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Generalized Tree-Based Wavelet Transform
Idan Ram, Michael Elad, Senior Member, IEEE, and Israel Cohen, Senior Member, IEEE

Abstract—In this paper we propose a new wavelet transform ap-
plicable to functions defined on high dimensional data, weighted
graphs and networks. The proposed method generalizes the
Haar-like transform recently introduced by Gavish et al., and can
also construct data adaptive orthonormal wavelets beyond Haar.
It is defined via a hierarchical tree, which is assumed to capture
the geometry and structure of the input data, and is applied to
the data using a modified version of the common one-dimensional
(1D) wavelet filtering and decimation scheme. The adaptivity of
this wavelet scheme is obtained by permutations derived from the
tree and applied to the approximation coefficients in each decom-
position level, before they are filtered. We show that the proposed
transform is more efficient than both the 1D and two-dimension
2D separable wavelet transforms in representing images. We
also explore the application of the proposed transform to image
denoising, and show that combined with a subimage averaging
scheme, it achieves denoising results which are similar to those
obtained with the K-SVD algorithm.

Index Terms—Efficient signal representation, hierarchical trees,
image denoising, wavelet transform.

I. INTRODUCTION

M OST traditional signal processing methods are de-
signed for data defined on regular Euclidean grids.

Development of comparable methods capable of handling
non-uniformly sampled signals, data defined on graphs or
“point clouds,” is important and very much needed. Many
signal processing problems involve inference of an unknown
scalar target function defined on such data. For example, func-
tion denoising involves estimating such a scalar function from
its noisy version. A different example is function inpainting
which involves estimating missing samples of a function from
its known samples. A major challenge in processing functions
on topologically complicated data, is to find efficient methods
to represent and learn them.

Many signal processing techniques are based on transform
methods, which represent the input data in a new basis, before
analyzing or processing it. One of the most successful types of
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transforms, which has been proven to be a very useful tool for
signal and image processing, is wavelet analysis [2]. A major
advantage of wavelet methods is their ability to simultaneously
localize signal content in both space and frequency. This prop-
erty allows them to compactly represent signals such as 1D
steps or images with edges, whose primary information content
lies in localized singularities. Moreover, wavelet methods rep-
resent such signals much more compactly than either the orig-
inal domain or transforms with global basis elements such as the
Fourier transform. We aim at extending the wavelet transform
to irregular, non-Euclidean spaces, and thus obtain a transform
that efficiently represents functions defined on such data.

Several extensions of the wavelet transform, operating on
graphs and high dimensional data, have already been proposed.
The wavelet transforms proposed in [3]–[5] were applied to the
data points themselves, rather than functions defined on the data.
Other methods took different approaches to construct wavelets
applied to functions on the data. Maggioni and Coifman [6] and
Hammond et al. [7] proposed wavelets based on diffusion op-
erators and the graph Laplacian [8], [9], respectively. Jansen et
al. [10] proposed three methods which were based on a varia-
tion of the lifting scheme [11], [12]. Gavish et al. [1] assumed
that the geometry and structure of the input data are captured
in a hierarchical tree. Then, given such a tree, they built a data
adaptive Haar-like orthonormal basis for the space of functions
over the data set. This basis, can be seen as a generalization of
the one proposed in [13] for binary trees. Our proposed method
generalizes the algorithm in [1].

We note that the wavelet transforms proposed in [14], and
[15], which are defined on images, also share some similarities
with our proposed algorithm. These methods employ pairing or
reordering of wavelet coefficients in the decomposition schemes
in order to adapt to their input images. In fact, the easy path
wavelet transform proposed in [15], which only recently has
come to our attention, employs a decomposition scheme which
is very similar to ours. Constraining our algorithm to a regular
data grid and using the same starting point and search neigh-
borhood as the ones employed in [15], both algorithms essen-
tially coincide. Nevertheless, our approach is more general, as
it tackles the more abstract problem of devising a transform for
point clouds or high-dimensional graph-data, whereas [15] con-
centrates on images.

