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Abstract—In this paper, we introduce an adaptive algorithm for
nonlinear system identification in the short-time Fourier transform
(STFT) domain. The adaptive scheme consists of a parallel com-
bination of a linear component, represented by crossband filters
between subbands, and a quadratic component, which is modeled
by multiplicative cross-terms. We adaptively update the model pa-
rameters using the least-mean-square (LMS) algorithm, and derive
explicit expressions for the transient and steady-state mean-square
error (mse) in frequency bins for white Gaussian inputs. We show
that estimation of the nonlinear component improves the mse per-
formance only when the power ratio of nonlinear to linear compo-
nents is relatively high. Furthermore, as the number of crossband
filters increases, a lower steady-state mse may be obtained at the
expense of slower convergence. Experimental results support the
theoretical derivations.

Index Terms—Nonlinear systems, Volterra filters, system identi-
fication, subband adaptive filtering, short-time Fourier transform,
time-frequency analysis.

I. INTRODUCTION

I DENTIFICATION of nonlinear systems has recently
attracted great interest in many applications, including

acoustic echo cancellation [1]–[3], channel equalization [4],
[5], biological system modeling [6], and image processing [7].
A popular approach for modeling nonlinear systems is using
Volterra filters [8]–[10], which are attractive due to their struc-
tural generality and versatile modeling capabilities (e.g., [11]
and [12]). An important property of Volterra filters is the linear
relation between the system output and the filter coefficients,
which enables the use of algorithms from linear estimation
theory for estimating the parameters. Adaptation algorithms
used for this purpose often employ the least-mean-square
(LMS) algorithm [13] due to its robustness and simplicity (e.g.,
[2], [9], and [12]). However, the LMS algorithm suffers from
slow convergence when the input signal to the adaptive filter
is correlated, which is extremely problematic when applied to
Volterra filters [9]. Another major drawback of the adaptive
Volterra filter is the high computational cost caused by the
large number of model parameters, especially for long-memory
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systems [10], [14]. To speed-up convergence, the affine pro-
jection (AP) algorithm and the recursive least-squares (RLS)
algorithm were employed for updating the adaptive Volterra
filters [10], [15]. These approaches, however, substantially in-
crease the computational complexity of the estimation process.
Alternatively, several time-domain approximations, which
suggest a less general structure than the Volterra filter, have
been proposed, including orthogonalized power filters [16],
Hammerstein models [17], parallel-cascade structures [18], and
multimemory decomposition [19]. Other adaptive algorithms,
which operate in the frequency domain, have been proposed
to ease the computational burden [20], [21]. These approaches
are based on the discrete frequency-domain model [22], which
approximates the Volterra filter using multiplicative terms.
Nonetheless, a major limitation of this model is its under-
lying assumption that the observation frame is sufficiently
large compared with the memory length of the system. This
assumption may be very restrictive, especially when long and
time-varying impulse responses are considered (as in acoustic
echo cancellation applications [23]).

The drawbacks of the conventional time- and frequency-do-
main methods have motivated the use of subband (multirate)
techniques [24] for improved nonlinear system identification
[25], [26]. As in subband linear system identification [27]–[33],
such techniques may achieve computational efficiency as well
as improved convergence rate due to processing in distinct
subbands. The method developed in [25] for nonlinear system
identification in the short-time Fourier transform (STFT) do-
main is based on a time-frequency representation of Volterra
filters. The system model consists of a parallel combination
of linear and nonlinear components. The linear component is
represented by crossband filters between subbands [28], [31],
while the nonlinear component is modeled by multiplicative
cross terms. In [25], the parameters of the proposed model were
estimated off-line using a least-squares (LS) criterion, and it
was shown that a significant reduction in computational cost as
well as a substantial improvement in estimation accuracy can
be achieved over the time-domain Volterra model, particularly
when long-memory nonlinear systems are considered. The
performance of this off-line scheme has been analyzed in [26]
for the quadratic case. A detailed mean-square analysis was
presented, and the problem of employing either a linear or a
nonlinear model for the estimation process, as well as deter-
mining the optimal number of crossband filters, was considered.

