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Abstract 

In this paper, an extended library of smooth local trigonometric bases is defined, and an appropriate fast “best-basis” 

search algorithm is introduced. When compared with the standard local cosine decomposition (LCD), the proposed algo- 
rithm is advantageous in three respects. First, it leads to a best-basis expansion that is shift-invariant. Second, the resulting 
representation is characterized by a lower information cost. Third, the polarity of the folding operator is adapted to the 

parity properties of the segmented signal at the end-points. The shift invariance stems from an adaptive relative shift of 
expansions in distinct resolution levels. We show that at any resolution level G it suffices to examine and select one of 

two relative shift options - a zero shift or a 2-‘-’ shift. A variable folding operator, whose polarity is locally adapted to 

the parity properties of the signal, further enhances the representation. The computational complexity is manageable and 
comparable to that of the LCD. 0 1997 Elsevier Science B.V. 

Zusammenfassung 

In diesem Be&rag wird eine erweiterte Bibliothek von glatten trigonometrischen Ortsbasisfunktionen definiert und ein 

geeignetes schnelles Suchverfahren zum Auffinden der “besten Basis” eingefiihrt. Verglichen mit der standardmtiigen 
Ortszerlegung mit Kosinusfunktionen (LCD) ist der vorgeschlagene Algorithmus in dreifacher Hinsicht vorteilhafi: (1) Er 

fihrt auf der Grundlage der besten Basisfunktionen zu der Entwickhmg, die verschiebungsinvariant ist. (2) Charakteristisch 

f% die sich ergebende Darstellung ist der geringere Informationsaufivand. (3) Die Polar&% des Faltungsoperators ist an 
die ijbereinstimmung der Signalsegmente an den jeweiligen Endpunkten angepal3t. Die Verschiebungsinvarianz beruht auf 
einer adaptiven relativen Verschiebung der En&vi&lung f?.ir die verschiedenen AuflBsungsgrade. Wir zeigen, da0 es fiir 

jeden Aufliisungsgrad / geniigt, genau eine von zwei relativen Verschiebungsoptionen auszuwiihlen: Verschiebung urn Null 
oder urn 2-‘-I. Zusiitzliche Verbessenmgen erhIlt man durch einen variablen Faltungsoperator, dessen Polarit% Grtlich an 
die Gleichheitseigenschaften des Signals adaptiert wird. Der Rechenaufwand ist leicht zu handhaben und entspricht etwa 
dem der LCD. 0 1997 Elsevier Science B.V. 

R&urn6 

Dans cet article est dCfinie une librairie extensive des bases trigonom&iques adoucies, et un algorithme appropric de 

recherche de “meilleure base” rapide est introduit. Quand on le compare i la d&composition locale en cosinus (DLC) 
classique, l’algorithme proposC prksente 3 avantages. Tout d’abord, il conduit h une expansion selon la meilleure base 
qui est invariante en translation. De plus, la representation rksultante est character&e par un cotit d’information inf&ieur. 

* Corresponding author. Tel.: 972 4 879 2084; fax: 972 4 879 5315; e-mail: cisrael@rotem.technion.ac.il. 
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Enfin, la polarit de l’opkrateur de repliement est adapt&e aux propri6tBs de par&C du signal segment6 g ses extkmitis. 
L’invariance en translation provient d’un changement relatif adaptatif des expansions g des niveaux de rksolution distincts. 
Nous montrons qu’g chaque niveau de rkolution L il suffit d’examiner et de sklectionner l’une des deux options de 
d&placement relatifs, un d&placement de 0 ou un d&placement de 2-‘-I. Un opkateur de repliement variable, dont 
la polarit est adapt&e localement aux propri6tCs de park& du signal, rehausse encore la reprksentation. La complexitk 
informatique reste acceptable et est comparable 6 celle de la DLC. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Adaptive representations in libraries of bases have been widely used in recent years. Instead of representing 
a prescribed signal in a fixed basis, it is useful to choose a suitable basis that facilitates a desired application, 

such as compression [45,59,3 1, 1,561, identification and classification [8,52,53] or noise removal (denoising) 

[25,21,15,33]. In general, for a given signal we are looking for a basis which matches well the signal, in the 

sense that only relatively few coefficients in the expansion are dominant, while the remaining coefficients are 

small and their total contribution is negligible. How specifically suitable a basis is, depends on the problem 
at hand. For signal compression, as an example, a preferable basis accelerates the descending rate of the 

coefficients’ amplitudes, when sorted in a decreasing magnitude order, whereas for classification, we select a 
basis which most discriminates between given classes. Such a basis reduces the dimensionality of the problem 
and emphasizes the dissimilarity between distinct classes [51]. 

Practical ‘best basis’ search procedures are necessarily confined to finite-size libraries. Such libraries are 
not only required to be flexible and versatile enough to describe various local features of signals, but also 
need to be aptly organized in a structure that facilitates a fast search algorithm for the ‘best basis’. Coifman 

and Meyer [16,20,45] were the first to introduce libraries of orthonormal bases whose elements are localized 

in time-frequency plane and structured into a binary tree where the best basis can be efficiently searched for. 
One of the libraries, a library of local trigonometric bases, consists of sines or cosines multiplied by smooth 

window fimctions. Their localization properties depend on the steepness of the ascending and descending parts 

of the window functions [26]. Another library, a library of wavelet packet bases, comprises basis functions 
which are translations and dilations of wavelet packets, and their localization properties in time-frequency 

plane depend on those of the ‘mother wavelet’ [18,29]. Both libraries are naturally organized in binary trees 
whose nodes represent subspaces that are orthogonally split into children nodes [17]. Accordingly, the basis 

functions of a parent node can be replaced by the collection of basis functions that correspond to the children 
nodes. This flexibility in choosing a basis for each subspace implies adaptive representations, by a recursive 

comparison between the information costs of parent nodes and their children nodes. 