In this paper we introduce a generalized tree-based wavelet
transform (GTBWT). This method is an extension of the Haar-
like transform introduced by Gavish et al. [1], which can also
construct data adaptive orthonormal wavelets beyond Haar. We
first show that the transform of Gavish et al., when derived from
a full binary tree, can be applied to a function over the data set
using a modified version of the common 1D Haar wavelet fil-
tering and decimation scheme. In each level of this wavelet de-
composition scheme, a permutation derived from the tree is ap-
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plied to the approximation coefficients, before they are filtered.
Then we show how this scheme can be extended to work with
different wavelet filters, and explain how to construct the data
driven-hierarchical tree employed by the extended scheme.

The construction of each coarse level of the tree involves
finding a path which passes through the set of data points in the
finer level. The points order in this path defines the permutation
applied to the approximation coefficients of the finer level in the
wavelet decomposition scheme. We propose a path constructed
by starting from a random point, and then continue from each
point to its nearest neighbor according to some distance mea-
sure, visiting each point only once. The corresponding permu-
tation increases the regularity of the permuted approximation
coefficients signal, and therefore it is more efficiently (sparsely)
represented using the wavelet transform.

Next we show empirically that the proposed scheme is more
efficient than both the common 1D and 2D separable wavelet
transforms in representing images. Finally, we explore the appli-
cation of the proposed transform to image denoising, and show
that combined with a proposed subimage averaging scheme, it
achieves denoising results similar to the ones obtained with the
K-SVD algorithm [16].

The paper is organized as follows: In Section II, we describe
how the Haar-like basis introduced in [1] is derived from a full
binary tree representation of the data. We also describe how
such a tree may be constructed. In Section III, we introduce
the generalized tree-based wavelet transform. We also explore
the efficiency with which this transform represents an image.
In Section IV, we explore the application of our proposed algo-
rithm to image denoising. We also describe the subimage aver-
aging scheme and present some experimental results. We sum-
marize the paper in Section V.

II. TREE-BASED HAAR WAVELETS

Let be the dataset we wish to analyze,
where the samples may be points in high dimension,
or feature points associated with the nodes of a weighted graph
or network. Also, let be a scalar function defined
on the dataset, and let be the space of
all functions on the dataset. Here we use the following inner
product with the space :

(1)

which is different from the one used by Gavish et al. [1], since
it does not contain a normalizing factor before the sum.

We note that when the dataset is a weighted graph, but no
feature points are available, the diffusion map framework [17],
[18] can be employed in order to obtain such points from the
graph. The Euclidean distance between the points produced by
this framework approximates the “diffusion distance” [17], [18],
which describes the relationship between the graph nodes in
terms of their connectivity.

Fig. 1. An illustration of a complete full binary tree.

Gavish et al. assume that the geometry and structure of the
data are captured by one or several hierarchical trees. They do
not insist on any specific construction method for these trees, but
only that they will be balanced [1]. Given such a tree, they con-
struct a multiscale wavelet-like orthonormal basis for the space

. They start by showing that such a tree induces a multi-reso-
lution analysis with an associated Haar-like wavelet.

Let denote the level in the tree, with being
the root and being the lowest level, where each sample
is a single leaf. Also, let denote the space of functions con-
stant on all folders (subtrees) at level , and let denote a con-
stant function on with the value 1. Then ,

and by construction

(2)

Now, let be the orthogonal complement of
in . Then, the space of all functions can be decomposed
as

(3)

Before describing how the multiscale orthonormal basis is
constructed given a hierarchical tree, we first describe how such
a tree can be constructed from the data. Here we focus on the
case of complete full binary trees and the corresponding or-
thonormal bases. For the case of more general trees and Haar
like bases, the reader may refer to [1]. Let denote the -th
point at level of the tree, where , and let and

denote a set and a vector containing point indices, respec-
tively. Also, let be a distance measure in , and let

be a distance matrix associated with the th level of the
tree, where . The distance function describes
the first-order interaction between data-points, and therefore it
should be chosen so as to capture some notion of similarity be-
tween them, which would be meaningful to the application at
hand. A complete full binary tree can be constructed from the
data according to Algorithm 1. An example for such a tree is
shown in Fig. 1.
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Algorithm 1: Complete full binary tree construction from
the data .

Task: Construct a complete full binary tree from the data .

Parameters: We are given the points and the
distance function .

Initialization: Set as the tree leaves.

Main Iteration: Perform the following steps for
:

• Construct a distance matrix , where
.