In this paper, we introduce an adaptive algorithm for the
estimation of quadratically nonlinear systems in the STFT do-
main. The quadratic model proposed in [25] is employed, and
its parameters are adaptively updated using the LMS algorithm.
We derive explicit expressions for the transient and steady-state
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mean-square error (mse) in frequency bins for white Gaussian
processes, using different step sizes for the linear and quadratic
components of the model. The analysis provides important
insights into the influence of nonlinear undermodeling (i.e.,
employing a purely linear model in the estimation process)
and the number of estimated crossband filters on the transient
and steady-state performances. We show that as the number of
crossband filters increases, a lower steady-state mse is achieved,
whether a linear or a nonlinear model is employed; however,
the algorithm then suffers from slower convergence. Accord-
ingly, as more data is employed in the adaptation process,
additional crossband filters should be estimated to achieve the
minimal mse (mmse) at each iteration. Moreover, we show that
the choice of the model structure (either linear or nonlinear)
is mainly influenced by the nonlinear-to-linear ratio (NLR),
which represents the power ratio of nonlinear to linear com-
ponents of the system. Specifically for high NLR conditions,
a lower steady-state mse can be achieved by incorporating a
nonlinear component into the model. On the other hand, as the
nonlinearity becomes weaker (i.e., the NLR decreases), the
steady-state mse associated with the linear model decreases,
while the relative improvement achieved by the nonlinear
model becomes smaller. Consequently, for relatively low NLR
values, utilizing the nonlinear component in the estimation
process may not necessarily imply a lower steady-state mse in
subbands. Experimental results validate the theoretical results
derived in this paper.

The paper is organized as follows. In Section II, we formulate
the quadratic STFT model and introduce an adaptive scheme
for updating the model parameters. In Section III, we derive ex-
plicit expressions for the transient and steady-state mse in sub-
bands. In Section IV, we address the computational complexity
of the proposed algorithm and compare it to that of the con-
ventional time-domain Volterra approach. Finally, in Section V,
we present some experimental results to support the theoretical
derivations.

II. MODEL FORMULATION AND IDENTIFICATION

In this section, we introduce an LMS-based adaptive scheme
for the identification of quadratically nonlinear systems in the
STFT domain. We assume that the system to be identified can
be represented by the nonlinear STFT model proposed in [25].
Throughout this paper, scalar variables are written with lower-
case letters and vectors are indicated with lowercase boldface
letters. Capital boldface letters are used for matrices and norms
are always norms.

Let an input and output of an unknown (quadrati-
cally) nonlinear system be related by

(1)

where denotes a discrete-time nonlinear time-invariant
system, is a corrupting additive noise signal, and
is the clean output signal. Note that the “noise” signal
may sometimes include a useful signal, e.g., the local speaker

Fig. 1. Nonlinear system identification in the STFT domain.

signal in acoustic echo cancellation [1]–[3]. The STFT of
is given by [34]

(2)

where denotes a trans-
lated and modulated window function, is a real-valued
analysis window of length is the frame index, represents
the frequency-bin index is the translation
factor and denotes complex conjugation. The components of

in (1) are similarly transformed into STFT components

(3)

An adaptive system identification scheme is illustrated in Fig. 1.
We assume that the system output signal arises from the
nonlinear STFT model proposed in [25]. Accordingly, the
true system is formed as a parallel combination of linear and
quadratic components in the time-frequency domain as follows:

(4)

where is the STFT of the input , denotes the
true linear crossband filter of length from frequency bin
to frequency bin is the true quadratic cross-
term, and

. The linear crossband filters are necessary for perfectly
representing the linear component of the system in the STFT
domain, and are used for canceling the aliasing effects caused
by the subsampling factor [28], [31]. The nonlinear cross-
terms , on the other hand, are used for
modeling the quadratic component of the system using a sum
over all possible interactions between pairs of input frequencies

and , where .
The goal in adaptive system identification is to define a model

for describing the input-output relationship of the true system,
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and to adaptively update its parameters according to a given cri-
terion. To do so, let us employ the model in (4) for the adap-
tive estimation process, using only crossband filters,
where controls the undermodeling in the linear component
of the model. Denoting the adaptive crossband filters and adap-
tive cross-terms of the model at frame index by and

, respectively, the resulting estimate can
be written as

(5)

Let
represent the adaptive crossband filter from frequency bin

to frequency bin , and let denote a column-stack
concatenation of the estimated filters around the th
frequency bin, i.e.,

(6)

Likewise, let and

(7)

form the input data vector to the linear component of the model
. For notational simplicity, let us assume that is odd and

is even, such that according to (4), the number of quadratic
cross-terms in each frequency bin is . Accordingly, let

