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Tomer Michaeli and Yonina C. Eldar, Senior Member, IEEE

Abstract—We address the problem of Bayesian estimation where
the statistical relation between the signal and measurements is only
partially known. We propose modeling partial Bayesian knowledge
by using an auxiliary random vector called instrument. The sta-
tistical relations between the instrument and the signal and be-
tween the instrument and the measurements, are known. However,
the joint probability function of the signal and measurements is
unknown. Two types of statistical relations are considered, corre-
sponding to second-order moment and complete distribution func-
tion knowledge. We propose two approaches for estimation in par-
tial knowledge scenarios. The first is based on replacing the or-
thogonality principle by an oblique counterpart and is proven to
coincide with the method of instrumental variables from statistics,
although developed in a different context. The second is based on
a worst-case design strategy and is shown to be advantageous in
many aspects. We provide a thorough analysis showing in which
situations each of the methods is preferable and propose a non-
parametric method for approximating the estimators from a set
of examples. Finally, we demonstrate our approach in the context
of enhancement of facial images that have undergone unknown
degradation and image zooming.

Index Terms—Bayesian estimation, instrumental variables, min-
imax regret, nonparametric regression, partial knowledge.

I. INTRODUCTION

A common problem in signal processing is that of esti-
mating an unknown random quantity from a set of

noisy measurements . Image denoising and debluring [1],
speech enhancement [2] and target tracking [3], are a few
examples. The Bayesian framework requires knowledge of the
prior distribution of the signal to be estimated, as well as the
conditional probability of the measurements given [4]. The
former can usually be learned from a set of examples of
“clean” signals. The latter, on the other hand, necessitates either
a paired set of examples of signals and measurements,
or knowledge of the degradation mechanism that yielded the
measurements (e.g., additive white Gaussian noise). In many
applications, neither assumption is realistic.
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In speech enhancement, for example, poor room acoustics
and background noise, such as other speakers, are part of the
degradation that needs to be overcome [2], [5]. These undesired
effects typically vary in time and are very hard to model statis-
tically [6]. Furthermore, no paired examples of clean and de-
graded signals are available in these scenarios.

Another example is that of enhancement of facial images
taken with a low-grade camera (e.g., a web-cam or a cellular-
phone camera). The distortion in this case includes blur due
to the lens, the nonlinear response of the CCD sensor [7] and
nonadditive noise [8]. These processes vary with lighting con-
ditions, distance from the camera, etc., and are therefore hard
to model. Moreover, obtaining a paired set of examples of clean
and degraded images requires a complicated experimental setup
consisting of a high-quality camera co-calibrated with the low-
grade camera at hand.

A common practice in such scenarios is to resort to simplified
model assumptions, such as Gaussian blur and additive white
noise in image restoration (see, e.g., [1], [9], and [10]) and
stationary background noise in speech enhancement tasks [2].
These assumptions simplify the treatment but are often far from
loyal to the true physical setting. More complicated likelihood
models can be treated via approaches such as approximate
Bayesian computation [11]. These methods are useful when
evaluation of the likelihood is computationally prohibitive.
However, they rely on the assumption that data can be simu-
lated from the likelihood, which is not the case if one does not
have access to paired examples of clean signals and
corrupted measurements.

An alternative approach is to make use of many examples of
degraded signals , which are typically easy to collect and
only a small number of paired examples , which are hard
to obtain. This strategy lies at the heart of the field of semi-su-
pervised learning in general [12] and semi-supervised regres-
sion [13] in particular. However, there are situations in which
it is highly desired to avoid the need for any paired example of
signal and measurement.

Bayesian estimation cannot be carried out without knowledge
of the joint distribution of and . Nevertheless, in many ap-
plications there is partial knowledge of this statistical relation.
Specifically, we may know the joint probability function of
and some auxiliary random vector as well as that of and

. For instance, to enhance a video sequence of a speaker
without knowing the type of degradation it has undergone, one
may use the audio associated with it. Clearly, we can collect
paired examples of the noisy video and its associated
audio (taken with the given low-quality camcorder), as well as
paired examples of clean video sequences with their
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Fig. 1. An estimator ���� � ������ in a partial knowledge setting.

audio (taken from a high-grade video camera). These two sets
are unpaired, namely they correspond to video sequences of dif-
ferent scenes. Consequently, they can be used to learn the den-
sities and but are generally insufficient to
determine .

During the last two decades, various approaches have been
proposed to enhancing audio or video based on joint audio-vi-
sual measurements (see, e.g., [14]–[16]). There is a fundamental
difference, though, from our problem setting. For example, in
the scenario described above, the input to the estimator is only
the noisy video sequence , without the associated audio. The
audio data comes into play only in the training sets
and but does not constitute part of the measurements,
as schematically shown in Fig. 1. The interesting question that
arises, then, is whether audio can aid in enhancing a silent video
sequence (or vice versa), namely one that was recorded without
sound.

In this paper, we study two partial-knowledge models, which
differ in the type of statistical relation between the instrument
and the signal/measurements that is assumed to be available. In
the first, only the joint second order statistics of and , as well
as of and are known. In the second, the entire density func-
tions and are available. In both scenarios,
however, is unknown.

We propose two strategies for treating Bayesian estimation
with partial statistical knowledge. Our first approach is to re-
place the orthogonality requirement, which characterizes the
minimal mean-squared error (MSE) estimator, by an oblique
counterpart. Specifically, we seek an estimator whose
error is orthogonal to the instrument rather than to the mea-
surements . As we show, the resulting estimators coincide with
those encountered in instrumental variable regression [17] from
the fields of statistics and econometrics, which explains our
choice of terminology. The second strategy we consider is based
on a worst-case design approach. Here, the estimator is designed
to yield the best worst-case performance (over the set of den-
sity functions consistent with the available par-
tial knowledge). We propose explicit ways of approximating
both solutions from sets of examples.

We show that each of the proposed methods is optimal in dif-
ferent settings. The performance of the oblique approach, how-
ever, can become arbitrarily poor as the statistical dependency
between the instrument and measurements weakens. In contrast,
the estimation error of the worst-case strategy is guaranteed to
be bounded. This property is of great value in practical sce-
narios, however it comes at the cost of a modest performance
at a rather wide variety of settings. Nevertheless, since in typ-
ical applications the instrument is often weak, our worst-case
design approach is commonly preferable.