• Set .
• Group the points in level in pairs by repeating

times:
— Choose a random point , , and update

.
— Pair with the point , where

.
— Update .

• Place in a vector the reordered point indices of .
• Construct the coarse level from the finer level

by replacing each pair and with the mean point
.

Output: The tree node points and the vectors
containing the points order in each tree level.

In the case of a complete full binary tree, the Haar-like basis
constructed from the tree is essentially the standard Haar basis
which we denote . The adaptivity of the transform is
obtained by the fact that this basis is used to represent a per-
muted version of the signal , which is more efficiently repre-
sented by the Haar basis than itself. The permutation is de-
rived from the tree, and is dependent on the data . Let de-
note a vector of length , which contains the indices of the
points , in the order determined by the lowest level of the
fully constructed tree. For example, for the tree in Fig. 1,

. Also let be the signal permuted ac-
cording to the vector . The wavelet coefficients can be cal-
culated by the inner products , or by applying the 1D
wavelet filtering and decimation scheme with the Haar wavelet
filters on . Similarly, the inverse transform is calculated by
applying the inverse Haar transform on the wavelet coefficients,
and reordering the produced vector so as to cancel the index or-
dering in . We hereafter term the scheme described above as
tree-based Haar wavelet transform, and we show next that it can
be extended to operate with general wavelet filters.

III. GENERALIZED TREE-BASED WAVELETS

A. Generalized Tree Construction and Transform

The aforementioned building process of the tree can be pre-
sented a little differently. In every level of the tree, we first

Fig. 2. Two single-level tree-based wavelet decomposition steps.

Fig. 3. Two single-level tree-based wavelet reconstruction steps.

construct a distance matrix using the mean points and
the distance function . Then we group in pairs the points ,
according to the weights in , as described in Algorithm 1.
Next we place the pairs of column vectors one after the other in
a matrix of size , and keep the indices of the points
in their new order in a vector of length . For example
in level of the tree in Fig. 1, and

.
Now let and be the Haar

wavelet decomposition filters, and let and
be the Haar wavelet reconstruction filters. We no-

tice that replacing each pair by its mean point can be done by
filtering the rows of with the low pass filter , followed
by decimation of the columns of the outcome by a factor of 2.
For example, the points and in level of the tree in
Fig. 1 are obtained by filtering the rows of described above
with the filter , and keeping the first and third columns of the
produced matrix. Effectively this means that the approximation
coefficients corresponding to a single-level Haar decomposition
are calculated for each row of the matrix .

Next let , and let and denote
the approximation and detail coefficient vectors, respectively,
received for at level , where . Also, let denote a
linear operator that reorders a vector according to the indices in

. Then, applying the Haar transform derived from the tree to
can be carried out according to the decomposition algorithm

in Algorithm 2. Fig. 2 describes two single-level decomposition
steps carried out according to Algorithm 2. We note that here the
adaptivity of the transform is related to the permutations applied
to the coefficients in every level of the tree. In fact, without
the operator applied in each level, the decomposition scheme
of Algorithm 2 reduces to that of the common 1D orthogonal
wavelet transform. Also, since permutation of points is a unitary
transform, the described transform remains unitary.
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Algorithm 2: Tree-based wavelet decomposition algorithm.

Task: Apply levels of tree-based wavelet
decomposition to the signal .

Parameters: We are given the signal , the vectors ,
and the filters and .

Initialization: Set .

Main Iteration: Perform the following steps for
:

• Construct the operator that reorders its input vector
according to the indices in .

• Apply to and receive .
• Filter with and decimate the result by 2 to receive

.
• Filter with and decimate the result by 2 to receive

.

Output: The approximation coefficients and detail
coefficients corresponding to .

Finally, let the linear operator reorder a vector so as to
cancel the ordering done by . Then the inverse transform is
carried out using the reconstruction algorithm in Algorithm 3.
Fig. 3 describes two single-level reconstruction steps carried out
according to Algorithm 3.

Algorithm 3: Tree-based wavelet reconstruction algorithm.

Task: Reconstruct the signal based on a multilevel
tree-based wavelet decomposition.

Parameters: We are given the approximation and detail
coefficients and , the vectors , and the
filters and .

Main Iteration: Perform the following steps for
:

• Interpolate by a factor of 2 and filter the result with
.