Selecting a desirable information cost functional is clearly application dependent [51,55,59]. Entropy, for 
example, may be used to measure effectively the energy concentration of the generated nodes [21,32,58]. 

Statistical analysis of the best-basis coefficients may provide a characteristic time-frequency signature of the 
signal, potentially useful in simplifying identification and classification applications [8,35]. A serious deficiency 
of this approach is the lack of shift invariance. Both the wavelet packet decomposition (WPD) and local cosine 
decomposition (LCD) of Coifman and Wickerhauser [19], as well as the extended algorithms, proposed by 
Herley et al. [27,28], are sensitive to the signal location with respect to the chosen time origin. 

Shift-invariant multiresolution representations exist. However, some methods either entail high oversampling 
rates (e.g. in [50,6,7,34,49] no down-sampling with the changing scale is allowed) or immense computational 
complexity (e.g., the matching pursuit algorithm [40,22]). In some other methods, the resulting representations 
are non-unique and involve approximate signal reconstructions, as is the case for zero-crossing or local maxima 
methods [37,30,38,39,5]. Another approach has given up obtaining shift-invariance and settled for a less 
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restrictive property named shiftability [54,3], which is accomplished by imposing limiting conditions on the 

scaling function [57,3,4]. 
Recently, several authors proposed independently to extend the library of bases, in which the best repre- 

sentations are searched for, by introducing additional degrees of freedom that adjust the time localization of 

the basis functions [47, 11, 12,23,36]. It was proved that the proposed modifications of the wavelet transform 

and wavelet packet decomposition lead to orthonormal best-basis representations which are shift-invariant and 

characterized by lower information costs. The principal idea is to adapt the down-sampling when expanding 
each parent node. That is, following the low-pass and high-pass filtering, retain either all the odd samples or 

all the even samples, according to the choice which minimizes the cost function. 
In this work, which is summarized in [13], we present an analogous generalized procedure for the library 

of smooth local trigonometric bases. The strategy in obtaining shift-invariance is likewise based on extending 

the library to include all their shifted versions, organizing it in a tree structure and providing an efficient 

‘best-basis’ search algorithm. An additional degree of freedom that incorporates an adaptive folding operator 

into the best decomposition tree, further enhances the resultant representation [14]. 

The shift invariance stems from a relative shift between expansions in distinct resolution levels. It is shown 

that at any resolution level e it suffices to examine and select one of two relative shift options - a zero 

shift or a 2-‘-l shift. The choice between these two options, enabled by the extended library, is made in 
accordance with minimizing the information cost. Hence, the attained representation is not only shift-invariant, 

but also characterized by a lower information cost when compared to the LCD. Its quality is further enhanced 

by applying an adaptive-polarity folding operator which splits the prescribed signal and ‘folds’ adaptively 
overlapping parts back into the segments. The polarity of the folding operation is locally adapted to the 
signal at the finest resolution level, and a recursive process is carried out towards the coarsest resolution level 
merging segments where beneficial. Each segment of the signal is then represented by a trigonometric basis 

which possesses the same parity properties at the end-points. 
The computational complexity of the proposed algorithm, namely executing shift-invariant adapted-polarity 

local trigonometric decomposition (SUP-LTD), is O[N(L + 2”sz N-L+1 1 ) og, N], where N denotes the length 

of the signal and L + 1 is the number of resolution levels (L < log, N). This complexity is comparable to that 
of the LCD (O(NL log, N)) [ 191 with the benefits of shift invariance and a higher quality (lower ‘information 

cost’) ‘best basis’. To demonstrate the shift-invariant properties of SIAP-LTD, compared to LCD which lacks 

this feature, we refer to the expansions of the signals g(t) and g(t - 5 .2-7) (Fig. 1). These signals contain 

-5” . I 
0 0.2 0.4 0.6 0.6 1 

Time 

Fig. 1. The signals g(t) (solid) and g(t - 5 2-7) (dotted), sampled at 2’ equally spaced points. 
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Fig. 2. Local cosine decomposition (LCD): (a) the best expansion tree of g(t); (b) the time-frequency representation of g(t) in its best 
basis, entropy = 2.57; (c) the best expansion tree of g(t - 5 2-7); (d) the time-frequency representation of g(t - 5 2-7) in its best 
basis, entropy = 2.39, 

27 = 128 samples. For de~niteness, we choose the Shannon entropy as the cost function, defined by [19] 
JZ((xi}) = - xi /iXij/’ In /fXi//‘. Figs. 2 and 3 depict the ‘best-basis’ expansions under the LCD and the SIAP- 
LTD algorithms, respectively. A comparison of Figs. 2(b) and 2(d) readily reveals the sensitivity of LCD to 
temporal shifts while the ‘best-basis’ SIAP-LTD representation is indeed shift-invariant and characterized by 
a lower entropy (Fig. 3). 

The structure of this paper is as follows. In Section 2, we define ‘identity to within a resolution time shift’ 
for functions and bases and elucidate the concept of “shift-invariance up to a resolution level’ for a best-basis 
de~om~sition. In Section 3, we construct a library of smooth localized ~gonome~ic bases, which includes 
all translations of bases within the library. The library is formed into resolution levels in a tree structure, and a 
folding operator, which facilitates an etlkient transform, is introduced. In Section 4, we describe the best-basis 
search algorithm and suboptimal versions which are based on ZocaZly adapting the polarity or holding it in 
specific values at the finest resolution level. It is proved that the resultant best-basis decomposition is indeed 
shift-invariant. The paper is concluded in Section 5. 
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Fig. 3. Shift-invariant adapted-polarity local trigonometric decomposition (SIAP-LTD): (a) the best expansion tree of g(t); (b) the 

time-frequency representation of g(t) in its best basis, entropy = 1.44; (c) the best expansion tree of g(t - 5.2-‘); (d) the time-frequency 

representation of g(t - 5 . 2-‘) in its best basis, entropy = 1.44. 