We demonstrate the usefulness of our approach in two image
processing applications. The first is enhancement of facial im-
ages that have undergone unknown degradation. This scenario
is highly relevant to face recognition systems working in un-
controlled conditions [18]. There, no paired examples of clean
and degraded images can be obtained, thus calling for a partial
knowledge treatment. The second application is image zooming.
Specifically, many recent works treat this problem by learning
the relation between image patches and their downscaled ver-
sions [19]. However, this strategy becomes problematic when
the original image is very small, since there are very few training
patches left after downsampling the image. Using our approach,
we show how this limitation can be overcome.

The paper is organized as follows. In Section II we provide
a concise mathematical formulation of the partial-knowledge
Bayesian estimation problem. In Sections III and IV we develop
estimators for the second-order moment model which rely on
the obliqueness principle and the worst-case design strategy, re-
spectively. We show the relation of these estimators to instru-
mental variable regression in linear models and determine in
which cases each is preferable. Sections V and VI treat the den-
sity-function model via obliqueness and worst-case design, re-
spectively. We also discuss the relation of our problem to non-
parametric instrumental variable regression in nonlinear models
[20] and provide best-case and worst-case analyses for each of
the approaches. Section VII is devoted to a quantitative sim-
ulation study, which unveils the strengths and weaknesses of
the different methods in a wide variety of situations. Finally,
in Section VIII, we demonstrate our technique in the context
of enhancement of facial images that have undergone unknown
distortion and in Section IX we develop an image zooming al-
gorithm based on our approach.

II. PROBLEM FORMULATION

We denote random variables (RVs) by capital letters (e.g.,
, , ) and the values that they take by bold lower-case let-

ters (e.g., , , ). The pseudoinverse of a matrix is denoted
by . The mean vector and covariance matrix of an RV
are defined as and

, respectively. Similarly, the cross-covariance
matrix of two RVs and is denoted by

. In our setting, is the quantity to be
estimated, also termed “signal,” is the measurements and
is an auxiliary RV, which we call “instrument.” The RVs ,
and take values in , , and , respectively. We de-
note by and the sets of all RVs that are affine functions
of and , respectively. Specifically, every RV can
be expressed as for some matrix and vector
. Similarly, denotes the set of RVs that are arbitrary (Borel

measurable) functions of .
We assume that the joint density function of the

signal and measurements is unknown. Nevertheless, we have
some knowledge regarding the statistical relation between
and and between and . Specifically, we consider the fol-
lowing two types of partial knowledge models.

M1) Only the first- and second-order moments of
and are known, as depicted
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Fig. 2. Two partial knowledge scenarios. (a) Knowledge of moments up to
second order. (b) Knowledge of joint density functions.

Fig. 3. The two unpaired sets of examples ���� � ���
���� and ���� � ���

���
� can

be used to learn one of the models in Fig. 2.

TABLE I
MEASUREMENT VERSUS. INSTRUMENT

in Fig. 2(a). Specifically, we know the mean vectors ,
, , as well as the covariance matrices , ,

, , , but we do not know .
M2) The joint density functions and
are known, as schematically shown in Fig. 2(b). This, of
course, implies that the marginal densities ,
and are known as well.

In practice, both types of information may be unavailable
in closed form. Instead, we may only have access to two sets
of paired examples and , drawn inde-
pendently from the densities and , respec-
tively, as shown in Fig. 3. These training sets can be used to
estimate the relevant moments and also the entire density func-
tions. The choice of which of the partial-knowledge models to
use, then, depends on the cardinalities of the training sets. If the
number of training examples is small, then we may only be able
to estimate the second-order moments to reasonable accuracy.
On the other hand, for large sets, the density functions can be
estimated accurately, e.g., by nonparametric density estimation
methods [21], making the second model relevant.

Since the statistical relation between the signal and the in-
strument is known, one could theoretically estimate based on
a realization of . However, in our setting we do not observe
any realization of the instrument. Thus, the only way can be
of help is by employing our knowledge of its statistical relation
with and with , in order to estimate from the realization

of . In other words, there is a certain symmetry between the
instrument and the measurements , as shown in Table I. The
RV is measured, but its statistical relation with is unknown.
In contrast, the relation between and is known, but is not
measured.

A. Objectives

Ideally, we would like to design an estimator of the
signal based on the measurements , such that the MSE

(1)

is minimized. Unfortunately, the MSE depends on
(since is a function of ), which is unknown, so that it cannot
be computed in our setting.

Had been known, it would be possible to compute
the minimum MSE (MMSE) estimator

(2)

which depends on . Therefore,
in the scenario of model M2, our goal is to design an estimator
which comes as close as possible to the MMSE method, in some
sense. Under model M1, even if was available, we still
could not have computed the MMSE estimator (2), as it requires
knowledge of the entire density function . Thus, in
this setting our goal is to design an estimator that comes as close
as possible to the estimator that is optimal among all methods
that have access only to the joint first- and second-order mo-
ments of and .

A common technique for estimating from , which relies
only on first- and second-order statistics, is the linear MMSE
(LMMSE) estimator, given by [4]

(3)

It is important to note, however, that the fact that the LMMSE
estimate happens to be a function of the first- and second order
moments, still does not imply that it is optimal in any sense
among estimators that solely depend on these quantities. The
following theorem shows that the LMMSE estimate is indeed
optimal in the sense that its worst-case MSE over all joint dis-
tributions with the given second-order moments, is
minimal.

Theorem 1: The LMMSE estimator (3) is the solution to

(4)

where is the set of densities satisfying ,
, , , and

.
Proof: See Appendix A.

As a consequence of Theorem 1, in the setting of model M1,
our goal is to construct a linear estimator whose performance
comes close to that of the LMMSE method.

In the next sections, we propose two strategies to estimation
in the partial knowledge models M1 and M2, which are based
on an obliqueness principle and a worst-case design strategy.