• Interpolate by a factor of 2 and filter the result with
.

• Sum the results of the two previous steps to receive
.

• Construct the operator that reorders its input
vector so as to cancel the index ordering in .

• Apply to and receive .

Output: The reconstructed signal .

We next wish to extend the scheme described above to work
with general wavelet filters. This requires modifying the tree
construction by replacing the Haar filters by different wavelet
filters and changing the manner in which the points are or-
dered in each level of the tree.

We note that when filters other than Haar are used in the tree
construction scheme described above, each point in the coarse

Fig. 4. An illustration of a “generalized” tree.

level is calculated as a weighted mean of more than two
points from the finer level , where the coefficients in serve as
the weights. Therefore, the resultant graph is no longer a tree but
rather a rooted -partite graph, which is a graph that contains
disjoint sets of vertices so that no two vertices within the same
set are adjacent. As the wavelet scheme described above was
originally designed with the Haar wavelet filters, and in order
to avoid cumbersome distinction between trees and -partite
graphs, with a small abuse of terminology we will hereafter refer
to the latter also as trees. An example of such a “generalized”
tree, is shown in Fig. 4.

The wavelet decomposition and reconstruction schemes cor-
responding to each generalized tree are those described in Al-
gorithms 2 and 3, with the necessary change of wavelet filters
type and index vectors to the ones used in the construction of
the tree. We next propose a method to order the points in each
level of the generalized trees.

B. Smoothing

We wish to order the points in each level of a tree in a manner
which results in an efficient representation of the input signal by
the tree-based wavelets. More specifically, we want the trans-
formed signal to contain a small number of large coefficients,
i.e., to be sparse. The wavelet transform is known to produce a
small number of large coefficients when it is applied to piece-
wise regular signals [2]. Thus, we would like the operator ,
applied to , to produce a signal which is as regular as possible.
When the signal is known, the optimal solution would be to
apply a simple sort operation on the corresponding coefficients

, obtained in each level. However, since we are interested in
the case where is not necessarily known (such as in the case
where is noisy, or has missing values), we would try to find a
suboptimal ordering operation in each level , using the feature
points . We assume that under the distance measure ,
proximity between the two points and suggests proximity
between the coefficients and . Thus, we would try
to reorder the points so that they will form a smooth path,
hoping that the corresponding reordered 1D signal will also
be smooth.

The “smoothness” of a 1D signal of length can be mea-
sured using its total variation
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Fig. 5. �-term approximation results (PSNR in dB) for the generalized tree-based, common 1D and 2D separable wavelet transforms, obtained with different
wavelet filters: (a) Daubechies 1 (Haar). (b) Daubechies 4. (c) Daubechies 8. (d) Comparison between the generalized tree-based wavelet results obtained with the
different filters.

Fig. 6. Generalized tree-based wavelet basis elements derived from a synthetic image: (a) the original image. (b) Scaling functions �� � ��. (c) Wavelets �� � ��.
(d) Wavelets �� � ��. (e) Wavelets �� � ��. (f) Wavelets �� � ��. (g) Wavelets �� � ��. (h) Wavelet �� � 	�. (i) Wavelet �� � 
�. (j) Wavelet �� � ��. (k)
Wavelets �� � ��. (l) Wavelets �� � �
�. (m) Wavelets �� � ���. (n) Wavelets �� � ���.



4204 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

(4)

By analogy, we measure the “smoothness” of the path by
the measure

(5)

We notice that smoothing the path comes down to finding
the shortest path that passes through the set of points , visiting
each point only once. This can be regarded as an instance of
the traveling salesman problem [19], which can become very
computationally exhaustive for large sets of points. A simple
approximate solution is to start from a random point, and then
continue from each point to its nearest neighbor, not visiting any
point twice. As it turns out, ordering the points in this manner
indeed results in an efficient representation of the input signal.

A generalized tree construction, which employs the proposed
point ordering method is summarized in Algorithm 4. Fig. 4
shows an example of a “generalized” tree which may be ob-
tained with Algorithm 4 using a filter of length 4 and dis-
regarding boundary issues in the different levels. We term the
filtering schemes described in Algorithms 2 and 3 combined
with the tree construction described in Algorithm 4 generalized
tree-based wavelet transform (GTBWT).

