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Abstract

The Wigner distribution (WD) possesses a number of desirable mathematical properties relevant to time—frequency
analysis. However, the presence of interference terms renders the WD of multicomponent signals extremely difficult to
interpret. In this work, we propose adaptive suppression of interference terms using the shift-invariant wavelet packet
decomposition. A prescribed signal is expanded on its best basis and transformed into the Wigner domain. Subsequently,
the interference terms are eliminated by adaptively thresholding the cross-WD of interactive basis functions, according to
their amplitudes and distance in an idealized time—frequency plane. We define a distance measure that weighs the
Euclidean distance with the local distribution of the signal. The amplitude and distance thresholds control the cross-term
interference, the useful properties of the distribution, and the computational complexity. The properties of the resultant
modified ¼igner distribution (MWD) are investigated, and its performance in eliminating interference terms, while still
retaining high-energy resolution, is compared with that of other existing approaches. It is shown that the proposed
MWD is directly applicable to resolving multicomponent signals. Each component is determined as a partial sum of
basis functions over a certain equivalence class in the time—frequency plane. ( 1999 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

Die Wigner-Verteilung (WD) besitzt eine Reihe wünschenswerter mathematischer Eigenschaften, die für eine Zeit—
Frequenzanalyse von Bedeutung sind. Allerdings erschwert das Auftreten von Kreuztermen die Interpretation von WD
mehrkomponentiger Signale extrem. In dieser Arbeit stellen wir eine adaptive Unterdrückung von Kreuztermen unter
Verwendung der »erschiebungsinvarianten ¼avelet-Paket-Zerlegung vor. Ein vorgeschriebenes Signal wird auf seine
beste Basis erweitert und in den Wigner-Bereich transformiert. Anschlie{end werden die Kreuzterme durch einen
adaptiven Schwellwertvergleich mit der Kreuz-WD wechselwirkender Basisfunktionen eliminiert, entsprechend ihrer
Amplituden und Abstand in einer idealisierten Zeit—Frequenzebene. Wir definieren ein Abstandsma{, das den euklidis-
chen Abstand mit der lokalen Verteilung des Signals gewichtet. Der Amplituden - und Abstandsschwellwert kontrolliert
die Kreuztermstörung, die nützlichen Eigenschaften der Verteilung und den Rechenaufwand. Die Eigenschaften der
resultierenden modifizierten ¼igner-»erteilung (MWD) werden untersucht und ihre Leistungsfähigkeit zur Eliminierung
der Kreuzterme bei noch immer hoher Energieauflösung wird mit der anderer Ansätze verglichen. Es wird gezeigt,
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da{ die vorgeschlagene MWD direkt zum Auflösen mehrkomponentiger Signale anwendbar ist. Jede Komponente wird
als Partialsumme von Basisfunktionen über eine bestimmte A® quivalentklasse in der Zeit—Frequenzebene fest-
gelegt. ( 1999 Elsevier Science B.V. All rights reserved.

Résumé

La distribution de Wigner (DW) possède un certain nombre de propriétés mathématiques désirables, appropriées pour
une analyse temps—fréquence. Cependant, la présence de termes d’interférences rend la DW de signaux à composants
multiples extrêmement difficile à interpréter. Dans ce travail, nous proposons une suppression adaptative des termes
d’interférence en utilisant la décomposition en paquets d’ondelettes invariantes en décalage. Le signal prescrit est étendu sur
sa meilleure base et transformée dans le domaine de Wigner. Ensuite, les termes d’interférence sont éliminés par un
seuillage adaptatif des DW croisées des fonctions de base interactive, selon leur amplitude et leur distance du plan
temps—fréquence idéal. Nous définissons une mesure de distance qui applique un poids à la distance Euclidienne selon la
distribution locale du signal. Les seuils d’amplitude et de distance contrôlent les termes d’interférence croisés, les
propriétés utiles de la distribution et la complexité de calcul. Les propriétés de la distribution de ¼igner modifiée (DWM)
qui en résulte sont étudiées, et ses performances pour éliminer les termes d’interférence tout en maintenant une résolution
des hautes énergies sont comparées à d’autres approches existantes. Nous montrons que la DWM proposée est
directement applicable pour résoudre des signaux à composants multiples. Chaque composant est déterminé comme une
somme spatiale de fonctions de base sur une certaine classe équivalente dans le plan temps—fréquence. ( 1999 Elsevier
Science B.V. All rights reserved.
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terms

1. Introduction

The Wigner distribution (WD) has long been of
special interest, because it possesses a number of
desirable mathematical properties [4,13], including
maximal autocomponent concentration in the
time—frequency plane. However, practical applica-
tions of the WD are restricted due to the presence
of interference terms. These terms render the WD
of multicomponent signals extremely difficult to
interpret.

Several methods, developed to reduce noise and
cross-components at the expense of reduced time—
frequency energy concentration, employ smoothing
kernels or windowing techniques [3,22,24,25]. Un-
fortunately, the specific choice of kernel dramati-
cally affects the appearance and quality of the
resulting time—frequency representation. Conse-
quently, adaptive representations [1,15,25] often
exhibit performance far surpassing that of fixed-
kernel representations. However, such methods are
either computationally expensive or have a very
limited adaptation range. Another approach
striving for cross-term suppression with minimal

resolution loss [29,34] uses the Gabor expansion to
decompose the WD. Interference terms are readily
identified as cross-WD of distinct basis functions.
Here, a major drawback is the dependence of the
performance on the choice of the Gabor window.
An appropriate window selection depends on the
data and may vary for different components of the
same signal. Furthermore, distinct basis functions
which are ‘close’ in the time—frequency plane are
often related to the same signal component. Ac-
cordingly, their cross-terms are not interpretable as
interference terms, but rather may have a signifi-
cant effect on the time—frequency resolution. Qian
and Chen [30] proposed to decompose the WD
into a series of Gabor expansions, where the order
of the expansion is defined by the maximum degree
of oscillation. They showed that such harmonic
terms contribute minimally to the useful properties,
but are directly responsible for the appearance of
interference terms. In this case, the manipulation of
cross-terms is equivalent to including cross-terms
of Gabor functions whose Manhattan distance
is smaller than a certain threshold. However,
the order of the expansion has to be determined