III. ESTIMATION WITH MOMENT KNOWLEDGE VIA THE

OBLIQUENESS PRINCIPLE

A. Estimation via Obliqueness

We begin by assuming model M1 and rely on an obliqueness
principle. To develop our approach, we note that if were
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known, then it would have been possible to compute the LMMSE
estimator (3). This solution can be interpreted as the orthogonal
projection of onto the set , which implies that its error

is uncorrelated with . This principle, which is
known as the orthogonality criterion, implies that is
the (almost surely) unique affine method whose mean and cross-
covariance with coincide with those of and , namely

(5)

In our setting, we do not know and thus cannot compute
. Instead, relying on our knowledge of and ,

our approach here is to design an affine estimator

(6)

whose error is uncorrelated with rather than with .
In other words, we require that

(7)

in order to determine and of (6). We term this requirement
the obliqueness principle as it results in an estimate that is
the oblique projection [22] of onto perpendicular to .
Intuitively, this approach will lead to satisfactory results if
and are “close” in some sense. In Sections III-C and III-D,
we quantify this observation in detail.

Taking the expectation of both sides of (6) and equating
, we find that and must satisfy

(8)

Similarly, (6) implies that is given by

(9)

where we used (8).
If and is invertible, then (9) implies that

. The vector can then be computed from (8), resulting
in .

If then (9) is overdetermined. In this case, a solution
will typically not exist. To overcome this obstacle, we may seek
an affine estimator which comes closest to fulfilling (7). This can
be done by minimizing the Frobenius norm

. Assuming that has full column rank,

the solution is given by , resulting in

.
When , there are typically infinitely many matrices
satisfying (9). In this case, our knowledge is insufficient for

determining a unique oblique linear estimator. One of the solu-

tions is given by . Among all solutions, this ma-
trix has the minimal Frobenius norm. Note, however, that there
is no reason to believe that this solution is preferable to others
in any sense.

To conclude, assuming that has full column rank, the
obliqueness requirement leads to the estimate

(10)

This estimator can be approximated from sets of examples of
the type shown in Fig. 3, by replacing , , and
by their associated sample-mean and sample-covariance.

Interestingly, (10) possesses the same structure encountered
in the method of linear regression with instrumental variables.
This fact can be used to obtain further insight into the oblique-
ness approach, as we discuss next.

B. Relation to Regression With Instrumental Variables

Assume that is approximately linearly related to as

(11)

where is an error term, which is the realization of some zero-
mean RV . To determine and based on a set of realizations

drawn independently from the model (11), one
can use ordinary least-squares (OLS) regression [17]

(12)

(13)

Here is the sample cross-covariance of and ,
is the sample covariance of and and are the sample
means of and , respectively. If the error is uncorrelated
with and the covariance matrix is nonsingular, then

and are known to constitute consistent estimates of
and , respectively.1 [17].
In many situations in statistics, the error is correlated with
. In these settings, and will not converge to and

. One approach to overcome this difficulty, is to employ an aux-
iliary RV, , referred to as an instrument, which is known to be
correlated with but not with . Assuming that , es-
timates of and can be constructed based on two sets of ex-
amples and drawn from the densities

and , respectively. This method is known
as instrumental variable regression and is given by [17]

(14)

(15)

where , , and are the associated sample covari-
ances and sample means. It can be shown that and tend
to and in probability as and tend to infinity. If
then and are unidentifiable [17].

The weak law of large numbers implies that, as the sample
sizes increase, and tend to and of (10). There-
fore, the oblique estimator can also be interpreted as emerging
from the assumption that and are related through the linear
model (11) with a noise component uncorrelated with .
Specifically, once and are estimated in this setting, we con-
struct the estimate by applying the model
(11) on , while disregarding . The resulting estimate coin-
cides with our oblique method (10).

1Namely, ���� and ���� tend to��� and ���, respectively, in probability as the
sample size � tends to infinity.
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C. Best Case Analysis

We now address the question under which situations the
oblique method is optimal.

The obliqueness approach relies on the demand that the esti-
mation error be uncorrelated with the instrument rather than
with the measurements . Therefore, in cases where the former
implies the latter, this strategy coincides with the LMMSE esti-
mate (3). Comparing (3) and (10), it can be seen that the oblique
and LMMSE estimators coincide if

(16)

To gain insight into when this occurs, it is instructive to examine
the case in which the RVs , and are jointly Gaussian. In
this situation, the LMMSE method (3) is also optimal among all
nonlinear techniques, namely it coincides with the MMSE esti-
mate. For simplicity, we focus on the case in which the dimen-
sions of the measurement and the instrument vectors are equal.

Theorem 2: Suppose that , , and are jointly Gaussian
RVs that take values in , and , respectively. Let

and assume that the matrices , , , and
are invertible. Then the oblique estimate

(10) coincides with the MMSE estimate of given if and
only if

(17)

Proof: See Appendix B.
Theorem 2 states that in the Gaussian setting, the oblique

method is optimal if and only if and are independent given
. To understand this condition, consider the hypothetical sce-

nario in which all cells of Table I are checked. Specifically, as-
sume that we knew the statistical relation between and and
we could also measure . If in this situation, the MMSE esti-
mate of given and would be only a function of , then the
obliqueness approach is optimal.

Unfortunately, in practice, the instrument may carry infor-
mation on the signal that is not present in the measurements.
The larger the amount of this information, the poorer the perfor-
mance of the oblique estimator will be. For instance, consider
the example presented in Section I, where audio constitutes an
instrument for enhancing a video sequence from its degraded
version. It has been demonstrated by various researchers that
joint audio-visual measurements often lead to improved video
processing tasks [14], [16]. In other words, in this situation es-
timation based on and is preferable to using alone. Con-
sequently, the obliqueness approach is expected to be inferior to
the MMSE method in this case.

D. Worst Case Analysis

The main disadvantage of the oblique estimator is that its per-
formance becomes arbitrarily poor as the correlation between

and decreases. Indeed, when , direct computation
shows that the estimation error is given by

(18)

where we substituted (3) and denoted
. The first term in this expression is the MSE of the

LMMSE estimate of , which could be achieved only by a
method that knows . Since the elements of can be ar-
bitrarily large, the second term is unbounded and consequently
the MSE can become arbitrarily large.