Algorithm 4: Construction of a “generalized” tree from the
data .

Task: Construct of a “generalized” tree from the data .

Parameters: We are given the points and the
weight function .

Initialization: Set as the tree leaves.

Main Iteration: Perform the following steps for
:

• Construct a distance matrix , where
.

• Choose a random point and set .
• Reorder the points so that they will form a smooth

path by repeating times:
— Set and update .
— Set .

• Place in a vector the reordered point indices of .
• Order the points according to the indices in and

place them in a matrix .
• Obtain the points by:

— Apply the filter to the matrix .
— Decimate the columns of the outcome by a factor

of 2.

Output: The tree node points and the vectors
containing the points order in each tree level.

An interesting question is whether the wavelet scheme de-
scribed above represents the signal more efficiently than the
common 1D and 2D separable wavelet transforms. Here, we
measure efficiency by the -term approximation error, i.e., the
error obtained when representing a signal with nonzero trans-
form coefficients.

Before relating to this question, we first explain how the
wavelet scheme described above can be applied to images. Let

be a grayscale image of size and let be its
column stacked representation, i.e. is a vector of length
containing individual pixel intensities. Then we first need to
extract the feature points from the image, which will be later
used to construct the tree. Let be the th sample in , then
we choose the point associated with it as the 9 9 patch
around the location of in the image . We next construct
several trees, each with a different wavelet filter, according to
the scheme described earlier. We choose the weight function
to be the squared Euclidean distance, i.e. the element in

is

(6)

We use the transforms corresponding to these trees to ob-
tain -term approximations of a column stacked version of the
128 128 image shown in Fig. 7(a) (the center of the Lena
image). The approximations, shown in Fig. 5, were carried out
by keeping the highest coefficients (in absolute value) in the dif-
ferent transform domains. We compare these results between
themselves, and to the -term approximations obtained with
the common 1D and the 2D separable wavelet transforms (the
latter applied to the original image) corresponding to the same
wavelet filters. The quality of the results is measured in peak
signal-to-noise ratio (PSNR), defined by

PSNR (7)

where is the estimate of . It can be seen that the generalized
tree-based wavelet transform outperforms the two other trans-
forms for all the wavelet filters that have been used. It can also
be seen that the PSNR gap in the first thousands of coefficients
increases with number of vanishing moments of the wavelet fil-
ters. Further, Fig. 5(d) shows that the generalized tree-based
wavelet results obtained with the db4 and db8 filters are close,
and better than the ones obtained with the Haar filter.

Before concluding this section, we are interested to see how
the basis elements of the proposed wavelet transform look like.
Each basis element is obtained by setting the corresponding
transform coefficient to 1 and all the other coefficients to zero,
and applying the inverse transform. Unlike the case of common
1D wavelet bases, the series of data derived permutations ap-
plied to the reconstructed coefficients in the different stages
of the inverse transform, result in basis functions which adapt
themselves to the input signal .

As a first example, we examine the basis elements obtained
for the synthetic image of size 64 64, shown in Fig. 6(a). The
image contains in its middle a square rotated in an angle of 45
degrees. We visualize the basis elements as images by reshaping
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them to the size of the input image. Fig. 6(b)–(n) shows some of
the basis elements corresponding to the synthetic image, and ob-
tained with the Symmlet 8 filter. The figures show two scaling
functions from level , and two wavelet basis functions
from each level , all corresponding to the two
largest coefficients in the same level. We note that the reason
we have more than one scaling function and one wavelet basis
element in the coarsest level is related to our implemen-
tation of the transform. We use symmetric padding in the signal
boundaries before applying the wavelet filters, which slightly
increases the number of coefficients (and corresponding basis
elements) obtained in each level of the tree. It can be seen that
the scaling functions and wavelets in the low levels of the tree

represent the low frequency information in the
image, i.e., smooth versions of the rectangle. It can also be seen
that the wavelet functions represent finer edges as the level of
the tree increases, and that they successfully manage to cap-
ture edges which are not aligned with the vertical and horizontal
axes.