204 I. Cohen et al. / Signal Processing 73 (1999) 203–223



adaptively and generally depends on the local dis-
tribution of the signal. In [33], the signal is decom-
posed into frequency bands, and the Wigner
distributions of all the subbands are superimposed.
This attenuates interferences between subbands,
but still suffers interferences within the subbands.
Therefore it is merely suitable for signals that pos-
sess a single component in each subband. More-
over, the exclusion of beneficial cross-terms, which
join neighboring basis functions, invariably de-
grades the energy concentration and may artifici-
ally split a given signal component into several
frequency bands.

In this paper, we propose an adaptive sup-
pression of interference terms using the shift-invari-
ant wavelet packet decomposition (SIWPD) [6,9].
A prescribed signal is expanded on its best SIWPD
basis, and subsequently transformed into the Wig-
ner domain. The interference terms are controlled
by adaptively thresholding the cross-WD of inter-
active basis functions according to their distance
and amplitudes in an idealized time—frequency
plane (an abstract representation where each basis
function is associated with a rectangular time—fre-
quency tile, e.g., [35]). When the distance threshold
is set to zero, the modified Wigner distribution
(MWD) precludes any cross-terms, so essentially
there is no interference terms but the energy con-
centration of the individual components is unac-
ceptably low. When the amplitude threshold is set
to zero and the distance threshold goes to infinity,
the MWD converges to the conventional WD. By
adjusting the distance and amplitude thresholds,
one can effectively balance the cross-term interfer-
ence, the useful properties of the distribution, and
the computational complexity.

The distance measure in the idealized plane is
related to a degree of adjacency by weighing the
Euclidean time—frequency distance with the self-
distribution of the basis functions. Since the basis
functions are adapted to the signal’s local distribu-
tion, the thresholding of the cross-terms is also
adapted to the local distribution of the signal. This
dispenses with the need for local adjustments of the
associated distance threshold.

We note that the MWD constitutes an effective
tool for resolving multicomponent signals. By de-
fining equivalence classes in the time—frequency

plane, we show that a prescribed component of
a multicomponent signal can be determined as
a partial sum of basis functions. The signal compo-
nents are well delineated in the time—frequency
plane, and can be recovered from the energy distri-
bution to within a constant phase factor.

This paper is organized as follows. In Section 2,
we review the Wigner distribution, the origin of
interference terms and the relation to Cohen’s class
of distributions. In Section 3, we define the ex-
tended library of wavelet packets and demonstrate
the shift-invariant properties of the SIWPD. Sec-
tion 4 introduces the MWD. We present adaptive
decompositions of the WD and show that the inter-
ference terms can be eliminated by thresholding the
cross-terms according to a degree of adjacency in
the idealized time—frequency plane. The general
properties of the MWD are presented in Section 5.
Inversion and uniqueness of the MWD are the
subjects of Section 6.

2. The Wigner distribution

Let R
g
(t,q) be the instantaneous auto-correlation

of a complex signal g(t), defined as

R
g
(t,q)"g(t#q/2)gH(t!q/2), (1)

where gH denotes the complex conjugate of g. The
Wigner distribution of g(t) is then defined as the
Fourier transform (FT) of R

g
(t,q) with respect to the

lag variable q [36],

¼
g
(t,u)"PRg

(t,q)e~+uqdq

"Pg(t#q/2)gH(t!q/2)e~+uqdq, (2)

or equivalently as

¼
g
(t,u)"

1

2pPG(u#m/2)GH(u!m/2)e+mtdm, (3)

where G(u) is the Fourier transform of g(t) (the
range of integrals is from !R to #R unless
otherwise stated). The WD satisfies a large number
of desirable mathematical properties [4,13]. In par-
ticular, the WD is always real-valued, it preserves
time and frequency shifts and satisfies the marginal

I. Cohen et al. / Signal Processing 73 (1999) 203—223 205



properties

1

2pP¼g
(t,u) du"Dg(t)D2, (4)

P¼g
(t,u) dt"DG(u)D2. (5)

One major drawback of the WD is the interference
terms between signal components. Suppose that
a given signal consists of two components,

g(t)"g
1
(t)#g

2
(t). (6)

Then, by substituting this into Eq. (2) we have

¼
g
(t,u)"¼

g1
(t,u)#¼

g2
(t,u)#2ReM¼

g1,g2
(t,u)N,

(7)

where

¼
g1,g2

(t,u)"Pg1
(t#q/2)gH

2
(t!q/2) e~+uqdq (8)

is the cross-WD of g
1
(t) and g

2
(t). This shows that

the WD of the sum of two signals is not the sum of
their respective WDs, but has the additional term
2ReM¼

g1,g2
(t,u)N. This term is often called the inter-

ference term or cross-term and it is often said to
give rise to artifacts. However, one has to be cau-
tious with the interpretations these words evoke,
because any signal can be broken up into an arbit-
rary number of parts and the so-called cross-terms
are therefore not generally unique and do not char-
acterize anything but our own division of a signal
into parts [5]. There exists a natural decomposition
where beneficial cross-terms, which enhance the
energy concentration, are distinguished from the
undesirable interference terms, which obscure
the time—frequency representation. This issue is ad-
dressed in Sections 4 and 6.