2. Shift-invariant best-basis expansions 

Best-basis expansions are shift-invariant if for any pair of signals, which are identical to within a time 
shift, their respective time-frequency representations are identical to within the same time shift. One way 
to achieve shift-invariance is to adjust the time localization of the basis functions, which are chosen for 

representing an analyzed signal [47,11,36]. That is, when the signal is translated in time by r, a new best- 

basis is selected whose elements are also translated by r compared to the former best basis. Consequently, 
the expansion coefficients, that are now associated with translated basis functions, stay unchanged and the 

time-frequency representation is shifted in time by r. In practice, we may consider discrete-time translations 
of the form r = 2-Jq, where q takes integer values and J is as large as necessary. For simplicity, we shall 

restrict ourselves to periodic functions with period 1, and use the ordinary inner product of L2[0, 11. We 
designate this Hilbert space as iz[O, l] to indicate the periodization. i.e., 

g(t+n)=g(r), nE& (999) = I’ ls(# dt < 00 

for all g Ei*[O, I]. 
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Definition 1. f, g E &[O, l] are said to be identical to within a resolution J time-shift (J > 0) if there exists 

q E Z, 06q < 2J, such that g(t) = f(t - 2-Jq) for all t E [0, 11. 

Let S3 denote a library of orthonormal bases in &O, 11, &! an additive information cost functional and 

&(Bg) the information cost of representing g E &[O, l] on a basis B E 93. The best basis for g, relative to a 

library of bases &? and an information cost functional k”, is that B E g for which A(Bg) is minimal [ 191. 

Definition 2. Bases BI, B2 E W are said to be identical to within a resolution J time-shift (J > 0) if there 

exists q E Z, 0 <q < 2J, such that IC/(t - 2-Jq) E 82 if and only if +(t) E B,. 

Definition 3. A best-basis decomposition is said to be shift-invariant up to a resolution level J (J > 0) if for 

any f, g E ,$[O, l] which are identical to within a resolution J time shift, their respective best bases Bf and 
B, are identical to within the same time shift. 

It is evident that a best-basis decomposition, which is shift-invariant up to a resolution level J, is also shifi- 
invariant up to a lower resolution level, because the translation is on a finer grid. In case of uniformly sampled 
discrete functions of length N = 2J, an invariance to discrete translation is equivalent to shift invariance up 

to a resolution level J. 

3. Smooth local trigonometric bases 

In this section we construct a library of orthonormal bases of &[O, l] which consist of sines or cosines 

multiplied by smooth compactly supported functions. The basis functions are localized in time-frequency plane 
owing to the finite support and smoothness of the window functions. 

Let Y = r(t) be a function in the class CS( R) for some s 2 0 (class of s-times continuously differentiable 
functions), satisfying the following conditions: 

lr(t)12 + lr(--t)12 = 1 for all t E R, 

r(t) = 

i 

0 ift<-1, 

1 ift>l. 

(1) 

(2) 

Then r((t - g)/E)r((P - t)/.z) is a window function supported on the interval [a- E,P + E]. The function r is 
called a rising cutofSfinction [59], since it rises from being identically zero to being identically one. The role 

of E > 0 is to allow overlap of windows, and thus control the smoothness of the window function [42-44]. 

An example of a continuously differentiable real-valued rising cutoff function r1 E C’ is given by 

rl(t> = 

( 

0 if t< - 1, 
Tt 

sin - 
[ ( 4 

1 +sinz1 >I if -l<t<l, (3) 

1 if t31, 

and depicted in Fig. 4, along with a corresponding window function on [a, j?] for E < (p- a)/2. By modulating 
a window function we get a smooth local trigonometric function that is supported on the same interval. Let 

(4a) 
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(bf ’ a-s ix CA p-E p pie I 
Fig. 4. (a) An example of a rising cutoff fimction in C’: (b) The corresponding window function on [cq fi] for E ic (fi - x)/2 (solid), 
and a modulated function (dashed). 

(4b) 

(4c) 

(4d) 

denote sets of modulating trigonometric functions on the interval I = [a, 81, where 

h = I/d k=O, 
k 

I 1 k # 0, 

are weight factors needed to insure o~hono~aii~ [2]. The smooth local tigonome~~ functions on I are 
defined by 

where F denotes the complex conjugate of r. The parities of the function CIp;p’ at the end-points a and fi are 

specified by po and pl, respectively, according to 

C~~p’(a + t)= (-l)~°C~~~*(a - t), (W 

cpyp + t) = -(-l)W~;P’(~ - t), (6b) 

PO, PI E (0, 1). Tfi a IS, even parity at the left end-lint is specified by po = 0 (respectively, odd parity by t . 
po = l), whereas even parity at the right end-point is specified by p1 = I (respectively, odd parity by pI = 0). 

Let 9 = {If.,,} be a set of intervals of the form 

I e;n,m = [2% + 2-j m,2-qn + 1) + 2-54, (7) 
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Fig. 5. The smooth local trigonometric bases organized in a binary tree structure. Each node in the tree is indexed by the triplet (c“, n, m) 

and represents a subset of the basis functions. 

0 <e <L 6 J, 0 Q II < 2’, 0 d m < 2J-f, and consider the set of functions defined by 

We call L the resolution-level index, n the position index, m the shift index, k the frequency index (k E Z+) 
and po,pt E (0, 1) the polarity indices. As proven in the sequel, the set of functions defined in (8) is a 
redundant set that spans &[O, 11. Our objective is to construct out of it a library of orthonormal bases, from 

which the best basis can be efficiently searched for a given signal. The library of bases must include any basis 
which is a shifted version of another basis within the library. That is, if two bases are identical to within a 

resolution J time shift, then both either belong or do not belong to the library. This requirement is essential 
for the shift invariance of the best-basis decomposition. 