(8)

denote the quadratic cross-terms at the th frequency bin, and
let

(9)

be the input data vector to the quadratic component of the model
. Then, the output signal estimate from (5) can be

rewritten as

(10)

The adaptive crossband filters and the adaptive
cross-terms are updated using the LMS algorithm as

(11)

and

(12)

Fig. 2. Block diagram of the proposed adaptive scheme for identifying quadrat-
ically nonlinear systems in the STFT domain.

where

(13)

is the error signal in the th frequency bin, is defined in
(2)–(4), and and are the step sizes of the linear and
quadratic components of the model, respectively. The separate
update equations for and enable one to use dif-
ferent step sizes for adaptation of the linear and quadratic com-
ponents of the model. In case one component varies slower than
the other, such adaptation may enhance the tracking capability
of the algorithm by utilizing a proper step size for each compo-
nent. A block diagram of this parallel adaptive scheme is illus-
trated in Fig. 2. Our objective is to analyze the error attainable in
each frequency bin and derive explicit expressions for the tran-
sient and steady-state mse.

III. MSE ANALYSIS

In this section, we derive explicit expressions for the tran-
sient and steady-state mse obtainable in the th frequency bin.
To make the following analysis mathematically tractable, we use
the common independence assumption which states that the cur-
rent input data vector is statistically independent of the currently
updated parameters vector (e.g., [35] and [36]). Specifically, the
vector is independent of .
In addition, we assume that and are statistically inde-
pendent zero-mean white complex Gaussian signals with vari-
ances and , respectively. The Gaussian assumption of the
corresponding STFT signals is often justified by a version of
the central limit theorem for correlated signals ([37, Theorem
4.4.2]), and underlies the design of many speech-enhancement
systems [38], [39].

A. Transient Performance

The transient mse is defined by

(14)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 28, 2009 at 11:20 from IEEE Xplore.  Restrictions apply. 



3894 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

Let us define the misalignment vectors of the linear and
quadratic components, respectively, as

(15)

and

(16)

where and are respectively the crossband filters
and the cross-terms of the true system [defined similarly
to (6) and (8)]. Then, substituting (10) and the definition of
from (2)–(4) into (13), the error signal can be written as

(17)

where and are the column-stack concatenations of
and , respectively, and

and . Substituting (17) into
(14) and using our assumptions, the mse can be expressed as
(see Appendix I)

(18)

In order to find an explicit expression for the transient mse, re-
cursive formulas for and are
required. By substituting (17) into (11)–(12), the LMS update
equations for the misalignment vectors can be written as

(19)

(20)

where is the identity matrix of size . We proceed with
evaluating a recursion for . Taking the norm
on both sides of (19), and using the fact that odd-order moments
of a zero-mean complex Gaussian process are zero [13], we ob-
tain

(21)

Using the independence assumption, we obtain after some math-
ematical manipulations (see Appendix II-A)

(22)

Furthermore, using the Gaussian sixth-order moment-factoring
theorem [13], the second term on the right of (21) can be ap-
proximated by (see Appendix II-B)

(23)

The evaluation of the last two terms in (21) is straightforward,
and they can be expressed as

(24a)

(24b)

Substituting (22)–(24) into (21), we have an explicit recursive
expression for

(25)

where

(26)

(27)

(28)

A recursive expression for is obtained by
taking the norm on both sides of (20) and using the Gaussian
odd-order moment-factoring theorem

(29)

where the operator takes the real part of its argument.
Finding an explicit expression for the first term on the right of
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(29) is not straightforward; however, using the independence as-
sumption and the Gaussian eighth-order moment-factoring the-
orem [13], it can be expressed as (see Appendix III-A)

(30)

In addition, using the Gaussian sixth-order moment-factoring
theorem, the second term on the right of (29) is approximated
by (see Appendix III-B)

(31)

where similarly we get

(32)

The fourth term on the right of (29) is derived in Appendix III-C
as

(33)

Moreover, the evaluation of the last term in (29) is straightfor-
ward, and it can be expressed as

(34)

Finally, substituting (30)–(34) into (29), we have an explicit re-
cursive expression for :

(35)

where

(36)

(37)

(38)

Equations (18), (25)–(28), and (35)–(38) represent the mse
transient behavior of the proposed adaptive algorithm in the

th frequency bin, using crossband filters and
quadratic cross-terms. As expected from the parallel structure
of the model, one can observe the coupling between the recur-
sive (25) and (35). Accordingly, the convergence rate of the
linear component of the model depends on that of its quadratic
counterpart, and vice versa. This dependency, however, may be
controlled by the step-size value of each component.