The WD, as well as the Choi and Williams [3]
and Cone-kernel distributions [38] are members of
a more general class of distributions, called Cohen’s
class [11]. Each member of this class is given by

C
g
(t,u;/)"

1

2pPPPe+(~ht~uq`hu)/(h,q)

]g(u#q/2)gH(u!q/2) dudhdq (9)

"PP¼g
(u,m)U(t!u,u!m) du dm, (10)

where /(h,q) is the kernel of the distribution, and
U(t,u) is the 2-D Fourier transform of /(h,q). Differ-
ent kernels produce different distributions obeying
different properties. For example, /(h,q)"1,
e+h@q@@2, e~h2q2@p and w(q) DqD sin(ahq)/ahq correspond
to the Wigner, Page, Choi—Williams and Cone-
kernel distributions, respectively [22]. The spectro-
gram, the squared magnitude of the short-time
Fourier transform, is also a member of Cohen’s
class, since it can be obtained as a 2-D convolution
of the WDs of the signal and the window.

The interference terms associated with the WD
are highly oscillatory, whereas the auto-terms are
relatively smooth. Therefore, the reduced-interfer-
ence distributions are designed to attenuate the
interference terms by smoothing the WD with
a low-pass kernel [24,37]. Unfortunately, this pro-
cedure invariably entails a loss of time—frequency
concentration. Accordingly, high-energy concen-
tration and effective suppression of interference
terms cannot be achieved simultaneously by merely
smoothing the Wigner distribution.

3. The extended library of wavelet packets

Overcomplete libraries of waveforms that span
redundantly the signal space encourage adaptive
signal representations. Instead of representing
a prescribed signal on a fixed basis, it is often useful
to choose a suitable basis that facilitates a desired
application, such as compression, identification,
classification or noise removal (denoising)
[27,32,35]. Of particular interest are the libraries of
wavelet packet bases, which consist of translations
and dilations of wavelet packets, and libraries of
local trigonometric bases, comprising sines and
cosines multiplied by smooth window functions
[14,35]. The basis functions are localized in the
time—frequency plane, and organized in a binary
tree structure where efficient search algorithms for
the best basis can be implemented.

A serious drawback of the wavelet packet de-
composition (WPD) and local cosine decomposi-
tion (LCD) [14] is the lack of shift invariance. The
expansion, as well as the information cost measur-
ing its suitability for a particular application, may
be significantly influenced by the alignment of the
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Fig. 1. Test signal g(t) consisting of a short pulse, a tone and
a nonlinear chirp.

input signal with respect to the basis functions.
Furthermore, the time—frequency tilings, produced
by the best-basis expansions, do not generally con-
form to standard time—frequency energy distribu-
tions [9]. Hence we employ modified versions
which induce shift invariance, lower information
cost and improved time—frequency resolution
[6—8].

Let us specifically consider the shift-invariant
wavelet packet decomposition (SIWPD) [6,9].
The library of bases is extended by introducing an
additional degree of freedom that adjusts the time
localization of the basis functions. This degree of
freedom is practically incorporated into the search
algorithm as an adaptive even—odd down sampling.
That is, following the low-pass and high-pass filter-
ing, when expanding a parent node, we retain either
all the odd samples or all the even samples, accord-
ing to the choice which minimizes the cost function.

Let Mt
n
(t): n3Z

`
N be a wavelet packet family

[14] generated by

t
2n

(t)"J2+
k|Z

h
k
t
n
(2t!k), (11)

t
2n`1

(t)"J2+
k|Z

g
k
t
n
(2t!k), (12)

where g
k
"(!1)kh

1~k
, and t

0
(t),u(t) is an or-

thonormal scaling function, satisfying

Su(t!p),u(t!q)T"d
p,q

, p,q3Z. (13)

The extended library of wavelet packets is defined
as the collection of all the orthonormal bases which
are subsets of

MBl,n,m
: 0)l)¸, 0)n,m(2L~lN, (14)

where ¸ denotes the finest resolution level, and

Bl,n,m
,M2 l@2t

n
[2 l(t!2~Lm)!k]: 0)k(2 lN.

(15)

Although this library is larger than the standard
wavelet packet library by a square power, it still
retains a tree configuration facilitating fast search
algorithms [6]. The additional parameter m pro-
vides a crucial degree of freedom, required for
adjusting the time location of basis functions.
When an analyzed signal is translated in time by

q"q2~L (q3Z), a new best basis is selected whose
elements are also translated by q compared to the
former best-basis. Thus, the expansion coefficients
remain unchanged, and the corresponding repres-
entation is time shifted by the same period.

The relative advantages of SIWPD over WPD
are as follows [9]: (1) shift invariance; (2) lower
information cost; (3) improved time—frequency res-
olution; (4) a more stable information cost across
a prescribed data set; (5) controllable computa-
tional complexity (down to O(N log

2
N)) at the ex-

pense of the information cost. To demonstrate the
shift-invariant properties of the SIWPD and its
enhanced time—frequency representation, we com-
pare the expansions of signals g(t) (Fig. 1) and
g(t!2~6). These signals contain 27"128 samples,
and are identical to within two time-shifted sam-
ples. For definiteness, we choose C

12
to serve as the

scaling function (C
12

corresponds to 12-tap coiflet
filters ([17] (p. 261), [18]) and the Shannon entropy
as the information cost function, defined by
M(Mx

i
N)"!+

i>xiE0
x2
i
logx2

i
(e.g., [14]). Figs. 2

and 3 display the best-basis expansions under the
WPD and the SIWPD algorithms, respectively.
The sensitivity of WPD to temporal shifts is obvi-
ous, while the best-basis SIWPD representation is
indeed shift invariant and characterized by a lower
entropy and improved time—frequency resolution.
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Fig. 2. Effect of a temporal shift on the time—frequency representation using the WPD with 12-tap coiflet filters: (a) g(t) in its best basis;
entropy"3.07. (b) g(t!2~6) in its best basis; entropy"2.94.