Pursuing the stated objective, we organize the set of the basis functions in a tree structure that facilitates 

efficient constructions of orthonormal bases and a fast search for the best basis. The tree configuration is 

depicted in Fig. 5. Each node in the tree is indexed by the triplet (e,n, m), and represents a subspace with 

different time-frequency localization characteristics: 

Lemma 1. The set BF;pA is an orthonormal basis of the subspace J$$ 2 , 

The proof is detailed in Appendix A. In some places, to simplify notation where there is no possibility of 
confusion, we replace the set of indices (d, n, m) by their related interval I = It,,,,,,,. 

The transform of a given function to an orthonormal basis involves computations of inner products with 
the basis functions. Here, an efficient computation is attainable by introducing a folding operator F [59] and 

a periodic folding operator Q : iz[O, l] + iz[O, l] defined, respectively, by 

g(2a - t) if a <t < cc+&, 

g(2a - t) if c1- E < t < a, 

otherwise, 

(11) 
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a a+& 

Fig. 6. Action of F(a,O) on the constant function g(t) = 1. 

and 

The adjoint of F is given by 

g(2a - t) if CI < t < c1+ a, 

g(2a - t) if CI - a < t < 01, 

c s(t) 

Due to identity (1 ), F is unitary and 
operators F* and Q* are the inverses 

(12) 

(13) 

otherwise. 

Q is a unitary isomorphism of &[O, 11. In particular, the unfolding 
of F and Q, respectively. The action region of the folding operator 

F(a, p) is (IX - E, a + E), since outside this region it acts like the identity. The polarity of F(a, p) around t = CI 
is odd-even for p = 0 and even-odd for p = 1. That is, if g is smooth, then folding it at CI with polarity p = 0, 
for example, makes the left part, specifically’ lc__ ,,,]F(a,O)g, a function that is smooth when extended odd 
to the right, and makes the right part (1 [a,oojF(a,O)g) a function that is smooth when extended even to the 
left. Fig. 6 shows the result of the action of F(a, 0) on the constant function g(t) = 1, using the cutoff function 
defined by (3). 

A pair of unfolding opertors F*(a,po) and F*(/?,pl) commute whenever E < (/I - a)/2. In this case, the 
actions of F*(a,po) and F*(B,pl) on a function g that is supported on an interval I = [a,/?], simplify to 
multiplications by F((t - cc)/&) and r((/I - t)/E), respectively: 

(14) 

’ 11 denotes the indicator function for the interval I, i.e. the function that is 1 in I and 0 elsewhere. 
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where i is the extension of g to the outside region of I, with the appropriate parities at the end-points: 

{ 

(-l)P”g(2cc -t) if t < u, 

s”= s(t) if t E [a, PI, (15) 

-(-1)P’g(2/? - t) if t > /3. 

Denote by ~1 the periodic extension of the indicator function for the interval I, i.e., xlx,pI =: l{[,+q,~+ql:q E E}. 
Accordingly, the local trigonometric functions defined in Eq. (5), and the basis functions defined in Eq. (8) 
satisfy 

~:T”;“‘(~)=~*(~,~o)~*(a~~l)llC~~’(t), (16) 

@“‘Yt) = Q*(@, Po)Q”(P, Pi )aC;;P’(t); (17) 

whence 

bfyy’~s) = wy, Q(u, PoMXP, PI k) = (C;ok”‘, W(a, PoF’(B, PI M. (18) 

Consequently, we can compute the inner product of a given signal g with a basis function in two conventional 

stages: At the first stage the signal is preprocessed by folding it. Then, each segment is transformed by a 

trigonometric basis which has the appropriate parity properties at the end-points. In the discrete case, the 
trigonometric transform is DCT-II for even-even parity, DCT-IV for even-odd parity, DST-II for odd-odd 
parity and DST-IV for odd-even parity; all having fast implementation algorithms [9,41,48]. 

The window of the local trigonometric function defined in (5) has an ascending part which is supported 

on [a - E, a + E] and a descending part which is supported on [/I - F, /3 + E]. If the ascending parts of adjacent 
windows are disjoint, as well as their descending parts, then their associated intervals are called compatible 
[2]. That is, intervals I’ = [a, /I) and I” = [/I, y) are called compatible if a + E < /I - E < /I + F < y - E. 

Lemma 2. If I’ and I” are adjacent compatible intervals and the corresponding subspaces have the same 

connecting polarity index, then an orthogonal sum of the subspaces corresponds to the union of the intervals, 

i.e., 4Pp Q3 V,! 3p2 = V,f&!Z. 

Proof. Let I’ = [NO, ~1) and I” = [ai, a~) be adjacent compatible intervals, and let Qj = Q(aj, pj), j = 0, 1,2, be 
the periodic folding operators at the end-points. It is shown in Appendix B that the operators PII = Q,* Q:a, Q, 

Qo. & = QTQ:xI~~QzQI and PIW = QtQ,*a/w QzQo are orthogonal projections onto F?‘p’, F$‘,p2 and 

V,?;$? respectively. The same stages of the proof of Lemma 4.3 in [59, p. 1131, outlined as well in Appendix B 
for convenience, yield that PII + PIU = PIJ~III and l+P~,t = PIUPII = 0, which completes the proof. 0 

This lemma implies that a basis on the interval I’ U I” can be switched with a union of bases on I’ and 

I”. Accordingly, an orthonormal basis of _&[O, l] is constructed by taking the collection of basis functions 

that correspond to a disjoint compatible cover of [0, 1 ), or any other interval of a unit length. The indexing 
scheme of such a compatible cover is depicted in Fig. 7, and refers to the following proposition. 

Proposition 1. Let {Zj}jM=o be a compatible partition of a unit-length interval by intervals Ij = [mj, aj+l). 