In this context, it should be noted that the transient behavior
of a purely linear model can be obtained as a special case of
the above analysis by substituting into (35)–(38),

which yields and . Therefore, as-
suming the adaptive vectors are initialized with zeros, we have

, and the resulting mse is given by

(39)

where

(40)

[see (26)], and
. The error induced by employing a purely

linear model for the estimation of nonlinear systems is generally
referred to as nonlinear undermodeling error [26], [40]–[42].
The quantification of this error is of major importance since
in many cases a purely linear model is fitted to the data, even
though the system is nonlinear (e.g., employing a linear adaptive
filter in acoustic echo cancellation applications [23]). In [26],
the influence of nonlinear undermodeling in the STFT domain
for an off-line estimation scheme was investigated. Next, we an-
alyze the convergence properties of the proposed adaptive algo-
rithm and investigate the influence of the parameter and the
nonlinear undermodeling error on the steady-state mse in each
frequency bin.

B. Steady-State Performance

Let us first consider the mean convergence of the misalign-
ment vectors and . By taking the expected value
of both sides of (19) and (20), and by using the Gaussian odd-
order moment-factoring theorem, we obtain

(41)

(42)

where and
are the corresponding correlation

matrices. Using (71) and (79) from Appendix I, it can be
verified that (41) and (42) are convergent if the corresponding
step sizes satisfy

(43)

(44)

and their steady-state solution is
. Consequently, we get

(45)

(46)

which indicates that the LMS adaptive vectors and
converge in the mean to the linear and quadratic components
of the true system, respectively. Substituting (45) for and
(46) for into (18), we find the minimum mse obtainable
in the th frequency bin

(47)
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Note that the unbiased property of the estimators and
are a consequence of employing a white input signal.

However, had the input signal been correlated, a bias phe-
nomenon could appear, and the adaptive vectors would not con-
verge in mean to the true parameters [43].

We proceed with the mean-square convergence of the adap-
tive algorithm. Defining

(48)

we combine (25) and (35) and rewrite them in vector form as

(49)

where

(50)

is a 2 2 matrix, and

(51)

Equation (49) is convergent if and only if the eigenvalues of
are all within the unit circle. Finding corresponding explicit

conditions on the step sizes and is not straightforward.
However, sufficient conditions on the step sizes may be derived
by assuming that the adaptive vectors and are not
updated simultaneously. More specifically, assuming that
is constant during the adaptation of (i.e., ), a
sufficient condition for the convergence of (25) is ,
which yields

(52)

Note that since the upper bound of is inversely proportional
to , a lower step-size value should be utilized with an in-
creasing number of crossband filters, which will result in slower
convergence. An optimal step size that results in the fastest con-
vergence of the linear component is then obtained by differenti-
ating with respect to , which yields

. For the quadratic component, we similarly assume that
is constant during the adaptation of (i.e.,

), which results in the following condition on the step size
:

(53)

The optimal step size for the quadratic component is obtained
by differentiating [see (36)] with respect to , which yields

. It should be noted that when the assump-
tion of separate adaptation of the adaptive vectors does not hold
[that is, and are updated simultaneously], the con-
vergence of the algorithm is no longer guaranteed by using the
derived optimal step sizes. This can easily be shown by substi-
tuting and , respectively, for and in (50),
which results in an eigenvalue on the unit circle. Practically,
though, the stability of the algorithm can be guaranteed by using
the so-called normalized LMS (NLMS) algorithm [13], which
also leads to faster convergence.

Provided that and satisfy the convergence conditions
of the LMS algorithm, the steady-state mse can be expressed as

(54)

where is defined in (47), and and
are the steady-state solutions of (25) and

(35), which can be derived using (49) as

(55)

Finally, substituting (50), (26)–(28), and (36)–(38) into (55),
we obtain explicit expressions for and

, which we substitute into (54) to obtain, after
some manipulation,

(56)

where

(57)

Equations (47) and (56)–(57) provide an explicit expression for
the steady-state mse in the th frequency bin. Note that since
is inversely proportional to [see (52)], we expect
to be independent of . Consequently, based on the definition
of from (47), a lower steady-state mse is expected by in-
creasing the number of estimated crossband filters, as will be
further demonstrated in Section V.