We next examine the wavelet basis elements corresponding
to the image in Fig. 7(a), obtained with the Symmlet 8 filter.
Fig. 7(b)–(p) shows two scaling functions from level , and
two wavelet basis functions from each level , all
corresponding to the two largest coefficients in the same level.
It can be seen that the basis functions adapt to the shapes in
the images. Here again the scaling functions and wavelets in
the low levels of the tree represent the low fre-
quency information in the image, and the wavelet functions rep-
resent finer edges in the image as the level of the tree increases.
We next present the application of the generalized tree-based
wavelet transform to image denoising.

IV. IMAGE DENOISING USING THE GENERALIZED TREE-BASED

WAVELET TRANSFORM

A. The Basics

Let be an image of size , and let be its noisy
version

(8)

is a matrix of size which denotes an additive white
Gaussian noise independent of with zero mean and variance

. Also, let and be the column stacked representations of
and , respectively. Our goal is to reconstruct from using

the generalized tree-based wavelet transform. To this end, we
first extract the feature points from similarly to the way
they were extracted from in the previous section. Let be
the th sample in , then here we choose the point associ-
ated with it as the 9 9 patch around the location of in the
image . We note that since different features are used for the
clear and noisy images, the corresponding trees derived from
these images will also be different. Nevertheless, it was shown
in [20]–[22] that the distance between the noisy patches and

is a good predictor for the similarity between the clear ver-
sions of their middle pixels and . This means that the tree
construction is roughly robust to noise, and that the obtained

tree will capture the geometry and structure of the clear image
quite well. We will further discuss the noise robustness of the
algorithm in Section IV-C.

We next construct the tree according to the scheme described
in Algorithm 4, where the dissimilarity between the points
and in level is again measured by the squared Euclidean
distance between them, which can be found in the location
in .

Similarly to Gavish et al. [1], we use an approach which
resembles the “cycle spinning” method [23] in order to
smooth the image denoising outcome. This means that we
randomly construct 10 different trees, utilize the transforms
corresponding to each of them to denoise , and average the
produced images. Each level of a random tree is constructed
by choosing the first point at random, and then continue from
each point to its nearest neighbor with a probability

, or to its second nearest neighbor

with a probability , where here
we set .

The denoising itself is performed by applying the proposed
wavelet transform (derived from the tree of ) on , using hard
thresholding on the transform coefficients, and computing the
inverse transform.

In order to assess the performance of the proposed denoising
algorithm we first apply it, using different wavelet filters, to a
noisy version of the image shown in Fig. 7(a). For each of the
transforms we perform 5 experiments for different realizations
of noise with standard deviation and average the re-
sults—these averages are given in Table I. We note that the de-
noising thresholds were manually found to produce good de-
noising results, as the theoretical wavelet threshold
led to poorer results, with PSNR values which were lower by
about 0.6 dB. It can be seen that better results are obtained with
the Symmlet wavelets, and that generally better results are ob-
tained with wavelets with a high number of vanishing moments.
It can also be seen that all the transforms require about 320 co-
efficients to represent the image (for each of the 10 results pro-
duced by the different trees) which is about 2 percents of the
number of coefficients required in the original space.

We next apply the proposed scheme with the Symmlet 8
wavelet to noisy versions of the images Lena and Barbara, with
noise standard deviation and PSNR of 20.17 dB. We
note that this time we use patches of size 13 13 and perform
only one experiment for each image, for one realization of noise.
The clear, noisy and recovered images can be seen in Fig. 8.
For comparison, we also apply to the two images the denoising
scheme of Elad et al. [16], which utilize the K-SVD algorithm
[24]. We chose to compare our results to the ones obtained by
this scheme, as it also employs an efficient representation of
the image content, and is one of many state-of-the-art image
denoising algorithms [25], [26], which are based on sparse
and redundant representations [27]. However, we note that this
scheme is based on efficient representations of individual fixed
size image patches, while our tree-based approach attempts at
an image-adaptive efficient representation of the whole image
using multiple scales. The PSNR of the results obtained with
the proposed scheme and the K-SVD algorithm are shown in
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Fig. 7. Generalized tree-based wavelet basis elements derived from an image: (a) the original image. (b) Scaling functions �� � ��. (c) Wavelets �� � ��. (d)
Wavelets �� � ��. (e) Wavelets �� � ��. (f) Wavelets �� � ��. (g) Wavelets �� � ��. (h) Wavelets �� � 	�. (i) Wavelets �� � 
�. (j) Wavelets �� � ��. (k)
Wavelets �� � ��. (l) Wavelets �� � �
�. (m) Wavelets �� � ���. (n) Wavelets �� � ���. (o) Wavelets �� � ���. (p) Wavelets �� � ���.