Let {pj}j”,‘o’ be a collection of pj E (0, 1) where p~+l =po. Then {Bt”‘*’ : 0 <j GM) forms an orthonormal 

basis of iz[O, 11. 

Proof. Lemmas 1 and 2 imply that {B$“Pf+’ : 0 <j GM} is an orthonormal basis of $;o”o;~, so we shall show 

that I$‘:, f &[O, l] for p E (0, 1). 
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Fig. 7. Indexing scheme of a compatible partition of a unit length interval, employed for generating smooth local trigometric bases. 

Clearly, V$, C i,[O, l] since {$i,y,,k : k E Z+} E &[O, l] is an orthonormal basis of $;c. Now suppose that 

9 -l ~;;p,, 9 E &[O, 11, then 

(ti&$,kJ) = CC&;,,,9 1[0,1$v4P)~(4Pk7) = (lrO,l,C~,~,,k,eco,~>s, =o 

for all k E Z+. Hence, g is identically zero, because {lp~,C~,~,,~ : k E Z+} is an orthonormal basis of L2[0, I] 

[2], and Q is a unitary isomorphism of ,$[O, 11. 0 

Recall that the set of basis functions defined in (8) is structured in a tree whose nodes are associated 
with the intervals I,,,,. We can build out of this set a library of orthonormal bases by taking subsets which 
correspond to a compatible partition of a unit-length interval. The polarity indices of the basis fknctions 

are practicably specified by a single integer P (0 dP < 22L). Let p(j) denote the polarity index at t = a0 + 
j2-L, and let P=[p(2” - l),..., p(l), p(O)]2 be the binary representation of P. Then the polarity indices 
of the basis functions on an interval I = [a, p), that belong to the disjoint cover of [a~, cxo + l), are given 

by 

P(M) = PPL@ - MO)l, (19a) 

P(P) = PPL(P - aon (19b) 

Notice that the length of an interval at the resolution level L (/ &) is a multiple of 2-L. Thus, (a - cc,-,) and 
(fl - ~0) are also multiples of 2-L, whenever [a, fi) belongs to the partition of [a~, a0 + 1). Derivable from 
Proposition 1, we have the following. 

Proposition 2. Let E = {(c!, n, m)} denote a collection of indices 0 B & 6L, 0 9 n -C 2l and 0 <m < 2J-f sat- 
isfying 

(i) The segments {It+,, : (t, n,m) E E} are a disjoint compatible cover of [CQ, a0 + l), for some Of cl0 < 1. 
(ii) Nodes (k,nl,ml), (e,n2,m2) E E at the same resolution level have identical shift index (ml = mz). 

Then for any polarity 0 d P < 22L we have an orthonormal basis of ~$40, 11, given by 

{~~~,~;P’“‘:[ff,P)=lr,,,~, (e,n,m)EE}, 

and the set of all (E,P) as specified above generates a library of orthonormal bases. 

Condition (ii) precludes a relative shift between nodes within the same resolution level. This condition is 
actually unnecessary for the construction of a library of orthonormal bases. However, such a supplementary 
constraint limits the size of the library and thus controls the computational complexity of the best-basis search 
algorithm, while still retaining shift invariance. 
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4. The best basis selection 

Let 3 represent the library of orthonormal bases of Proposition 2. Denote by u%e an additive informa- 
tion cost functional, and by M(Bg) the information cost of representing g on a basis B. The best ba- 
sis for g E,$[O, I] in !4Y relative to JZ? is defined as that BE 623 for which d(Bg) is minimal [19]. In 
this section we introduce an efficient search algorithm for the best basis, that relies on the tree structure 
of %?. 

Denote by Apip: the best basis for g restricted to the subspace Vlpi’t. , 1 > 3 Since B$&,, spans &[O, l] for any 

shift index m (O<m < 2J) and polarity index p E (0, 1) (refer to Proposition l), the best basis for g is 
Atop, combined with the best shift and polarity indices. These parameters, namely m and p, are determined 
recursively together with the best basis. 

Let mo = m and PO(O) = p designate, respectively, the shift and polarity at the coarsest resolution level 
(8 = 0). Suppose that at the resolution level & we have found rnd, {pe(i) IO <i < 2”) and AF$i,p’(“+l) for 

all O<n < 2e, where we set ~42~ + i) = p((i) owing to the periodicity of &[O, 11. Then we will choose 

ml-l, {p/-~(i) / O<i ~2’~‘} and A~~;~$~~;‘(n+l’ for 0 <n < 2”-’ so as to minimize the information cost. 
It is shown in the sequel that shift invariance is acquired by merely considering two optional values 01 

me-,: rnt and me + 2J-e. These two options correspond to either no relative shift or 2~” shift between the 
resolution levels e - 1 and e. For each of the two choices we find the polarity indices and the best basis for 
g at the resolution level e - 1. Then we compare the information costs and select that value of rnf-1 which 
yields a cheaper representation. 

Fig. 8(a) depicts the relation between intervals at the resolution levels e - 1 and 4, for the case where 
ml-1 = ml. The interval It,2n+l,m, can be joined up with its left adjoining interval 4,2,,,,, into a parent 
interval Zf_t,n,m,. Accordingly, the polarity indices at the resolution level 6+ - 1 are simply p{-,(n) = p42n), 
and by employing Lemma 2 we have 

otherwise, 
(20) 

where &‘L = _&‘(Aeq/:n~~;p’(2n+1)9) + &(A$~~~,~;P’(2n’2’ g) is the information cost of the children and 4; = 

44--l,n,m, p’ ‘(n)‘p’-‘(n+‘)g) is the information cost of the parent. In this case, the information cost of g when 

Pl.4”) p,_Xn+l) p,_,(n) p,_,(n+1) 
k I,_,,n,m, $ )f II-l,n.m,+P * 

(4 PI (2n) p,Gn+l) PI w+a (b) p,W+l) PI @J+a P,D+~) 

