

(53)

and

(54)

Proof: The proof is different for the cases that and
, which are treated separately.

(1) Case :
In this case, is a real Haar matrix and is isotropically
distributed [22], [24], [25], i.e., for any orthogonal ma-
trices and which are independent with , and

have the same pdf of

(55)

Following [23] in the complex case, we now use (55)
to calculate the fourth order moments of elements of .
Since and

. . .

are also identically distributed, we have

(56)

By taking in (56), it is easy to see that

The elements of are identically distributed. We
thus have , and hence

(57)

By taking

(58)

Now we consider . Since

, This implies

(59)

Substituting (58) into (59), we obtain that

(60)

and

(61)

It is easy to see that and
. Therefore (53) and (54) are

proved for the case of .
(2) Case :

The pdf of can be obtained by [21, Lemma 2.2]

(62)

where

(63)

and is the indicator function specifying the sup-
port of . Equation (62) indicates that the elements of
are identically distributed. Therefore,
and . By the definition of expec-
tation

(64)

and

(65)
Noting that

(66)

and

(67)

we have

(68)
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By changing variable of integration to
such that

...
...

(69)

we obtain

(70)

where

is the Jacobian associated with the change of variable.
Therefore

(71)

Similarly

(72)

Therefore, (53) and (54) are proved for the case when
. This completes the proof of Lemma 2.

Lemma 3: Let be the sample covariance of a set of -di-
mensional vectors . If are i.i.d. Gaussian vec-
tors with covariance

(73)
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Proof: For simplicity, we work with the scaled covariance
matrix defined as

(74)

and calculate instead of . We are
then going to prove that

(75)

We use Lemma 1 and Lemma 2 to establish (75).
Let and be matrices defined in Definition 1. Let
be the th column of defined in Definition 1. Then

(76)

Let

(77)

Then

(78)

and

(79)

Therefore we have

(80)

According to Lemma 1, is independent of and . Since
is a function of , and are functions of and , is

independent of and .
From the law of total expectation

(81)
Expand as

(82)

where is the th diagonal element of . Since is indepen-
dent of and , according to Lemma 2

(83)

Since and , substituting
(83) into (81), we have

(84)

Lemma 3 now allows us to prove Theorem 2.
Proof of Theorem 2:
Proof:

(85)

Therefore we obtain the shrinkage coefficient of :

(86)

Note that

(87)

From Lemma 3, we have

(88)

Equation (17) is then obtained by substituting (88) into (86).
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