Fig. 3. Time—frequency representation using the SIWPD with 12-tap coiflet filters. (a) g(t) in its best basis; entropy"1.88. (b) g(t!2~6)
in its best basis; entropy"1.88. Compared with the WPD (Fig. 2), beneficial properties are shift-invariance and lower information cost.

4. Adaptive decomposition of the Wigner
distribution and elimination of interference terms

In this section, we present adaptive decomposi-
tions of the WD using overcomplete libraries of
orthonormal bases. The Wigner domain interfer-
ence terms are controlled adaptively by thre-
sholding the cross-WD of interactive basis
functions according to their degree of adjacency in

the idealized time—frequency plane. In particular,
we demonstrate the advantage of the modified dis-
tribution obtained by employing the shift invariant
wavelet packet decomposition.

Let B denote an overcomplete library of or-
thonormal bases, and let

g(t)"+
j|N

cjuj(t), MujNj|N3B, (16)
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be the best-basis expansion of the signal g. Then by
inserting Eq. (16) into Eq. (2), the Wigner distribu-
tion of g can be written as

¼
g
(t,u)" +

j,j{|N
cjcHj{¼rj,rj{

(t,u) (17)

"+
j|N

DcjD2¼rj(t,u)

#2 +
j;j{

ReMcjcHj{¼rj,rj{
(t,u)N. (18)

Eq. (18) partitions the traditional WD into two
subsets. The superposition of the auto-WD of the
basis functions, represents the auto-terms. The sec-
ond summation, comprising cross-WD of basis
functions, represents the cross-terms. Cross-terms
associated with the Wigner distribution, and other
bilinear distributions, should not be always inter-
preted as interference terms. Any signal can be
sub-divided in an infinite number of ways, each
generating different cross terms. Therefore, we need
to distinguish between generally undesirable inter-
ference terms and beneficial cross-terms that prim-
arily enhance useful time—frequency features.

The cross-WD of distinct basis functions is oscil-
lating and centered in the midway of the corre-
sponding auto-terms [20,21]. The oscillation rate is
proportional to the distance between the auto-
terms. On the other hand, useful properties such as
the time marginal, frequency marginal, energy con-
centration and the instantaneous frequency prop-
erty [13], are achieved by averaging the Wigner
distribution. Therefore, the overall contribution of
each cross-term component is inversely propor-
tional to the distance between the corresponding
basis functions in the time—frequency plane [30,31].

A useful distance measure between pairs of basis
functions is obtainable in the idealized time—fre-
quency plane [10]. Recall that in the idealized
plane, each basis function is symbolized by a rec-
tangular cell (tile) whose area is associated with
Heisenberg’s uncertainty principle, and its shade is
proportional to the corresponding squared coeffic-
ient [35]. We define the distance between a pair of
basis functions by

d(uj,uj{)"C
tM j!tM j{)2
*tj*tj{

#

(uN j!uN j{)2
*uj*uj{ D

1@2
, (19)

where (tM j,uN j) is the position of the cell associated
with uj; *tj and *uj denote the time and frequency
widths (uncertainties), respectively. Similar nota-
tions apply to uj{.

Since the best basis tends to represent the signal
using a relatively small number of significant ex-
pansion coefficients, the summations in Eq. (18)
can be restricted to basis functions whose coeffi-
cients are above a prescribed cutoff, and to pairs
that are ‘close’ (sufficiently small values of
d(uj,uj{)). The modified Wigner distribution
(MWD) is then given by

¹
g
(t,u)"+

j|K
DcjD2¼rj

(t,u)

#2 +
Mj,j{N|C

ReMcjcHj{¼rj,rj{
(t,u)N, (20)

where

K"MjD DcjD*eMN, M,max
j

MDcjDN, (21)

C"MMj,j@N D 0(d(uj,uj{))D, Dcjcj{D*e2M2N,
(22)

e and D denote thresholds of relative amplitude and
time—frequency distance, respectively. When D"0,
the MWD precludes any cross-terms, so essentially
there are no interference terms but the energy con-
centration of the individual components is gener-
ally low. As D goes to infinity and e goes to zero, the
MWD converges to the conventional WD. By ad-
justing the distance and amplitude thresholds, one
can effectively balance the cross-term interference,
the useful properties of the distribution, and the
computational complexity.

Here, rather that the usual Euclidean distance

(J(tM j!tM j{)2#(uN j!uN j{)2) or the Manhattan dis-
tance (DtM j!tM j{D#DuN j!uN j{D) [30], we use the
measure defined in Eq. (19), which weighs the
time—frequency distance with the self-distribution
of the basis elements. Since the basis elements are
selected to best match the signal’s local distribu-
tion, such a distance measure implicitly character-
izes the signal itself. Accordingly, the thresholding
of the cross-terms is also adapted to the local distri-
bution of the signal, dispensing with the need for

I. Cohen et al. / Signal Processing 73 (1999) 203—223 209



Fig. 4. Contour plots for the signal g(t). (a) Wigner distribution. (b) Spectrogram. Compared with the WD, the spectrogram does not
have undesirable interference terms but the energy concentration is poor.

local adjustments of the associated distance thre-
shold.