Fig. 8. Joining up adjacent intervals at the resolution level f into a parent interval at a coarser resolution level: (a) the levels have the 

same shift index; (b) the intervals at the level f - 1 are translated with respect to the intervals at the level /. 
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expanded at the resolution level e - 1 is given by 

For the other alternative of me-1 (me-1 = ml + 2J-e ), the relation between the intervals at the resolution 

levels L- 1 and e is depicted in Fig. 8(b). Now, the interval Il,~~+t,~, can be joined up with its right adjoining 

interval %. 2n+2. M, into a parent interval 1t_l.n.m,+2~-,, The polarity indices at the resolution level G - 1 are 

given by &-i(n) = pr(2n + 1 ), and consequently 

gP/-‘(“XP/-l(n+l) 
f-1 n m,+2J-/ 

if k$<&, 
> 1 

‘/p-lW,P/-dn+l) = 

Y-la iiQ+2J~ >, 
A~d2n+l),p/(2n+2) UA~d2n+2),~d2n+3) 
&,2n+l,w d,2ni2,m, otherwise, 

where 42 = ~(A~~~~~,‘~,p’(2”‘2)g) + ~(A~~~~~2~,p”2”‘3’g) is the information , , 
&/; = ~(~P'-l@o~P/-h+~) 

f-1 n m/+2'-/ 
g) is the information cost of the parent. In this case, 

when expanded ‘at the resolution level e - 1 is given by 

2’-‘-1 

J&’ f-l = c 
AcA~~(*~+1),~i(2n+3) 

I-In m,+2J-/ 9). > 7 
n=O 

(22) 

cost of the children and 

the information cost of g 

(23) 

The value of ml-1 is thus determined according to the lower information cost, i.e., 

w 
mf_1 = if -Hi-, 6k$-‘-, , 

my $ 2J-r otherwise. (24) 

The corresponding best basis and polarity indices at the resolution level e- 1 are retained for the next stage of 
the procedure, which is carried out up to the level e = 0. The algorithm is initiated at the level e = L (L <J), 
specified by the shortest intervals that are required for segmentation. At this level, we estimate the shift index 

mL and polarity indices {pi, 0 <n < 2L}, and impose 

gL,(“;Pr(n+l) =@Q'PLbfl) 
> 2 L L,n,mr , O<n<2L. (25) 

To simplify notation, the set of polarity indices at the resolution level L is organized into a single integer 

PL (0 <PL < 22L), using its binary representation PL = [p~(2~ - 1) , . . . , pL( I), p~(O)]z. The optimal shift and 
polarity at the finest resolution level are given by 

2L-I 

h,PL) = arg min 
Olm<2J-L 

i 
c &!(B;$)$‘“+i’g) . 

. n=O 

oiP<22L 
1 

(26) 

Proposition 3. The best basis expansion stemming from the previously described recursive algorithm is shift- 
invariant up to a resolution level J. 

Proof. Let f, g E &[O, l] be identical to within a resolution J time shift. Then there exists an integer 0 <q < 2J 

such that g(t) = f(t - q2F’). Denote the best bases for f and g by Af and A,, respectively. It is shown in 
Appendix C that BP:,‘; c Af implies Brz<,_, 8+42_J) c 9 A for all [a, p) E 9 and PO, pi E (0, l}.Consequently, 
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if $(t) is a basis function in Af, then IC/(t - q2-‘) is a basis function in A,. Thus, Af and A, are identical 
to within a q2-’ time shift. 0 

In practice, the minimization process of the information cost at the finest resolution level L need not to be 

performed by a sequential consideration of 22L polarity values. Normally, the influence of the polarity indices 

on the information cost is less significant than the influence of the shift index. Furthermore, an ill-adapted 

polarity bit (a single polarity index specified at a certain end-point) is possibly eliminated at a coarser level 
by merging intervals on its both sides. Hence, to maintain a manageable computational complexity, we settle 

for suboptimal polarity indices which are locally adapted to the signal. Instead of pursuing a global minimum, 

as advised in (26) we estimate for each O<m < 2J-L the locally adapted polarity indices, and choose that 

m = rnL which leads to the lowest information cost. 

For an additive information-cost functional, the orthogonal decomposition (Lemma 2) implies that any 

polarity bit affects only the costs of its two adjoining segments. In particular, the value of the nth polarity-bit 

pi, is completely subject to the values of his adjacent polarity bits, namely p~(n - 1) and p~(n + 1). 
Denote by rc,(n) the optimal value of the nth polarity bit for a shift m. On the supposition that rc,(n - 1) 

and rr,(n + 1) correspond to the minimal local information cost about the nth end-point, we have 

%t(n) = 0 if G,,(O)~G,,(1), 
1 otherwise, (27) 

where 

GM(P) = pO,n$) {JW$p;:J) + JW%:,p;,,,s)} 9 PE (02 11, (28) 

designates the local information cost about the nth end-point for a shift m. If the assumption is true for all 
polarity indices and for all shifts, then the optimal shift and polarity at the finest resolution level are given 

by 

(29) 

p&r) = 7rrnL(?r), O<n < 2L. (30) 

Clearly, the optimal shift and polarity, obtainable by (26), minimize the global information cost but not 
necessarily the local costs about each end-point. Hence, the shift and locally adapted polarity, computed by 

(29) and (30), are suboptimal and may result in a higher information cost. However, the representation is 

still shift-invariant due to the consistency in their computation. The following steps summarize the execution 
of SIAP-LTD: 
Step 0. 
Step 1. 

Step 2. 

Step 3. 

1. 
2. 
3. 

4. 

Specify an information cost funcional &?’ and maximum depth of decomposition L. 