IV. ESTIMATION WITH MOMENT KNOWLEDGE VIA WORST

CASE DESIGN

As we have seen, one of the major drawbacks of the oblique-
ness approach is that, if the instrument is weakly correlated
with the measurements , then the estimation error can be-
come arbitrarily large. This phenomenon is rooted in the fact
that equating the first and second-order moments of
and does not necessarily lead to an estimate close
to in an MSE sense. Indeed, as we have seen, this approach
is only optimal when all information that carries about , is
also present in . To overcome this limitation, we now propose
an alternative approach, which is based on a worst-case design
strategy. As we show, the resulting estimation error is guaran-
teed to be bounded.

A. Minimax Regret Estimation

Ultimately, we would like to design an estimator
that achieves the same MSE as that attained by the LMMSE
estimator (3). In practice, though, this is impossible since we do
not know the covariance matrix . The regret
of an estimator is defined as the difference between the MSE it
attains and the MSE of the LMMSE method, which could be
achieved if was known [23]–[25], namely

(19)

The regret of any estimator is a function of the unknown covari-
ance . This implies that one estimator can have a lower re-
gret than another for certain choices of and a higher regret
for others. Our approach here is to design an estimator whose
worst-case regret is minimal.

Any RV can be expressed as , where
is a zero-mean RV uncorrelated with . Substituting this ex-

pression into (19), the regret becomes

(20)

where we used the fact that is uncorrelated with as it is an
affine function of . In other words, the regret equals the MSE
between and the LMMSE solution (3). Substituting (3), the
minimax regret problem can be cast as

(21)
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where is the set of density functions consistent with
our moment knowledge, namely for which ,

, , , ,
, and .

The optimization problem (21) is challenging because the
inner maximization is over a convex function rather than a con-
cave one. This difficulty is typical of minimax regret problems
and is encountered in sampling applications [22], [25], deter-
ministic parameter estimation [23], [26] and random parameter
estimation [24], [27] to name a few. Nevertheless, as is the case
in all these application areas, the minimix-regret problem (21)
has a simple closed form solution.

Theorem 3: The solution to (21) is given by

(22)

Proof: See Appendix C.
We note that in contrast with the obliqueness approach, this

method does not require inversion of the cross-covariance ma-
trix and therefore is especially advantageous over (10)
when and are weakly correlated. In practice, the minimax
regret estimator can be approximated from sets of examples, by
replacing the means and covariances with their sample counter-
parts.

B. Equivalence With the Obliqueness Approach

Comparing (22) with (10), we see that the minimax regret and
the oblique estimators are equal if

(23)

To understand this condition, assume for simplicity that
and that the matrices , , are invertible.

Then, (23) becomes

(24)

Multiplying both sides by from the left and by from

the right, yields , or equivalently

(25)

One may readily recognize this expression as being the covari-
ance of the error of the LMMSE estimate of from . We thus
arrive at the following conclusion.

Corollary 4: Assume that the covariance matrices
and are invertible. Then the minimax regret estimator (22)
coincides with the oblique estimator (10) if and only if can
be perfectly linearly estimated from .

The equivalence of the two approaches in the case where
can be perfectly recovered from , is not surprising as the

known relation between and can be immediately translated
into a relation between and . Thus, this is, in effect, not truly
a partial knowledge scenario.

C. Best Case Analysis

The minimax regret estimator (22) was derived from a worst-
case perspective. We now take a best-case viewpoint and study
in what cases it is optimal. Comparing (22) with (3), we see

that the minimax-regret method coincides with the LMMSE es-
timator if and only if

(26)

A simple interpretation of this condition can be obtained, as in
Section III-C, by examining the case in which the RVs , ,
and are jointly Gaussian.

Theorem 5: Suppose that the RVs , and are jointly
Gaussian. Let and assume that the matrices

, , , and are invertible. Then
the minimax regret estimate (22) coincides with the MMSE es-
timate of given if and only if

(27)

Proof: See Appendix D.
Theorem 5 implies that the minimax regret solution is op-

timal if and are independent given . In other words, if
the MMSE estimate of given and is only a function of ,
then the minimax regret estimator coincides with the MMSE so-
lution. Thus, as opposed to the obliqueness approach, here we
can benefit from an instrument that tells us more about than

does. This is particularly true when the information that
carries about is contained in the information that encom-
passes about . To emphasize the situations in which each of
the methods is preferable, consider the following toy example.
Suppose we wish to predict whether an individual will become
sick with lung cancer based on the subject’s smoking habits. In
this case, is a binary variable indicating the illness status and

is the average number of cigarettes the subject smokes per
day. Now, assume we let denote the amount of tobacco ac-
cumulated in the subject’s lungs. It is reasonable to assume that
this instrument tells us about everything that does and per-
haps more (as it is also affected by passive smoking). Thus, in
this case the minimax-regret approach is preferable. Suppose,
on the other hand, that we use the price of cigarettes as an in-
strument. In this case can affect only through its effect
on . Therefore, in this situation the obliqueness approach is
preferable.

D. Worst Case Analysis

One of the main advantages of the minimax-regret approach
is rooted in its worst-case performance. Specifically, we saw
in Section III-D that the MSE of the oblique solution is not
bounded from above, unless the correlation between and
is not too weak. As we now show, the MSE of the minimax-re-
gret estimator is guaranteed to be bounded, even if and are
completely uncorrelated.

Theorem 6: The regret (19) of is not larger than

, the MSE of the LMMSE estimate
of given .

Proof: See Appendix E.
Theorem 6 implies that the better can be linearly recovered

from , the closer the performance of the minimax regret esti-
mator is to that of the LMMSE method. Therefore, as a rule of
thumb, when the instrument is highly correlated with the signal,
the minimax-regret method is effective.
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V. ESTIMATION WITH DENSITY KNOWLEDGE VIA

OBLIQUENESS

Next, we address the problem of estimating from in the
partial knowledge model M2. As in Section III, we start with a
design strategy which is based on the obliqueness requirement.

Had been known, it would be possible to use the
MMSE method , which is the unique estimator
whose error is orthogonal to every function of . This
orthogonality principle implies that the MMSE solution is the
unique estimator satisfying

(28)

In our setting, all that is known regarding is its statistical re-
lation with . We therefore propose to replace the orthogonality
principle with the demand that the estimation error be orthog-
onal to every function of , leading to the requirement that

(29)

Similarly to Section III, we expect this obliqueness principle to
result in satisfactory performance if the instrument is close to

in some sense.
Writing and denoting ,

(29) reduces to an integral equation2 in

(30)

The functions and in this equation are known
by the assumptions of model M2. A unique oblique estimator
exists if and only if (30) has a unique solution.