The extended library of wavelet packets includes
basis functions of the form

tl,n,m,k
(t)"2l@2t

n
[2l(t!2~Lm)!k], (23)

where l is the resolution-level index (0)l)¸), n is
the frequency index (0)n(2L~l), m is the shift
index (0)m(2L~l ) and k is the position index
(0)k(2l ). Each basis function is symbolically
associated with a rectangular tile in the time—fre-
quency plane which is positioned about

tM"2~lk#2~Lm#(2L~l
!1)C

h
#(C

h
!C

g
)R(n),

(24)

fM"2l~L[GC~1(n)#0.5], (25)

where

C
h
¢

1

EhE2
+
k|Z

kDh
k
D2, C

g
¢

1

EgE2
+
k|Z

kDg
k
D2 (26)

are, respectively, the energy centers of the low-pass
and high-pass quadrature filters [19,35], R(n) is an
integer obtained by bit reversal of n in an ¸!l bits
binary representation, and GC~1 is the inverse gray
code permutation. The width and height of the tile
are given by

*t"2~l, *f"2l~L. (27)

For a given signal, the SIWPD yields the best
expansion in the extended library with respect to an
additive cost function [9]. It is demonstrated below
that it would be advantageous to search for the best
orthonormal basis using an extended library of
wavelet packets, rather than using computationally
expensive algorithms for searching optimal (not
necessarily orthonormal) expansions in a conven-
tional wavelet packet library. The extended library
provides flexibility in expanding the signal, while
the orthonormality contributes to a manageable
complexity of the search procedure.

For example, Fig. 4 depicts the Wigner distribu-
tion and spectrogram for g(t). The signal g(t)
(Fig. 1) comprises a short pulse, a tone and a com-
ponent with nonlinear frequency modulation. The
spectrogram has no interference terms, at the ex-
pense of comparatively poor energy concentration.
The optimal expansions of g(t) obtained by the
method of frames (minimum l2 norm) [16], Match-
ing Pursuit [26], basis pursuit (minimum l1 norm)
[2] and WPD are illustrated in Fig. 5. While these
algorithms use the conventional library of wavelet
packets and fail to represent the signal efficiently,
the SIWPD (Fig. 5(f )) facilitates an efficient repres-
entation by a small number of coefficients. Further-
more, its computational complexity (&3580
multiplications) is significantly lower than those
associated with the matching pursuit (&44 800
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Fig. 5. Time—frequency tilings for the signal g(t), using the library of wavelet packet bases (generated by 12-tap coiflet filters) and various
best-basis methods. (a) Method of frames (minimum l2 norm). (b) Matching pursuit. (c) Basis pursuit (minimum l1 norm). (d) Wavelet
packet decomposition (minimum l1 norm). (e) Wavelet packet decomposition (minimum Shannon entropy). (f) Shift-invariant wavelet
packet decomposition (minimum Shannon entropy).
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Fig. 6. The modified Wigner distribution for the signal g(t), combined with the SIWPD and various distance thresholds. (a) D"0; (b)
D"2; (c) D"3; (d) D"5. For D"0, the energy concentration is not sufficient. For D"2, the energy concentration is improved by
cross-terms within components. As D gets larger, the interference between components becomes visible and the modified Wigner
distribution converges to the conventional WD (cf. Fig. 4). A good compromise has been found for 1.5)D)2.5.

multiplications) and the basis pursuit (&331 500
multiplications).

Fig. 6 illustrates the MWD for g(t), using various
distance thresholds. When D"0, there are no in-
terference terms, but the energy concentration of
individual components is insufficient. D"2 leads
to improved energy concentration, yet, no signifi-

cant interference terms are present. As D gets larger,
the interference between components becomes vis-
ible and the MWD converges to the conventional
WD (cf. Fig. 4(a)). An acceptable compromise is
usually found between D"1.5 and 2.5.

Fig. 7(a) shows the MWD for g(t), obtained via
the SIWPD with thresholds D"2 and e"0.1.

212 I. Cohen et al. / Signal Processing 73 (1999) 203–223



Fig. 7. Mesh plots for the signal g(t). (a) The modified Wigner distribution combined with the SIWPD and distance threshold D"2; (b)
Wigner distribution; (c) Smoothed pseudo-Wigner distribution; (d) Choi—Williams distribution; (e) Cone—kernel distribution; (f) Reduced
interference distribution. The modified Wigner distribution yields an adaptive distribution where high resolution, high concentration,
and suppressed interference terms are attainable.

Fig. 7 (b, c, d, e, f ) describe, respectively, the WD,
the Smoothed pseudo-Wigner distribution, the
Choi—Williams distribution, the Cone-kernel distri-
bution and the reduced interference distribution

[22]. Clearly, in this example, the SIWPD-based
MWD achieves high time—frequency resolution,
and outperforms other techniques in eliminating
interference terms.
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Fig. 8. Time—frequency representation for the signal g(t), using the SIWPD with 6-tap Daubechies least asymmetric wavelet filters. (a)
The best-basis tiling; entropy"2.09. (b) The modified Wigner distribution (D"2, e"0.1).

The particular basis, selected for representing
a prescribed signal, plays an important role in the
MWD. As long as the ‘best’ basis elements are
localized in time—frequency and reasonably match-
ed to the local distribution of the signal, each signal
component is characteristically represented by
a few significant elements. Thus, by restricting the
cross-terms to neighboring basis functions, we
eliminate interference terms between distinct com-
ponents, and even within components having
a nonlinear frequency modulation. On the other
hand, whenever the signal is arbitrarily decom-
posed into elements that have no relation to the
actual signal distribution, the performance of the
MWD may deteriorate. The SIWPD constitutes an
efficient algorithm for selecting the most suitable
basis. Similarly to standard WPD, the SIWPD
library is generated by a single ‘mother wavelet’
[9]. Although the library is flexible and versatile
enough to describe various local features of the
signal, the choice of the mother wavelet may affect
the eventual performance.