Use Eq. (18) and the trigonometric transforms DCT-II, DCT-IV, DST-II and DST-IV to expand g 

into the subsets BgP;$, for 0 dn < 2L, 0 <m < 2J-L and po, pi E (0, 1). 
Estimate the shift and polarity indices at the finest resolution level using Eqs. (29) and (30), and 

impose Eq. (25). 
For e=L,...,l: 

Expand g into the subsets B~~~‘f~P’-‘(*+‘) and B,“r;“,“$$~“’ for OQn < 2”-‘. 
Let m/-l = rnd and compute the ‘information cost of’g’ at the resolution level e - 1 by Eq. (21). 
Let ml-1 = rn/ -I- 2J-L and compute the information cost of g at the resolution level e - 1 by Eq. (23). 

Determine the value of rn&-, according to (24) and keep the corresponding pc_l(n) and A~~;$$;“““’ 

for O<n < 2”-‘. 
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0.2 0.4 0.6 0.8 1 

Time 

Fig. 9. The signals f(t) (solid) and f(t - 5 2-‘) (dotted), sampled at 2’ equally spaced points. 
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Fig. IO. Shift-invariant local cosine decomposition (X-LCD): (a) the time-frequency representation of f(t) in its best basis, entropy 

= 3.01; (b) the time-frequency representation of f(t - 5 2-‘) in its bsest basis. entropy = 3.01. 

The computational complexity of executing SIAP-LTD is O[N(L + 2J-L+‘)log, N], where N denotes the 
length of the signal. More specifically, Steps 1 and 2 take, respectively, 0(2J-L+1N log,N) and 0(2J-L+2N) 

operations, and Step 3 requires twice as much operations as the conventional LCD [19], i.e., 0(NLlog2 N) op- 
erations. The complexity of SIAP-LTD is thus comparable to that of LCD with the benefits of shift invariance 
and a higher quality (lower ‘information cost’) ‘best basis’. 

The LCD may be viewed as a degenerate form of SIAP-LTD characterized by a polarity PL = 0 and shift 

mo = 0. In this case, no relative shift between resolution levels is allowed for (me is non-adaptively set to 

zero for all 0 < 8 G), and the resultant representation is shift-variant. The SIAP-LTD provides two degrees of 
freedom that generate independently shift invariance and adaptive-polarity foldings. While the relative shifts 
between resolution levels are required to obtain shift invariance, the adaptation of the polarity indices at the 

finest resolution level is mainly intended to reduce the information cost and thus improve the time-frequency 
representation. This improvement is notable for signals that have dominant frequencies within each segment, 
such as the signal which is depicted in Fig. 1, or for signals that possess definite parity properties at the 
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Fig. 11. Shift-invariant local cosine decomposition (SI-LCD): (a) the time-frequency representation of f(t) in its best basis, entropy 

= 3.07; (b) the time-frequency representation of f(t - 5 2-7) in its bsest basis. entropy = 3.07. 

0.4 0.6 
Time 

Fig. 12. Shift-invariant adapted-polarity local trigonometric decomposition (SIAP-LTD): (a) the time-frequency representation of f(t) in 

its best basis, entropy = 2.86; (b) the time-frequency representation of f(t - 5 2-‘) in its bsest basis, entropy = 2.86. 

end-points of the segments. Otherwise, the polarity can be forced to a value whose bits are identical (PL = 0 
or PL = 22L - l), without suppressing the shift invariance. By (5), if the polarity bits are restricted to zeros 

(respectively ones), then the library of bases consists of smooth local cosines (respectively sines). Accordingly, 
we call the best-basis search algorithms shift-invariant local cosine decomposition (SI-LCD) when PL is forced 

to zero, and shift-invariant local sine decomposition (SI-LSD) when PL is forced to 22L - 1. 
As an example, we refer to the signals f(t) and f(t - 5 . 2-‘) depicted in Fig. 9. The time-frequency 

representations attained by SI-LCD (Fig. lo), SI-LSD (Fig. 11) and SUP-LTD (Fig. 12) are all shift-invariant 
and have similar information costs. Whereas that obtained by LCD (Fig. 13) yields variations in the energy 
spread and leads to a higher shift-dependent information cost. 
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Fig. 13. Local cosine decomposition (LCD): (a) the time-frequency representation of f(t) in its best basis, entropy = 3.12; (b) the 

time-frequency representation of f(t - 5 12~‘) in its best basis. entropy = 3.27. 

5. Conclusion 

Shift-invariant ‘best-basis’ expansions necessitate an extended library of bases that includes all the shifted 

versions of bases within the library. Due to the enlarged size of the library, it is extremely important to organize 

the library in a structure that facilitates a fast search for the best basis. If a multiresolution analysis is profitable, 
then such a structure could be a binary tree whose nodes and levels represent subspaces and resolutions, 

respectively. The shift invariance is acquired by considering a relative shift between expansions in distinct 
resolution levels, which is determined in accordance with the minimization process of the information cost. 

Thus, the best-basis representation is not only shift-invariant, but is also characterized by a lower information 

cost. 
In this paper, an extended library of smooth local trigonometric bases is defined, and an appropriate 

fast ‘best-basis’ search algorithm, named shift-invariant adapted-polarity local trigonometric decomposition 
(SIAP-LTD), is introduced. When compared with the local cosine decomposition (LCD) [19], SIAP-LTD 
is advantageous in three respects. First, it leads to a best-basis expansion that is shift-invariant. Second, the 

resulting representation is characterized by a lower information cost. Third, the polarity of the folding operator 

is adapted to the parity properties of the segmented signal at the end-points. We showed that a locally adapted 

polarity yields a manageable computational complexity which is comparable to that of the LCD. 
A similar procedure is available for other types of bases, most notably wavelets and wavelet-packet bases 

[47, 11, 12,24,36]. In these cases, the adaptive relative shift is equivalent to an adaptive down-sampling when 
expanding each parent node. By choosing between the odd and even samples after the low-pass and high-pass 
filters, we obtain an orthonormal best-basis representation which is shift-invariant and of a higher quality 

(lower information cost). In addition, the shift-invariant nature of the information cost renders this quantity a 
characteristic of the signal, so it can be used as a measure of the relative efficiency of various libraries (i.e., 
various scaling function selections) with respect to a given cost function. 