Following a similar analysis, the steady-state mse of a purely
linear model can be derived by finding a steady-state solution of
(39)–(40), which yields

(58)

where

(59)

represents the minimum mse that can be obtained by employing
a linear model in the estimation process. It can be verified from
(47), (57) and (59) that and

, which implies that in some cases, a lower steady-state
mse might be achieved by using a linear model, rather than a
nonlinear one. A similar phenomenon was also indicated in [26]
in the context of off-line system identification, where it was
shown that the nonlinear undermodeling error is mainly influ-
enced by the NLR. Specifically in our case, let

(60)

denote the NLR, where and
are the powers of the output signals of the linear and

quadratic components, respectively, and the vectors and
are defined in (15)–(17). Then, the ratio between and

from (47) can be written as

(61)
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Equation (61) indicates that as the nonlinearity becomes
stronger (i.e., increases), the minimum mse attainable by
the full nonlinear model would be much lower than
that obtained by the purely linear model , such
that . On the other hand, the purely
linear model may achieve a lower steady-state mse when low
NLR values are considered. In the limit, for , we get

, and consequently .
Note, however, that since more parameters need to be estimated
in the nonlinear model, we expect to obtain (for any NLR value)
slower convergence than that of a linear model.

In this context, the close relation to the problems of model-
structure selection and model-order selection [44]–[50] should
be mentioned. In our case, the model structure is determined
by , the step size of the nonlinear component of the model.
By setting , the nonlinearity is ignored and a purely
linear model is fitted to the data; whereas for , the vector

is also updated and a full nonlinear model is employed.
Generally (for sufficiently high NLR), as more data is available
in the estimation process, a richer structure can be used, and
correspondingly, a better estimation can be achieved by incor-
porating a nonlinear model rather than a linear one. Therefore,
the purely linear model is associated with faster convergence,
but suffers from higher steady-state mse, compared to using a
nonlinear model. Once a model structure has been chosen, its
optimal order (i.e., the number of estimated parameters) should
be selected, where in our case the model order is determined by
the number of crossband filters. Accordingly, at the beginning
of the adaptation process, the length of the data is short, and
only a few crossband filters are estimated, whether a linear or
a nonlinear model is employed. As the adaptation process pro-
ceeds, more data can be used, additional crossband filters can
be estimated, and lower mse can be achieved. These points will
be demonstrated in Section V.

IV. COMPUTATIONAL COMPLEXITY

In this section, we consider the computational complexity of
the proposed subband approach, and compare it to that of the
conventional time-domain Volterra method.

For subband system identification, the adaptation formulas
given in (11) and (12) require com-
plex multiplications, complex additions, and
one complex substraction to compute the error signal. Moreover,
computing the desired signal estimate in (10) results in an addi-
tional arithmetic operations. Note that
each arithmetic operation is not carried out every input sample,
but only once for every input samples, where denotes the
decimation factor of the STFT representation. Thus, the adapta-
tion process requires arithmetic opera-
tions for every input samples and each frequency bin. Finally,
repeating the process for each frequency bin, and neglecting the
computations required for the forward and inverse STFTs, the
complexity associated with the proposed subband approach is
given by

(62)

As expected, we observe that the computational complexity in-
creases as increases. Note that the complexity of the proposed
approach may be reduced if the signals are assumed real valued
in the time domain, since in this case it is sufficient to consider
only the first frequency bins.

For time-domain system identification, we apply a second-
order Volterra model [8] for estimating the quadratically non-
linear system, expressed as

(63)

where and are the linear and quadratic Volterra
kernels, respectively, with and being their corresponding
memory lengths. Note that the triangular Volterra representa-
tion is used in (63) for the quadratic kernel [8], [10]. Since the
model output depends linearly on the filter coefficients, it can
be written in vector form as

(64)

where

are the coefficient vectors of the adaptive linear and quadratic
kernels, respectively, and and are their corre-
sponding input data vectors. The adaptive vectors are updated
using the LMS algorithm as

(65)

and

(66)

where is the error signal, is the system
output in the time domain, and and are the step sizes
of the linear and quadratic components of the Volterra model,
respectively. Similarly to the subband approach, updating the
vectors and using (65)–(66), and computing the
output signal estimate (64), the computational complexity of the
fullband approach can be expressed as