The signal g(t), depicted in Fig. 1, can be repre-
sented by seven basis function, belonging to the
extended wavelet packet library with C

12
as the

mother-wavelet (cf. Fig. 3(a)). If the SIWPD utilizes
decomposition filters that correspond to a different

mother wavelet, then the entropy of the representa-
tion is expected to be higher and correspondingly
the performance of the MWD will deteriorate.
Figs. 8 and 9 illustrate best-basis expansions
and MWDs for g(t), obtained by the SIWPD with
D

6
and S

9
as mother wavelets (D

6
corresponds

to 6-tap Daubechies least asymmetric wavelet fil-
ters, and S

9
corresponds to 9-tap Daubechies min-

imum phase wavelet filters [17, pp. 195,198]).
A comparison with Fig. 5(f ) and Fig. 6(b) shows
that despite variations in the time—frequency till-
ings, the MWD managed to delineate the compo-
nents of the signal and effectively eliminate the
interference terms.

Fig. 10 illustrates the best-basis expansion and
MWD for g(t), obtained using an extended library
of local trigonometric bases and a corresponding
best-basis search algorithm, namely the shift invari-
ant adapted-polarity local trigonometric decomposi-
tion (SIAP-LTD) [7,8]. Here, the basis functions
fail to represent the signal efficiently. We may com-
pare the entropy ("2.81) with that obtained with
the SIWPD (1.88 with C

12
, 2.09 with D

6
, and 2.32

with S
9
). The reduced performance of the SIAP-

LTD for this particular signal stems from the fact
that short pulses, expanded on local trigonometric
bases, require a large number of decomposition
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Fig. 9. Time—frequency representation for the signal g(t), using the SIWPD with 9-tap Daubechies minimum phase wavelet filters. (a)
The best-basis tiling; entropy"2.32. (b) The modified Wigner distribution (D"2, e"0.1).

Fig. 10. Time—frequency representation for the signal g(t), using the SIAP-LTD. (a) The best-basis tiling; entropy"2.81. (b) The
modified Wigner distribution.

levels [8]. This entails a steeper rising cutoff func-
tion, and consequently basis functions which are
less localized in frequency [35]. Notice that the
‘visual quality’ of the MWD is well correlated with
the entropy attained by the best-basis expansion.

Lower entropy generally yields ‘better’ (well delin-
eated components, high resolution and concentra-
tion) MWD. It appears that ‘entropy’ can serve as
a reasonable measure for a quantitative compari-
son between MWDs.
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5. General properties

In this section we investigate the MWD in more
detail.

Realness: The MWD is always real, even if the
signal or the basis functions are complex.

¹H
g
"¹

g
. (28)

This property is a direct consequence of the real-
ness of the Wigner distribution.

Shift invariance: Shifting a signal by q"k2~J

(k,J3Z), where J is finest resolution level of the
best-basis decomposition, entails an identical shift
of the MWD, i.e.,

if gJ (t)"g(t!q) then ¹
gJ
(t,u)"¹

g
(t!q,u). (29)

This property follows from the shift-invariance
property of the best-basis decomposition. To see
this, let g(t)"+jcjuj(t) be the best-basis expansion
of g, and let gJ (t)"g(t!q), q"k2~J. Then, using
the shift invariance of the best-basis decomposition,
we have

gJ (t)"+
j

cJ juJ j(t)"+
j

cjuj(t!q) (30)

is the best-basis expansion of gJ , i.e., the best-basis
for gJ is identical to within a time-shift q to the
best-basis for g, and the corresponding expansion
coefficients are the same. The MWD of g and gJ are
given by

¹
g
(t,u)"+

j|K
DcjD2¼rj

(t,u)

#2 +
Mj,j{N|C

ReMcjcHj{¼rj,rj{
(t,u)N, (31)

¹
gJ
(t,u)"+

j|KI
DcjD2¼rj

(t!q,u)

#2 +
Mj,j{N|CI

ReMcjcHj{¼rj,rj{
(t!q,u)N, (32)

where we used the shift-invariance property,

¼rJ j,rJ j{(t,u)"¼rj,rj{
(t!q,u),

¼rJ j(t,u)"¼rj
(t!q,u).

(33)

Now, since the expansion coefficients of g and gJ are
identical (cJ j"cj), and the time—frequency distance
between pairs of basis functions remains un-
changed (d(uJ j,uJ j{)"d(uj,uj{)), the sets KI and CI are
identical to K and C, respectively. It is therefore
concluded that ¹

gJ
(t,u)"¹

g
(t!q,u).

Symmetry in frequency: Real signals have sym-
metrical spectra. For symmetric spectra, the
Wigner distribution is symmetric in the frequency
domain,

¼
g
(t,!u)"¼

g
(t,u), ¼

g,s
(t,!u)"¼

s,g
(t,u).

(34)

Thus, for real signals and real basis functions, the
MWD retains the same symmetries, i.e.,

¹
g
(t,!u)"¹

g
(t,u). (35)

Symmetry in time: For symmetrical signals, the
Wigner distribution is symmetric in the time do-
main,

¼
g
(!t,u)"¼

g
(t,u), ¼

g,s
(!t,u)"¼

s,g
(t,u).