Like the oblique method under model M1, the approach taken
here is also related to instrumental variable regression. Specifi-
cally, an equation very similar to (30) was studied in the context
of instrumental variable estimation in nonparametric models
[20]. In particular, it was shown that uniqueness of the solution
to (30) requires when the distribution of belongs
to the exponential family. It was conjectured that this necessary
condition also holds more generally.

A drawback of the obliqueness approach in the present set-
ting, which did not exist in model M1, is that there is generally
no closed form solution to (30). Nevertheless, it is possible to
approximate the oblique estimator based on sets of examples
of the type shown in Fig. 3. One such nonparametric approach
was derived in [20]. Furthermore, despite the lack of a closed
form expression, it is possible to draw qualitative conclusions
regarding the best- and worst-case scenarios for the oblique es-
timator, as we discuss next.

Intuitively, if changes in lead to small changes in
, then the variance of the solution

to (30) is large. In the extreme situation in which and
are independent, is not a function of at all and
consequently there exists no solution to (30). We thus conclude
that as the statistical dependence between and decreases,
the variance of increases without bound. This also implies
that the error is unbounded.

2If � and � are discrete RVs, then the equation becomes

��� ������� ��������� � ������� ����.

A. Best Case Analysis

An interesting question concerning the obliqueness approach,
is under what conditions it is optimal. As opposed to the anal-
ysis in Sections III-C and III-D, which focused on the Gaussian
case, here we make no assumptions on the structure of the den-
sity . The next theorem provides a sufficient condition for
optimality.

Theorem 7: Suppose that

(31)

Then the MMSE estimate of given is an oblique
solution.

Proof: Substituting , the left-hand
side (LHS) of (30) becomes

(32)
Using (31), this expression reduces to

(33)

so that the MMSE estimator satisfies (30).
Note that Theorem 7 does not address the question of unique-

ness of the oblique estimator. It merely states that when (31)
holds, at least one of the solutions satisfying the obliqueness re-
quirement (30), is the MMSE estimator.

Condition (31) is the same as that of Theorem 2. Therefore,
we see that, as in model M1, the obliqueness approach is benefi-
cial if the instrument does not carry any additional information
about the signal, beyond that embedded in the measurements. In
such a situation, if we knew completely, then measuring

in addition to would be superfluous.

VI. ESTIMATION WITH DENSITY KNOWLEDGE VIA

WORST-CASE DESIGN

Last, we address estimating from in the partial knowledge
model M2 via a worst-case design.

As opposed to the obliqueness requirement that
, we now seek a solution that minimizes the worst case

regret over all RVs with the given conditional expec-
tation and the given joint density . Here we con-
sider the regret

(34)

with respect to the MMSE solution rather than the LMMSE
method, as in Section IV. Expressing as ,
where is an RV uncorrelated with every function of and
using the fact that is in particular uncorrelated with

(as is a function of ), the regret becomes

(35)



1940 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 5, MAY 2011

Thus, the regret in the setting of model M2 equals the MSE
between the estimator and the MMSE solution.

Letting and , which are both
known in our setting, our problem is

(36)

where is the set of density functions satisfying
, and

. Note that besides the inner maximization being
nonconvex, as in model M1, problem (36) is also infinite
dimensional since the outer minimization is now over the set
of all functions of . Interestingly, though, it has a simple
solution, as presented in the next theorem.

Theorem 8: The solution to (36) is given by

(37)

Proof: See Appendix F.
We note that (37) can be computed explicitly. This is because

the inner and outer expectations are functions of and
, respectively, which are both known in our setting.

The partial-knowledge minimax-regret estimator has a
simple interpretation. We do not know the statistical relation
between and , rendering direct estimation of the signal
given the measurements impossible. However, we can calcu-
late the MMSE estimate of given , as

is available to us. This function cannot be used
as an estimator, because we do not observe but rather .
Nevertheless, the statistical relation between and is
known, since is known. Therefore, we can estimate
this quantity given the measurements in an MMSE sense,
leading to .

A. Equivalence With the Obliqueness Approach

We now examine when the minimax regret solution (37) co-
incides with the oblique method. Although there is no closed
form expression for the oblique estimator under model M2, a
sufficient condition may easily be obtained from (29) such that
the minimax regret estimator (37) is oblique.

Corollary 9: Assume that for some deterministic
function . Then the minimax regret estimator (37) satisfies
the obliqueness principle.

Proof: Denoting and substituting
into (37), we have that

(38)

so that the obliqueness condition (29) is satisfied by .
Evidently, as in model M1, the minimax-regret and oblique-

ness approaches result in the same estimator if can be per-
fectly determined from . The difference with respect to model
M1, is that in Corollary 4 the instrument was required to be a
linear function of , whereas here is arbitrary.

B. Best-Case Analysis

Next, we analyze which distributions are “best” for the
minimax regret approach under model M2.

Theorem 10: Suppose that

(39)

Then the minimax regret method (37) coincides with the MMSE
estimate of given .

Proof: Using (39), the estimator (37) becomes

(40)

proving the theorem.
Condition (39) is the same as that encountered in Theorem

5 in the context of minimax-regret estimation under model M1.
The main difference is that Theorem 10 is relevant for arbitrary
distributions and does not require the normality assumption of
Theorem 5.

We see that minimax regret estimation is optimal in situations
where the information about carried by the measurements
is contained in that carried by the instrument . In such sce-
narios, if is completely known, then measuring in ad-
dition to does not help in estimating . Therefore, the sit-
uations in which the oblique and minimax-regret methods are
preferable to one another are similar to those of model M1 (see
discussion in Section IV-C).

C. Worst-Case Analysis

The minimax-regret solution is especially advantageous over
the obliqueness approach because of the fact that its worst-case
MSE is finite, as we now show.