It is worth mentioning that while a fixed action-region was used for the folding operator (a fixed E in (1 1 )), 

it is possible to dilate it in coarser resolution levels, as long as the segments of the signal are compatible. 
That is, in each resolution level, if a parent node has been chosen for the best expansion then the radii of 
the action regions at its end-points are maximized, subject to the compatibility restriction. Such a variable 
folding operator may lead to better time-frequency localization properties of basis functions, compared to fixed 
folding [ 191 and multiple folding [26]. 



60 I. Cohen et al. /Signal Processing 57 (1997) 4364 

Appendix A. Proof of Lemma 1 

We need to show that 

(*{~‘p’,$l[~‘p’) = 6i,j (A.11 

for all I E 9, i, j E Z+ and pa, pi E (0, l}, where 6i,j denotes the Kronecker delta. 
This can be proved by a straightforward computation of the inner product and using the properties of the 

rising cutoff function. Here a simpler proof, which is based on Eq. (18), is provided. Define 

Ai,j = (~~~‘p’,fJf~p’)~ G4.2) 

then by (18) 

ni,j = (F*(4 PO)F*(p,pl)XIC~g’P’,F*(a,PO)F*(p,pl)XIC~~P’), (A.3) 

where CI and p are the end-points of the interval Z. Since F, the folding operator, is unitary, it follows that 

fli,j = (C~y’p’,~~C,9~P’). (A-4) 

Whence Ai,j = 6ij because the set {~~C$‘P’ : FEZ+} is an orthonormal basis for &(I). 

Appendix B. Proof of Lemma 2 

Let I’ = [go, ~11) and 1” = [c(i) ~2) be adjacent compatible intervals, and let Qj = Q(aj, pj), j = 0, 1,2, be 
the periodic folding operators at the end-points. First we show that the operator PI, = QzQrxpQlQo is an 
orthogonal projection onto V,?“‘. 

By Lemma 1, the set BfF’P’ = {I/+?:’ : k E Z+} is an orthonormal basis of Vf?p’. Eq. (16) and definition 

of I,$“;~’ imply that 

$E;P’(t>= Q;Q;x&f,'['(t), (B.1) 

whence 

P,f *$m = Q,*Qrx~lQtQoQo*Q;xr,c,,,, pO,p' = Qo’Q;a,C;T,P’ = $;;4”;p’ (B.2) 

for QO and Qi are unitary. Now let w E&[O, l] be in ( V,!?‘p’ )I. Then 

(w,I+$?~~‘) = (w,Q~Q;x1,C,4~‘) = (QlQow,lI,C,4q.[‘) = 0 for all kEZ+. U3.3) 

Thus, QiQaw is identically zero on Z’, since {l~,C~~~’ : keH+} is an orthonormal basis for _&(I’), and so 

P,IW = Q;Q;x,,Q,Qow = 0. (B.4) 

Consequently, 

P,,(v + w) = v for all UE VP”’ and w i I’,!,““’ . (B.5) 

In the same manner, Pp = Q~Q;xPQzQI and PIW = Qg Qz XII “1” Q2 Qa are orthogonal projections onto 

T$irP2 and I$‘$‘~, respectively. 
Owing to the compatibility of the intervals, the set of operators {QsQiQz} form a commuting family. 

Additionally, QO commutes with XIII, Q2 commutes with XII, and Qi commutes with [XI/ + a~!] = XPUI”. 
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Following the same stages of the proof of Lemma 4.3 in [59, p. 1131, we have 

PI/ +PP = Q,*Q~PQ~Qo + QTQhQ2Ql = QT [Q,*xPQo + Q+Q2] Ql 

and 

PI,PIJ, = Q,*Q;a,QlQoQ;Q;nl,QzQl = Q;Q;Q;xPwQoQ~QI 

Hence V/@ $ V:!‘“’ = V~$,. 

Appendix C. Proof of Proposition 3 

psw 

=o. 

03.6) 

(B.7) 

Let f, g E&O, l] be identical to within a resolution J time shift, and let Af and A, denote their respective 
best bases. Then there exists an integer 0 6 q < 2J such that 

g(t) = f(t - 42--Q. (C.1) 

We show by induction that 

B[;,‘;; c Af (C.2) 

implies 

BPO>Pl 
[r+q2-J,P+q2-Jj = A, (C.3) 

for all I = [a, 8) ~9 and ps, pl E (0, 1). Or equivalently, 

B,POA~:, c A f 1 3 (C.4) 

implies 

BP& c A , > 9’ Z = n + (m + q) div 2J-e, & = (m + q) mod 2J-’ (C.5) 

for all 068dL, 0<n<2e, 0Gm<2J-” and ~0,~1~{0,1}. 

First we validate the claim for the finest resolution level e = L. Suppose that B$fim, c Af. Then the 
information cost for representing f at the finest resolution level is minimized for shift AL and polarity PL 

where pi = PO, pL(no + 1) = pr. That is, 

2L-1 

(mL,PL) = arg min 
O+t<2J-L 

c M(B,4’,1’;R’“+‘)f) , 
\ n=O 

o<p<2+ 
I 

PL = [PLQL - 1),...,PL(1),PL(O)12, PLQL> = PL(O), 

P&o) = PO > PL(no+l)=pl. 

It stems from (C. 1) and definition of @;~~ k that 

(f, *:,:,k) = (9, *;;,$,k) > ii = n + (m + q) div 2J-‘, rii = (m + q) mod 2J-e 

and, accordingly, 

udtf(B;f;$,f) = &(B;f;$g) 

(C.6) 

(C.7) 

CC.81 

(C.9) 

(C. 10) 
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