(36)

However, the MWD is not necessarily symmetric,
since the best-basis decomposition is generally
asymmetric. Still, confining ourselves to symmetric
basis functions (entailing either biorthogonal or
complex-valued basis functions [17]) and restrict-
ing B, the library of bases, to those bases satisfying

MujNj|N3B N Muj(t)Nj|N"Muj(!t)Nj|N,

the best-basis decomposition becomes symmetric,
rather than shift invariant. In that case, the MWD
is symmetric in time,

¹
g
(!t,u)"+

k|K
Dc
k
D2¼rk

(!t,u)

#2 +
Mk,lN|C

ReMc
k
cHl ¼rk,rl

(!t,u)N

" +
k{|K

Dc
k{
D2¼rk{

(t,u)#2 +
Mk{,l{N|C

]ReMc
k{
cHl{¼rk{,rl{

(t,u)N"¹
g
(t,u).

¹otal energy: Integrating the general form of the
MWD with respect to time and frequency shows
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that the total energy is bounded by the energy of
the signal:

1

2pPdtPdu¹
g
(t,w)"+

j|K
DcjD2)+

j
DcjD2"EgE2, (37)

where we have used

1

2pPdtPdu¼rk,rl
(t,w)"Su

k
,ulT"d

k,l
.

Observe that the difference between the total en-
ergy and the energy of the signal essentially
stems from the smallest expansion coefficients. In
fact, if we set the amplitude threshold (e) to zero, the
set of indices K runs over all the basis-functions,
and thus the total energy equals the energy of the
signal.

Positivity: The interpretation of the conventional
WD as a pointwise time—frequency energy density
is generally restricted by the uncertainty principle
and by the fact that the WD may locally assume
negative values [12,23,28]. However, the non-
negativity and interference terms are closely re-
lated, and in many cases the suppression of
interference terms accompanies reduction of nega-
tive values in magnitude [24]. Thus, reduction of
the interference terms associated with the WD, en-
tails comparable attenuation of its negative values.

6. Inversion and uniqueness

In this section we show that the components that
comprise a given signal can be recovered from the
MWD, to within an arbitrary constant phase factor
and to within the errors caused by neglecting low
weight basis constituents.

6.1. Equivalence classes in the time—frequency plane

A multicomponent signal is one that has well
delineated regions in the time—frequency plane.
Examples of multicomponent signals are illustrated
in Fig. 11. One of the advantages of the MWD is its
capability to resolve a multicomponent signal into
disjoint time—frequency regions.

Definition 1. Let X"KXMj D Mj,j@N3C for some
j@3KN be the indices set of the significant basis
functions, i.e., the basis functions which contribute
to the MWD. A pair of indices k, l3X are said
to be equivalent, denoted by k&l, if k,l or alter-
natively there exists a finite series Mj

i
NN
i/1

such that
Mj

i
,j

i`1
N3C for i"1,2,2,N!1 and Mk,j

1
N,

Ml,j
N
N3C.

Clearly, & is an equivalence relation on X, since it
is reflexive (k&k for all k3X) symmetric (k&l
implies l&k) and transitive (k&l and l&m imply
k&m). The equivalence relation means that the
corresponding basis functions are linked in the
time—frequency plane by a series of consecutive
adjacent basis functions.

Denote by

K
k
"Mj3X D j&kN, (38)

the equivalence class for k3X. Then, for any k,l3X
either K

k
"Kl or K

k
WKl"0. Hence, MK

k
D k3XN

forms a partition of X, and each equivalence class
can be related to a single component of the signal.
The number of components which comprise the
signal g is determined by the number of distinct
equivalence classes in X.

For example, refer to the multicomponent signal
s(t), depicted in Fig. 12. Its best-basis decomposi-
tion (Fig. 13) shows that it can be expressed as the
sum of six basis functions: s(t)"+6

k/1
c
k
u
k
. In this

case, with an appropriate distance threshold
(D"2), we obtain

K"M1,2,3,4,5,6N"X,

C"MM1,2N M2,3N M4,5N M5,6NN.

Thus there are two distinct equivalence classes
on X,

K
1
"K

2
"K

3
"M1,2,3N,K

I
,

K
4
"K

5
"K

6
"M4,5,6N,K

II
.

Accordingly, we presume that the signal consists of
two components:

s"s
I
#s

II
,
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Fig. 11. Examples of multicomponent signals. (a) Superposition of two linear chirps. (b) Superposition of two nonlinear chirps. Neither
the time representation nor the energy spectral density indicate whether the signals are multicomponent. The joint time—frequency
representations, however, show that the signals are well delineated into regions.

where

s
I
" +

k|KI

c
k
u
k
, s

II
" +

k|KII

c
k
u

k
.

These components, depicted in Fig. 14, are
associated with the two well delineated time—
frequency regions in the MWD domain
(Fig. 15(a)).
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Fig. 12. A multicomponent signal s(t).

Fig. 13. The best-basis decomposition of s(t).

6.2. Recovering the components of a multicomponent
signal

The components of a multicomponent signal are
given by the partial sums of basis functions with
respect to equivalence classes. They can also be
recovered from the MWD to within an arbitrary
constant phase factor in each signal component,
and to within errors generated by neglecting small
basis constituents (small auto-terms, small cross-
terms, as well as interference terms that correspond
to distant basis functions).

Lemma 1. ¸et Mu
k
N
k|N

be the best basis for g(t), and
let ¼

k,l
,¼rk,rl

be the cross ¼igner distribution of
pairs of basis functions. ¹hen the set M¼

k,l
N
k,l|N

is an
orthonormal basis for ¸

2
(R2), and the expansion co-

efficients for the M¼D are given by

c
k,l
"S¹

g
,¼

k,l
T

"G
c
k
cHl if k"l3K or Mk,lN3C,

0 otherwise,
(39)

where

S¹
g
,¼

k,l
T¢

1

2pPP¹g
(t,u)¼H

k,l
(t,u) dtdu.