Theorem 11: The regret (34) of is no larger than
, the MSE of the MMSE estimate of

given .
Proof: The estimation error is given by

(41)

where the first line is a consequence of the fact that
is uncorrelated with every function of and, in particular, with

, completing the proof.
As a consequence of Theorem 11, the minimax regret ap-

proach yields good results if the signal could be accurately
recovered by observing a realization of .

D. Nonparametric Regression

We now propose a nonparametric method for approximating
the minimax-regret estimator (37) from two sets of examples
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Fig. 4. MSE as a function of � of the LMMSE, naive, minimax, and oblique methods of model M1 in the setting of (44). (a) � � ���. (b) � � ����.
(c) � � ���.

and , drawn independently from the
densities and , respectively.

We begin by estimating based on
. The Nadaraya-Watson nonparametric estimator of

is given by [28]–[30]

(42)

where is a density function called kernel and is a
positive scalar called bandwidth. Under mild conditions on

, various converges properties of to are known
when and at an appropriate rate [28]–[30]. The
Nadaraya-Watson estimator, which is chosen here merely for
concreteness, is a member of the family of local polynomial
regression techniques. For these methods, there exist algorithms
for automatically selecting the bandwidth parameter as a
function of the sample-size and possibly also as a function
of the data itself [31].

The same nonparametric method could also be used to es-
timate , had
we had a set of examples . Such a set is, of course,
unavailable since there is no analytic expression for the func-
tion . However, recall that approximates arbitrary
well as the sample size increases. We can thus use the set

to construct a Nadaraya-Watson-like nonpara-
metric estimator of , as follows:

(43)

Here and are the kernel and bandwidth associated
with the training set with of (42).

VII. SIMULATIONS

We now compare the oblique and minimax-regret estimators
via simulations.

Fig. 5. Comparison between the oblique and minimax methods of model M1
corresponding to (44). Region I:��	 ���	 ���	 . Region
II: ��	 � ��	 � ��	 . Region III: ��	 � ��	 �

��	 .

A. Partial Knowledge of Second-Order Moments

Suppose that , , and are scalar RVs distributed as

(44)

In this case, the LMMSE estimate of from , which is given
by , attains an MSE of

. Assume, however, one does not
know the values of the entries and of the covariance
matrix of . Thus, the fact that cannot be
used to design an estimator. A naive approach in this situation is
to use the estimator , whose MSE is given
by . An alternative is to make use of and via
the obliqueness approach of Section III or the minimax-regret
method of Section IV.

The MSE attained by the oblique estimator (10), which is
given by , can be computed explicitly
via (18). The minimax-regret estimator (22) is given in our case
by and
its MSE can be computed using (66) in Appendix E. The perfor-
mance of both estimators depends on and . Fig. 4 com-
pares and with and
as a function of for various values of . As can be seen,
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Fig. 6. MSE as a function of ��� ��� of the MMSE, naive, minimax and oblique methods of model M2 in the setting of (45). (a) ������ � ����. (b) ������ �
���	. (c) ������ � ����.

the performance of the oblique method becomes arbitrarily poor
as is decreased. When is significantly smaller than

, is even higher than the MSE of the naive mea-
surement-blind estimator. On the other hand, the MSE of the
minimax-regret method, which was designed to yield the best
worst-case performance, never exceeds . This be-
havior is obtained, though, at the expense of a rather modest
performance for a wide range of values of and .

While the MSE of the minimax-regret estimator decreases
as increases, its performance fails to surpass that of the
oblique method at large values of when is small. This
can be seen in Fig. 5, which shows the regions at which each
of the estimators is preferable. We conclude that, as a rule of
thumb, the oblique estimator should be used when is large
and is small, while the minimax-regret solution is more
effective when is small and is large. This simple test
does not depend on and thus can be performed based on
the available partial knowledge.

B. Partial Knowledge of Probablity Functions

Suppose that , and are binary RVs distributed as

(45)

where and and are given parameters in the
range . In this example the MMSE estimate

attains an MSE of regardless of the values
of and . Assume, however, that the joint distribution of
and is not known so that cannot be computed. In this
case, we can resort to the naive approach

, which results in an MSE of 0.25. Alternatively, we can rely
on our knowledge of and to compute the
oblique and minimax-regret solutions of Sections V and VI. The
MSE of these two methods, which can be computed explicitly
in our case, depends on the parameters and . These, in turn,

Fig. 7. Comparison between the oblique and minimax solutions of model M2
corresponding to (45). Regions are as in Fig. 5.

affect the mutual information3 between and and the
mutual information between and , respectively.

Fig. 6 depicts the MSE of the oblique and minimax-regret
methods as a function of for various values of .
It can be seen that, as in the linear case, the performance of the
oblique estimator deteriorates as becomes small, even
beyond that of the naive estimator. However, is often
lower than for high values of , especially when

is small. The regions at which each of the approaches
is preferable are shown in Fig. 7. The behavior is very similar
to that shown in Fig. 5, leading to similar conclusions.

VIII. APPLICATION TO FACIAL FEATURE RECOVERY

We now demonstrate our approach in the context of facial
image enhancement.

Assume we are given an image of a face taken with a
low-grade camera (e.g., a web-cam or a cellular-phone camera)
whose degradation model is unknown. Furthermore, a set of
paired examples of “clean” and degraded images is unavailable
so that standard Bayesian estimation techniques cannot be
used since cannot be learned. More specifically, in
such applications we can typically collect many examples of

3The mutual information between two RVs� and� is defined by ������ �

��
�� ��	����� 
��
�� ���� �����. It satisfies ������ � � if and

only if � and � are independent and becomes larger as the statistical depen-
dence between � and � tightens.
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Fig. 8. Examples from the clean and degraded databases. (a) Annotated clean
examples. (b) Annotated degraded examples.

“degraded” images taken with the low-grade camera as
well as many examples of “clean” facial images taken
with some high-quality sensor. However these two separate
unpaired sets are not sufficient for learning .