(67)

where is the dimension of the vector .
Rewriting the subband approach complexity (62) in terms of the
fullband parameters (by using the relation [31]),
the ratio between the subband and fullband complexities can be
written as

(68)
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According to (68), the complexity of the proposed subband
approach would be typically lower than that of the conventional
fullband approach. This computational efficiency becomes
even more significant when systems with relatively large
second-order memory length are considered (e.g., nonlinear
acoustic echo cancellation applications [1]–[3]). This is because
these systems necessitate an extremely large memory length

for the quadratic kernel of the time-domain Volterra model,
such that and consequently . For instance,
with (50% overlap), ,
and , computational complexity of the proposed ap-
proach is smaller by a factor of 15 compared to that of the
fullband approach. Note that the computational efficiency of
the proposed approach was also shown in the context of off-line
nonlinear system identification [25].

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that verify the
mean-square theoretical derivations. The influence of nonlinear
undermodeling and the number of crossband filters on the mse
performance is also demonstrated. The adaptive algorithm per-
formance is evaluated under the assumption of white Gaussian
signals in the STFT domain, for given SNR and NLR values,
where the SNR is defined by and de-
notes the power of the system output signal in the STFT domain.
Results are obtained by averaging over 1000 independent runs.

The system to be identified is formed as a parallel combina-
tion of linear and quadratic components as described in (2)–(4).
The input signal is a zero-mean white complex Gaussian
process with variance . Note that is not necessarily a
valid STFT signal, as a sequence whose STFT is given by
may not always exist [51]. Similarly, the corrupting noise signal

is also a zero-mean white Gaussian process with variance
, which is uncorrelated with . We use a Hamming anal-

ysis window of length with 50% overlap (i.e.,
), and a corresponding minimum-energy synthesis window

of length that satisfies the completeness condition
[52]. Note that the true crossband filters of the system
are related to the time-domain linear impulse response by
[31]

(69)

where the function depends on the analysis and syn-
thesis windows. Here, we model the linear impulse response

as a nonstationary stochastic process with an exponential-
decay envelope, i.e., , where
is the unit step function and is a unit-variance zero-mean
white Gaussian noise. The length of the impulse response is set
to 768 samples. For the quadratic component, the cross-terms
of the system are modeled here as a
unit-variance zero-mean white Gaussian process.

First, we employ several values of in order to determine
the influence of the number of crossband filters on the mse per-
formance. Since the step size of the linear kernel should
be inversely proportional to [see (52)], we choose

, which ensures convergence. Similarly,
the nonlinear component of the model is estimated with a step

Fig. 3. Comparison of simulation and theoretical convergence of the mse (14)
for frequency bin � � �� and white Gaussian signals, as obtained for an SNR
of 40 dB, and a nonlinear-to-linear ratio (NLR) of ��� dB.

size of [see (53)]. Fig. 3 shows the re-
sulting (normalized) mse curves [see (18)] for frequency
bin , an SNR of 40 dB, and an NLR of dB, as ob-
tained from simulation results and from the theoretical deriva-
tions [see (18), (25)–(28), and (35)–(38)]. Clearly, the theoret-
ical analysis accurately describes both the transient and steady-
state performance of the adaptive algorithm. The results con-
firm that as more data is employed in the adaptation process, a
lower mse is obtained by estimating additional crossband filters.
As expected from (56)–(57), a lower steady-state mse is
achieved as increases; however, the algorithm then suffers
from slower convergence. For instance, ignoring the crossband
filters and estimating only the band-to-band filters
yields the fastest convergence, but also results in the highest
steady-state mse. Including five crossband filters , on
the other hand, enables a decrease of approximately 16 dB in the
steady-state mse, while not greatly slowing convergence. Sim-
ilar results are obtained for the other frequency bins.