Proof. We first need to show that the system
M¼

k,l
N
k,l|N

is orthonormal and complete in ¸
2
(R2).

Orthonormality is given by

S¼
k,l

,¼
m,n

T"
1

2pPdtPduPdqPdq@u
kAt#

q
2B

]uHl At!
q
2BuHmAt#

q@
2B

]u
nAt!

q@
2Be~+u(q~q{)

"PdtPdqu
kAt#

q
2BuHl At!

q
2B

]uH
mAt#

q
2BunAt!

q
2B

"Su
k
,u

m
TSu

n
,ulT"d

k,m
dl,n

,

and completeness is satisfied by

(2p)~1 +
k,l|N

¼
k,l

(t,u)¼H
k,l

(t@,u@)

"

1

2p
+

k,l|N
PdqPdq@u

k At#
q
2BuHl At!

q
2Be~+uq

]uH
kAt@#

q@
2Bul At@!

q@
2Be`+u{q{
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Fig. 14. The components of the signal s. (a) The component s
I
associated with the equivalence class K

I
. (b) The component s

II
associated

with the equivalence class K
II
.

Fig. 15. Contour plots for the signal s(t). (a) Modified Wigner distribution; (b) Wigner distribution.

"

1

2pPdqPdq@dAt!t@!
q
2
#

q@
2B

]dAt!t@#
q
2
!

q@
2Be~+uq`+u{q{

"d(t!t@)
1

2pPe+q(u{~u)dq"d(t!t@)d(u!u@).

Now, the MWD can be expressed in the following
form:

¹
g
"+

k|K
Dc
k
D2¼

k,k
#2 +

Mk,lN|C
ReMc

k
cHl ¼k,l

N

" +
k,l|N

c
k,l
¼

k,l
. (40)

Therefore, by the uniqueness of the expansion, the
relation in Eq. (39) holds. h

220 I. Cohen et al. / Signal Processing 73 (1999) 203–223



Fig. 16. The signals sJ"!s
I
#s

II
(bold line) and s"s

I
#s

II
(light line) are different. However, since they consist of the same
components, they have the same modified Wigner distribution.

Let k3K, and let K
k

be its equivalence class.
Then for any l3K

k
there exists a finite series Mj

i
NN
i/1

such that Mj
i
,j

i`1
N3C for i"1,2,N!1 and

Mk,j
1
N,Ml,j

N
N3C. By Eq. (39) we have

Dc
k
D2"S¹

g
,¼

k,k
T, (41)

c
k
cHj1

"S¹
g
,¼

k,j1
T, (42)

cji
cHji`1

"S¹
g
,¼ji,ji`1

T, i"1,2,N!1, (43)

cjN
cHl "S¹

g
,¼jN,l

T, (44)

which shows that cl has a recursive relation to c
k
,

and c
k

can be recovered from the MWD up to
a phase factor. Accordingly, each component of the
signal can also be recovered up to an arbitrary
constant phase factor by

s
k
"+

l|Kk

clul. (45)

The constant phase factor in each component of the
signal clearly drops out when we calculate the
MWD (as it does for the WD). Therefore, it cannot
be recovered. Summation of distinct signal compo-
nents generally yields a different signal that has the
same MWD. For example, we observed that the
signal s in Fig. 12 consists of two components,
s"s

I
#s

II
. The difference of these components,

generates another signal sJ"s
II
!s

I
(cf. Fig. 16),

which has the same MWD as s. In some applica-
tions, such as pattern recognition, it is actually
desirable that signals consisting of the same com-
ponents will be identified, irrespective of their rela-
tive phase. The MWD provides an efficient
technique for doing so.

7. Summary

The main issue investigated in this paper is that
of adaptive decompositions of the Wigner distribu-
tion and suppression of interference terms, leading
to a newly defined modified Wigner space. A pre-
scribed signal is expanded on its best basis using the
SIWPD, and subsequently transformed into the
Wigner domain. The resulting distribution is modi-
fied by restricting the auto-terms and cross-terms
to basis functions whose normalized coefficients are
larger in magnitude than a certain amplitude thre-
shold e, and to pairs whose time—frequency distance
is smaller than a specified critical distance D. We
have shown that the distance and amplitude thre-
sholds control the cross-term interference, the use-
ful properties of the distribution, and the
computational complexity. A smaller distance thre-
shold better eliminates the interference terms, but
tends to lower the energy concentration. A larger
distance threshold improves the time—frequency
resolution at the expense of retaining additional
interference terms. When the amplitude threshold
is set to zero and the distance threshold goes to
infinity, the MWD converges to the conventional
WD. Appropriate threshold values (D+2, e+0.1)
combine high resolution, high concentration and
suppressed cross-term interference at a manageable
computational complexity.

We have compared alternative libraries, showing
that interference terms between distinct compo-
nents can be efficiently eliminated, as long as the
localization properties of basis elements aptly re-
semble that of the signal. The visual quality of the
MWD is well correlated with the entropy attained
by the best-basis expansion, facilitating a quantitat-
ive comparison between energy distributions. The
MWD is thus effective for resolving multicompo-
nent signals. The signal components are deter-
mined as partial sums of basis functions over
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certain equivalence classes in the time—frequency
plane.

The proposed methodology is extendable to
other distributions (e.g., the Cohen class) and other
‘best-basis’ decompositions. However, the proper-
ties of the resulting modified forms clearly depend
on the particular distribution, library of bases and
best-basis search algorithm which are employed.
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