To enhance the degraded image via our partial-knowledge
Bayesian estimation framework, we need to be able to introduce
an instrument whose relations with and with can be learned
from examples. This can be done, for instance, by manually
marking a set of points in several predefined locations both on
the degraded images and on the clean images . The
vector , then, comprises the locations of the annotated points.
This enables the construction of the two paired sets of examples

and , as required in our framework.
Fig. 8 depicts several manually annotated clean and degraded

facial images taken from the AR database [32]. The point anno-
tations were taken from [33]. The images were all normalized
such that the eyes appear at predefined locations. In practice,
this preliminary step can be performed automatically [34], [35].
Here, the degradation (which is unknown to our algorithm) is a
threshold operation. Thus, is a binary image.

It is important to observe that and are both images of size
130 92 and thus correspond to vectors in . On the other
hand, comprises 22 points, which means that it corresponds to
a vector in . This huge difference in dimensionality implies
two things. First, since , there are infinitely many esti-
mators satisfying the obliqueness principle so that obliqueness
seems an inadequate criterion in this setting. Second, it indi-
cates that the statistical relation between and cannot pos-
sibly be characterized accurately solely in terms of
and . Indeed, encompasses only geometric informa-
tion about the face and completely lacks any gray-level informa-
tion. Therefore, one cannot expect to loyally recover the original
image with this type of instrument, but rather only the expres-
sion and dominant facial features.

Fig. 9(c) shows the recovery results for several degraded im-
ages obtained by our nonparametric approximation (43) to the
model-M2 minimax-regret estimator (37). In this experiment,
we used “clean” examples and

degraded examples of different subjects. The

Fig. 9. Recovery of facial images with the minimax regret estimator and with
PCA. Each column corresponds to a different subject. (a) Original images. (b)
Degraded images. (c) Recovery using the minimax-regret estimator. (d) Re-
covery using PCA.

person whose noisy image was to be cleaned, was not included
in either database. The kernels and were taken
to be Gaussians. The same values of and were used in
all our experiments. In practice, automatic bandwidth selection
techniques can be applied [31].

As can be seen, the facial expression, as well as the dominant
facial features, were indeed recovered correctly by the minimax
estimator. However, the exact gray-level profile, which is among
the important cues for distinguishing identity, was not restored
accurately.

An alternative approach to treating the facial recovery task
is to project the degraded image onto a low-dimensional sub-
space learned from the clean examples via, e.g., PCA
[36]. We note that this methodology does not make use of the
instrument , neither does it take into account the degraded ex-
amples . Furthermore, it is relevant only for applica-
tions where and are of the same dimension, whereas our
proposed technique is general. Nevertheless, it relies on the ob-
servation that facial images approximately lie in a low-dimen-
sional subspace, as experimentally shown in [36]. Therefore, re-
moving from the component perpendicular to this space, is ex-
pected to at least partially compensate for the unknown degra-
dation. Fig. 9(d) depicts the results obtained with the PCA ap-
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Fig. 10. Several methods for image zooming (a) Original image (b) Bicubic interpolation ���� (c) Direct learning ���� (d) Minimax learning via two enlarge-
ments by 2 ���� (e) The method of [19] ����.

proach, where the dimension of the subspace was tuned to ac-
count for 95% of the variance in the training set . As can
be seen, the gray-level profile in these images is much closer to
the degraded images than to the original ones. Moreover, this
technique produces artifacts which lead to unsatisfactory re-
sults. Similar artifacts were observed for different PCA-space
dimensions.

IX. APPLICATION TO IMAGE ZOOMING

We conclude with an application to image zooming.
Suppose we are given a small image, which we would like

to enlarge. Traditional approaches, such as nearest-neighbor,
bilinear, bicubic (via Keys’ kernel [37]), cubic spline, and
Lanchoz interpolation, tend to produce overly blurry images,
especially at large zooming factors. An illustration of this
phenomenon is shown in Fig. 10(b), which depicts the result of
enlarging the image of Fig. 10(a) by a factor of 4 using bicubic
interpolation.

An attractive alternative to linear interpolation methods,
which has gained popularity in recent years, relies on the
employment of learning techniques. Specifically, it has been
shown that the task of image zooming can greatly benefit
from the availability of training sets of high-resolution and
downsampled image patches [38]. Recently, it has also been
demonstrated that such a training set can even be constructed
from the given image to be enlarged itself [19], thus avoiding
the need for a set of training images. Roughly speaking, in this
type of methods, to enlarge an image by a factor of , one first
reduces its size by a factor of and learns the relation between
corresponding high-resolution and low-resolution patches.
This approach, which relies on the fact that natural images
often exhibit self-similarity across different scales, leads to
state-of-the-art image zooming results [19]. The major pitfall
in this strategy, however, is that it cannot be used on very small
images (or with very large zooming factors) since there are
simply not enough training patches left after reducing the size
of the image. This is demonstrated in Fig. 10(c) which shows
the result of enlarging the image of Fig. 10(a) by learning (via
first-order local polynomial regression) the relation between
each high-resolution pixel and the corresponding surrounding
4 4 low resolution patch . The unsatisfactory result in this

experiment can be attributed to the fact that there were only
720 available training patches.

To try and overcome the lack-of-examples barrier in the
field of self training for image zooming, we can use our partial
knowledge estimation paradigm as follows. To enlarge an
image by a factor of , we first reduce its size by a factor of

(rather than ). This downsampled image contains many
more training patches than in the standard approach and can be
used to learn the statistical relation between an image patch
and its zoomed-by- version as well as the relation between
a zoomed-by- patch and a zoomed-by- patch . We can
thus use our techniques to construct an estimator of based
on by relying only on the available partial knowledge. The
result of applying this method with the M2 minimax-regret
estimator is shown in Fig. 10(d). In this experiment, there were
3624 available training patches and consequently the result is
much more satisfactory than that of Fig. 10(c). For comparison,
Fig. 10(e) shows the result of zooming by a factor of 3 using the
algorithm of4 [19]. We note that although this image is sharper,
it is not necessarily more faithful to the original than Fig. 10(d).
For example, the fifth and twelfths letters from the right in the
bottom line, which should be “F” and “X,” respectively, were
recovered correctly in Fig. 10(d) and incorrectly in Fig. 10(e).