Next, we examine the influence of nonlinear undermodeling
on the mse performance. A purely linear model is fitted to the
data by setting the step size of the quadratic component to zero
(i.e., ); whereas, a full nonlinear model is employed
by updating the quadratic component with a step size of

. For both cases, the linear kernel is updated with
step size for two different values of

( and 3). Fig. 4 shows the resulting mse curves
and , as obtained from simulation results and from
the theoretical derivations [see (18), (25)–(28) and (35)–(38)
for the full nonlinear model; and (39)–(40) for the purely linear
model], for frequency bin , an SNR of 40 dB, and an NLR
of dB [Fig. 4(a)] and dB [Fig. 4(b)]. It can be seen that
the experimental results are accurately described by the theoret-
ical mse curves. We observe from 4(a) that for a dB NLR, a
lower steady-state mse is achieved by using the nonlinear model.
Specifically for , a significant improvement of 12 dB
can be achieved over a purely linear model. On the contrary,
Fig. 4(b) shows that for a lower NLR value ( dB), the inclu-
sion of the nonlinear component in the model is not necessarily
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Fig. 4. Comparison of simulation and theoretical curves of the transient mse
(14) for frequency bin � � �� and white Gaussian signals, as obtained by using
a purely linear model (� � �; light) and a nonlinear model (� �� �; dark).
(a) Nonlinear-to-linear ratio (NLR) of ��� dB. (b) NLR of ��� dB.

preferable. For example when , the linear model achieves
the lowest steady-state mse, while for , the improvement
achieved by the nonlinear model is insignificant, and apparently
does not justify the substantial increase in model complexity. In
general, by further decreasing the NLR, the steady-state mse as-
sociated with the linear model decreases, while the relative im-
provement achieved by the nonlinear model becomes smaller.
These results, which were accurately described by the theoret-
ical error analysis in Section III-B [see (56)–(61)], are attribut-
able to the fact that the linear model becomes more accurate as
the nonlinearity strength decreases. As a result, the advantage of
the nonlinear model due to its improved modeling capability be-
comes insignificant (i.e., ), and therefore cannot
compensate for the additional adaptation noise caused by also
updating the nonlinear component of the model. Another in-
teresting point that can be concluded from the comparison of
Fig. 4(a) and (b) is the strategy of controlling the model struc-
ture and the model order. Specifically, for high NLR conditions

[Fig. 4(a)], a linear model with a small should be used at the
beginning of the adaptation. Then, the model structure should
be changed to nonlinear at an intermediate stage of the adapta-
tion, and the number of estimated crossband filters should in-
crease as the adaptation process proceeds in order to achieve
the minimum mse at each iteration. On the other hand, for low
NLR conditions [Fig. 4(b)], one would prefer to initially update
a purely linear model in order to achieve faster convergence,
and then to gradually increase the number of crossband filters.
In this case, switching to a different model structure and also in-
corporating the nonlinear component into the model would be
preferable only at an advanced stage of the adaptation process.

VI. CONCLUSION

We have proposed an adaptive scheme for the estimation of
quadratically nonlinear systems in the STFT domain, based
on the quadratic model proposed in [25]. The proposed model
consists of a parallel combination of a linear component, which
is represented by crossband filters between subbands, and a
quadratic component, modeled by multiplicative cross-terms.
We adaptively updated the model parameters using the LMS
algorithm and derived explicit expressions for the transient
and steady-state mse in frequency bins for white Gaussian
inputs. We showed that as more data is employed in the adap-
tation process, whether a purely linear or a nonlinear model
is employed, additional crossband filters should be estimated
to achieve the minimum mse at each iteration. We further
showed that incorporating the nonlinear component into the
model may not necessarily imply a lower steady-state mse in
subbands. In fact, the estimation of the nonlinear component
improves the mse performance only for high NLR conditions.
This improvement in performance becomes smaller as the
nonlinearity becomes weaker. It was also shown that the pro-
posed adaptive algorithm is more advantageous in terms of
computational complexity than the conventional time-domain
Volterra approach.

The adaptive algorithm presented in this paper may be further
improved by incorporating adaptive control methods [53]–[57],
which dynamically adjust the number of model parameters to
provide a balance between complexity, convergence rate, and
steady-state performance. Accordingly, by adaptively control-
ling the model structure (employing either a linear or a nonlinear
model) and the model order (determining the number of cross-
band filters), a full adaptive-control scheme may be constructed
to achieve faster convergence without compromising for higher
steady-state mse.