TABLE I
DENOISING RESULTS OF A NOISY VERSION OF THE IMAGE IN FIG. 7(a)

(� � ��, INPUT ���� � �
��� ��), OBTAINED USING THE GTBWT,
WITH AND WITHOUT SUBIMAGE AVERAGING (SA), AND WITH DIFFERENT

WAVELET FILTERS. ALSO SHOWN IS THE AVERAGE NUMBER OF COEFFICIENTS

(#COEFFS.) USED BY EACH SCHEME TO REPRESENT AN IMAGE

Table II. It can be seen that the results obtained by our algorithm

are inferior compared to the ones obtained with the K-SVD.
We next try to improve the results produced by our proposed
scheme by adding an averaging element into it, which is also a
variation on the “cycle spinning” method.

B. Subimage Averaging

Let be an matrix, containing
column stacked versions of all the patches inside
the image. When we built a tree for the image, we assumed that
each patch is associated only with its middle pixel. Therefore
the tree was associated with the signal composed of the middle
points in the patches, which is the middle row of , and the
transform was applied to this signal. However, we can alterna-
tively choose to associate all the patches with a pixel located
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Fig. 8. Denoising results of noisy versions of the images Barbara and Lena (� � ��, input ���� � ���	
 ��) obtained with GTBWT with a Symmlet 8 filter
with subimage averaging (SA) and without it: (a) original Lena. (b) Noisy Lena (20.17 dB). (c) Lena denoised using GTBWT (30.3 dB). (d) Lena denoised using
GTBWT with sub image averaging (31.21 dB) (e) original Barbara. (f) Noisy Barbara (20.17 dB). (g) Barbara denoised using GTBWT (28.94 dB). (h) Barbara
denoised using GTBWT with sub image averaging (29.82 dB).

TABLE II
DENOISING RESULTS (PSNR IN dB) OF NOISY VERSIONS OF THE IMAGES

BARBARA AND LENA (� � ��, INPUT ���� � ���	
 ��) OBTAINED WITH:
1) GTBWT USING A SYMMLET 8 FILTER, WITH SUBIMAGE AVERAGING (SA)

AND WITHOUT IT. 2) THE K-SVD ALGORITHM

in a different position, for example the top right pixel in each
patch. Since the whole patches are used in the construction of
the tree, effectively this means that the tree can be associated
with any one of the signals located in the rows of . These
signals are the column stacked versions of the subimages of
size , whose top right pixel
reside in the top right patch in the image. We next
apply the generalized tree-based wavelet transform denoising
scheme to each of these signals. We then plug each denoised
subimage into its original place in the image, and average the
different values obtained for each pixel, similarly to the way an
image is reconstructed from its patches in the K-SVD image
denoising scheme [16]. We hereafter refer to scheme described
above as Subimage Averaging (SA).

The subimage averaging scheme can also be viewed a little
differently. The tree also defines a wavelet transform on the
data points , where the approximation coefficient vectors in
level are the points . We denote the detail coefficients vec-
tors in level as . These vectors can be calculated by ap-
plying the filter to the rows of the matrix and deci-
mating the columns of the outcome by a factor of 2. A matrix
containing and all the detail coefficient vectors can
also be obtained by applying the generalized tree-based wavelet

transform to each row of the matrix . Similarly, the inverse
transform can be performed on by applying each row of
this matrix the generalized tree-based wavelet inverse transform.
Therefore the subimage averaging scheme can be viewed as ap-
plying the transform derived from the tree directly to the image
patches, performing hard thresholding on them, applying the in-
verse transform to the coefficient vectors, and reconstructing the
image from the clean patches.

The results obtained with the generalized tree-based wavelet
transform, combined with the subimage averaging procedure,
for the noisy version of the image in Fig. 7(a) are shown in
Table I. It can be seen that this procedure increases the PSNR
of the results by about 0.85 dB. We note that since we use
9 9 patches, each of the 10 images averaged in the cycle
spinning procedure is reconstructed from 81 subimages, and it
can be seen that on average about 360 transform coefficients
are required to represent each one of these subimages. Thus
the number of transform coefficients required to represent each
subimage is slightly higher than the one required to represent
an image when the subimage averaging is not used, but is still
much lower than the number required in the original space.