X. CONCLUSION

In this paper we proposed an approach for modeling partial
Bayesian knowledge by using an instrumental variable. We con-
sidered two types of partial knowledge, which correspond to
knowing the joint density functions and the joint second-order
moments, respectively, of the instrument with the signal and
with the measurements. We treated each of these scenarios via
two strategies: the obliqueness principle and minimax-regret.
We derived closed form expressions for the estimators resulting
from each of the design approaches and analyzed in which situ-
ations each is preferable. We showed that the oblique estimator
coincides with the method of instrumental variable regression.
Its main drawback is that its performance becomes arbitrarily
poor as the statistical dependency between the instrument and

4The image was taken from http://www.wisdom.weizmann.ac.il/ vision/Sin-
gleImageSR.html, in which only zooming by a factor of 3 was presented.
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measurements weakens. The performance of the minimax regret
method, on the other hand, is guaranteed to be bounded regard-
less of how weak the instrument is. Nevertheless, this behavior
comes at the expense of moderate performance at a wide variety
of situations. As an example, we presented experimental results
in image zooming and in recovering facial features from images
that have undergone unknown degradation.

APPENDIX A
PROOF OF THEOREM 1

Let denote the MSE incurred
by an estimator when the joint density of and is

. It is easily verified that

(46)

for all . Consequently (46) is also the worst-case MSE
of over . Now, denoting

(47)

we note that any estimator satisfies

(48)

where the first inequality follows from the fact that
and the last equality is a result of the fact that the MMSE esti-
mator in the Gaussian setting is linear. We have thus established
that the worst-case MSE of any estimator over is greater or
equal to the worst-case MSE of the LMMSE solution over ,
proving that is minimax optimal.

APPENDIX B
PROOF OF THEOREM 2

We begin by showing that (17) implies that the oblique
method (10) coincides with the MMSE estimate, which is given
by (3) in our setting. Since and are jointly Gaussian,
follows the normal distribution

(49)

Similarly, is distributed as

(50)

Equating the covariances of both distributions yields

(51)

Let denote the inverse of the
error covariance of the MMSE estimate of given . Note

that by assumption, the inverse exists. Then, using the matrix
inversion lemma, the matrix in (51) can be written as

(52)

With this relation and using the fact that
, the right-hand side (RHS) of (51) becomes

(53)

Therefore, (51) implies that , or equiva-
lently, that

(54)

This, in turn, implies that the oblique estimate (10) coincides
with (3).

Next, we show that if (10) and (3) coincide, then (17) holds.
As we have seen, the equivalence of (10) and (3) implies that

, which in turn implies that
the covariances of the distributions of and are equal.
Therefore, all that remains to be shown is that if (10) coincides
with (3) then the means of the distributions (49) and (50) also
coincide. Using (52), it is easily verified that

(55)

which implies that so
that the means of (49) and (50) are indeed equal.

APPENDIX C
PROOF OF THEOREM 3

Every RV can be uniquely expressed in terms of its

LMMSE estimate given as ,
where is a zero-mean RV uncorrelated with . Direct cal-
culation shows that ,
so that the constraint translates into

. Furthermore,

and therefore the inner maximiza-
tion in (21) is equivalent to

(56)

where is the set of triplets of RVs satisfying

, , , ,
, , , and
.
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To prove that of (22) is the solution to (21), we establish
a lower bound on the minimax regret value and show that
achieves this bound. Expanding the norm, (56) becomes

(57)

Our key insight is that for every triplet we also
have . Furthermore, the first term in (57) is
symmetric in , whereas the second is antisymmetric in . This
implies that if maximizes the first term, then either or
yields at least the same value for the objective comprising both
terms. Consequently

(58)

where the second inequality follows from exchanging the min-
imum and maximum and the last equality is a result of solving
the inner minimization, which is obtained at .

We next show that equality is achieved with .
Indeed, (57) implies that for this estimator

(59)

from which the theorem follows.

APPENDIX D
PROOF OF THEOREM 5

Assume first that (27) holds. We will show that this implies
that the minimax regret method (22) coincides with the MMSE
estimate, which is given by (3) in our setting. Since , and

are jointly Gaussian, follows the normal distribution

(60)

whereas is distributed according to (50). Equating the co-
variances of both distributions yields

(61)

Let denote the inverse of the
error covariance of the MMSE estimate of given , which

exists by assumption. Then, using the matrix inversion lemma,
the matrix in (51) can be written as

(62)

With this relation and using the fact that
, the RHS of (61) becomes

(63)

Therefore, (61) implies that , or equiva-
lently, that

(64)

This, in turn, implies that that the minimax regret solution (22)
coincides with (3).

Next, we show that if (22) and (3) coincide, then (27) holds.
As we have seen, the equivalence of (22) and (3) implies that

, which in turn implies that
the covariances of the distributions of and are equal.
Therefore, all that remains to be shown is that if (22) coincides
with (3) then the the means of the distributions (60) and (50)
also coincide. Using (62), it is easily verified that

(65)

which implies that so
that the means of (60) and (50) are indeed equal.

APPENDIX E
PROOF OF THEOREM 6

Direct computation of the error yields

(66)

where . The first term in
this expression is the MSE of the LMMSE estimate of given

. Recalling that the MSE of the LMMSE estimate of from

is given by , the second
term is bounded by .

Letting , so that

(67)

which is the MSE of the LMMSE estimate of from . This
completes the proof.



MICHAELI AND ELDAR: BAYESIAN ESTIMATION WITH PARTIAL KNOWLEDGE 1947

APPENDIX F
PROOF OF THEOREM 8

We establish a lower bound on the optimal minimax regret
value and then show that of (37) achieves this bound,
which proves that it is optimal.

The RV can be uniquely written as

(68)

where is a zero-mean RV uncorrelated with every function
of . It follows that , so
that the constraint translates into

. Substituting (68) and noting that ,
which equals , is fixed over the set , the inner maximiza-
tion in (36) becomes

(69)

where is the set of triplets of RVs such that is
uncorrelated with every function of , ,

and . The
set is symmetric in , namely for every triplet
we also have . Furthermore, the first term within
the maximum in (69) is symmetric in , whereas the second is
anti-symmetric in . This implies that if maximizes the first
term, then either or yields at least the same value for
the objective comprising both terms. Consequently, noting that

(70)

where the equality follows from the fact that the solution to the
minimization is obtained at .

We now show that the inequality can be achieved with
. Indeed, with this choice of , (69) implies that

from which the theorem follows.
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