APPENDIX I
DERIVATION OF (18)

Substituting (17) into (14), and using the independence as-
sumption and the whiteness property of the input signal, the mse
can be expressed as

(70)
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where

and are correlation matrices,
and the operator takes the real part of its argument. From
(7), the th term of is given by

(71)

where the last equation is due to the whiteness property of
(see [31, , Appendix I.A]). In addition, from (9), the th
term of can be written as

(72)

where if , and
otherwise. Since odd-order moments of a zero-mean complex
Gaussian process are zero ([13], p. 68), we get

(73)

The th term of can be written as

(74)

where is defined similarly to in (72). By using the
fourth-order moment factoring theorem for zero-mean complex
Gaussian samples ([13, p. 68]), (74) reduces to products of
second-order moments as follows:

(75)

Using the whiteness property of , we can write (75) as

(76)

where

(77)

and

(78)

Clearly, is nonzero only if and
. Using the definitions of and , it is easy

to verify that these conditions reduce to , and therefore
. In addition, is nonzero only if

and . Note, however, that
since ,

the possible values of belong to the set
. Therefore, since

(an empty set), the conditions imposed in cannot
be satisfied, and we get . Consequently, (76) reduces to

(79)

Substituting (71), (73), and (79) into (70) yields (18).

APPENDIX II
EVALUATION OF

A. Derivation of (22)

Using the independence assumption of and ,
the first term on the right of (21) can be expressed as

(80)

where

(81)

and

(82)

Using the whiteness property of reduces to [see
(71)]

(83)

where is the identity matrix of size
. The th term of from (82) can be

written as

(84)

where the index sums over integer values for which the sub-
scripts of are defined. By using the fourth-order moment fac-
toring theorem for zero-mean complex Gaussian samples, (84)
can be rewritten as
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(85)

where by using the whiteness property of , we obtain [see
(71)]

(86)

Since ranges from 0 to (86) reduces to

(87)

Assuming , and substituting (83) and (87) into
(80) yields (22).

B. Derivation of (23)

Using the independence assumption, the second term on the
right of (21) can be expressed as

(88)

where

(89)

The th term of can be written as

(90)

where is defined below (72), and is defined similarly.
A similar expression to (90) was derived in [26] using the
sixth-order moment factoring theorem for zero-mean complex
Gaussian samples [13, p. 68]. Then, following the analysis
given in [26, Appendix I-B], we obtain

(91)

where , with
and

. Substituting (91) into (88), and using the defini-
tion of from (16), we obtain

(92)

In order to simplify the above expression, let us assume that

(93)

This assumption is reasonable and can be justified by noting that
and , where

the latter is due to fact that most of the energy of the STFT rep-
resentation of a real-world linear system is concentrated around
a few number of crossband filters [31]. Then, neglecting the last
term in (92), we obtain (23).

APPENDIX III
EVALUATION OF

In this Appendix, we evaluate the terms in (29), defining
.

A. Derivation of (30)

Using the independence assumption of and ,
the first term on the right of (29) can be expressed as

(94)

where

(95)

and

(96)

Using the whiteness property of reduces to [see
(79)]

(97)

where is the identity matrix of size . The
th term of from (96) can be written as

(98)

where is defined below (72), and is defined similarly.
Using the Gaussian eighth-order moment-factoring theorem
[13, p. 68], (98) can be expressed as
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(99)

Each term in (99) can be decomposed into products of different
combinations of second-order moments, imposing certain con-
ditions on both the matrix indices and , and the summation
index . It can be verified that the possible structures of the re-
sulting conditions are

, and , where . Then,
since the last condition cannot be satisfied [see (78)], and the
first two conditions reduce to [see (77)], (99) reduces to

(100)

and since ranges from 0 to , we get

(101)

Assuming , and substituting (97) and (101) into (94)
yields (30).

B. Derivation of (31)

Using the independence assumption, the second term on the
right of (29) can be expressed as

(102)

where

(103)

The th term of can be written as

(104)

where is defined similarly to in (72). Using the Gaussian
sixth-order moment factoring theorem, and following a similar
analysis to that given in ([26, Appendix I.B]), we obtain

(105)

where

Using the definition of from (15), and substituting (105)
into (102), we obtain

(106)

where denotes the th term of . Assuming
that and noting that ,
we may neglect the last term in (106) to obtain (31).

C. Derivation of (33)

Using the independence assumption, the fourth term on the
right-hand side of (29) can be expressed as

(107)

where

(108)

and the functions and determine the fre-
quency-bin indices that correspond to the th term of

and the th term of , respectively. It is easy
to verify from the definitions of and that

for any pair of indices , which implies
that . Consequently,
using the Gaussian sixth-order moment factoring theorem and
following a similar analysis to that given in ([26, Appendix
I.B]), (108) can be written as

(109)
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However, since we get , which
can be substituted into (107) to obtain (33).
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