We also applied the proposed denoising scheme to the noisy
Lena and Barbara images. The reconstructed images are shown
in Fig. 8(d) and (h), and Table II shows the corresponding PSNR
results. It can be seen that the results obtained with the proposed
algorithm for the Lena image are now closer to the ones received
by the K-SVD algorithm, and the results obtained for the Bar-
bara image are better than the ones obtained with the K-SVD
algorithm.

We note that only a subset of design parameters has been
explored when we applied the proposed image denoising al-
gorithm. These design parameters include the patch size, the
wavelet filter type (we have not explored biorthogonal wavelet
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TABLE III
DENOISING RESULTS (PSNR IN dB) OF NOISY VERSIONS OF THE IMAGES

BARBARA AND LENA (� � ��, INPUT ���� � ���	
 ��) OBTAINED USING

THE GTBWT WITH SUBIMAGE AVERAGING. THE TREES WERE CONSTRUCTED

USING PATCHES OBTAINED FROM THE NOISY (1 ITER), ORIGINAL (CLEAN),
AND RECONSTRUCTED (2 ITERS) IMAGES

filters at all), and the number of trees averaged by the cycle spin-
ning method. They also include the number of nearest neighbors
to choose from in the construction process of each level of these
trees, and the parameter used to determine the probabilities of
choosing them. We believe that better results may be achieved
with the adequate design parameters, and therefore more tests
need to be performed in order to search for the parameters which
optimize the performance of the algorithm. We also note that
the use of the proposed sub-image averaging scheme is not re-
stricted to the generalized tree-based wavelet transform. This
scheme may be used to improve the denoising results obtained
with different methods which use distance matrices similar to
the one employed here.

C. Robustness to Noise

We wish to explore the robustness of the generalized
tree-based wavelet denoising scheme to the noise in the points

. More specifically we wish to check how using cleaner
image patches will affect the denoising results. Here we ob-
tained “clean” patches from a noisy image by applying our
denoising scheme once, and using the patches from the recon-
structed image in a second iteration of the denoising algorithm
for defining the permutations. For comparison we also used
clean patches from the original clean image in our denoising
scheme, and regarded the obtained results as oracle estimates.

We applied the GTBWT denoising schemes, obtained
with patches from the clean and reconstructed images, to the
noisy Barbara and Lena images. The results obtained with
the Symmlet 8 filter and with subimage averaging are shown
in Table III. It can be seen that large improvements of about
1 dB for the Lena image and 0.8 dB for the Barbara image
are obtained with clean patches. Applying 2 iterations of the
denoising algorithm slightly improves the results of the Lena
image by about 0.13 dB. However, applying 2 iterations of
the denoising algorithm to the Barbara image degrades the
obtained results by about 0.11 dB. This degradation probably
results from oversmoothing of the patches of the reconstructed
image, which leads to a loss of details. A choice of a different
threshold in the denoising algorithm applied in first iteration,
or a different method to clean the patches altogether, may lead
to improved denoising results.

V. CONCLUSION

We have proposed a new wavelet transform applicable to
graphs and high dimensional data. This transform is an exten-
sion of the multiscale harmonic analysis approach proposed
by Gavish et al. [1]. We have shown a relation between the
transform suggested by Gavish et al. and 1D Haar wavelet
filtering, and extended the former scheme so it will use general

wavelet filters. We demonstrated the ability of the generalized
scheme to represent images more efficiently than the common
1D and separable 2D wavelet transforms. We have also shown
that our proposed scheme can be used for image denoising, and
that combined with a subimage averaging scheme it achieves
denoising results which are close to the state-of-the-art.

In our future work plans, we intend to consider the following
issues:

1) Seek ways to improve the method that reorders the approx-
imation coefficients in each level of the tree, replacing the
proposed nearest neighbor method.

2) Extend this work to redundant wavelets.
3) Improve the image denoising results by using two itera-

tions with different threshold settings, and by considering
spatial proximity as well in the tree construction.
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