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Multichannel Deconvolution of Seismic Signals
Using Statistical MCMC Methods
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Abstract—In this paper, we propose two multichannel blind
deconvolution algorithms for the restoration of two-dimensional
(2D) seismic data. Both algorithms are based on a 2D reflectivity
prior model, and use iterative multichannel deconvolution proce-
dures which deconvolve the seismic data, while taking into account
the spatial dependency between neighboring traces. The first
algorithm employs in each step a modified maximum posterior
mode (MPM) algorithm which estimates a reflectivity column
from the corresponding observed trace using the estimate of the
preceding reflectivity column. The second algorithm takes into
account estimates of both the preceding and subsequent columns
in the estimation process. Both algorithms are applied to synthetic
and real data and demonstrate better results compared to those
obtained by a single-channel deconvolution method. Expectedly,
the second algorithm which utilizes more information in the
estimation process of each reflectivity column is shown to produce
better results than the first algorithm.

Index Terms—Markov Chain Monte Carlo, maximum posterior
mode method, multichannel deconvolution, reflectivity estimation,
seismic signals.

I. INTRODUCTION

R EFLECTION seismology is a common method in oil
and natural gas exploration, in which a picture of the

subsurface sedimentary layers of the earth is generated from
surface measurements. Seismic data is obtained by transmitting
an acoustic wave into the ground and measuring the reflected
energy resulting from impedance discontinuities. The seismic
pulse (wavelet) is time-varying, however here we make the
usual assumption that it is approximately time-invariant for the
received section of the seismic data. Therefore, the observed
seismic data can be modeled as a convolution between a two-di-
mensional (2D) reflectivity section and the wavelet, which has
been further degraded by additive noise. Deconvolution is used
to minimize the effect of the wavelet and produce an increased
resolution estimate of the reflectivity, where closely spaced
reflectors can be identified.

Many methods utilize the fact that the wavelet is a one-di-
mensional (1D) vertical signal and break the multichannel
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deconvolution problem into independent vertical 1D decon-
volution problems. A 1D reflectivity column appears in the
vertical direction as a sparse spike train where each spike
(reflector) corresponds to a boundary between two adjacent
homogenous layers. Mendel et al. [1], [2] use an autoregressive
moving average model for the wavelet and model the reflectivity
as a Bernoulli-Gaussian (BG) process [3], [4]. For each sample
of the reflectivity sequence, a Bernoulli variable characterizes
the presence or absence of a reflector, and the amplitude of the
reflector follows a Gaussian distribution given the Bernoulli
variable is nonzero. They use second order statistics methods to
estimate the wavelet and recover the reflectivity by maximum
likelihood estimation. The maximum likelihood criterion is
maximized using the single most likely replacement (SMLR)
algorithm [2], which improves the likelihood by iteratively
choosing a reflectivity sequence that varies at each iteration
by only one sample. Kaaresen and Taxt [5] introduced an
algorithm which alternately estimates a finite impulse response
wavelet and a Bernoulli–Gaussian reflectivity. The wavelet is
estimated using a least-squares fit and the reflectivity is recov-
ered using the iterated window maximization algorithm [6].
This algorithm is similar to the SMLR, but produces better
results since it updates many samples at each step instead of
only one. Cheng, Chen, and Li [7] simultaneously estimate a
Bernoulli–Gaussian reflectivity and a moving average wavelet
using a Bayesian framework in which prior information is
imposed on the seismic wavelet, BG reflectivity parameters
and the noise variance. These parameters along with the re-
flectivity sequence are estimated using a Markov chain Monte
Carlo (MCMC) method called a Gibbs sampler [8], [9]. Rosec
et al. [10] use a moving average wavelet and model the reflec-
tivity sequence as a mixture of Gaussian distributions [11].
They propose two parameter estimation methods. The first
method performs maximum likelihood estimation and use the
stochastic expectation maximization (SEM) algorithm [12],
[13] to maximize the likelihood criterion. The second method
performs a Bayesian estimation resembling the method of
Cheng et al. [7]. The estimated parameters are employed by the
maximum posterior mode (MPM) algorithm [14], which uses
realizations of the reflectivity simulated by a Gibbs sampler to
estimate the reflectivity.

Application of 1D restoration methods to 2D seismic data is
clearly suboptimal, as it does not take into account the correla-
tion between neighboring columns of the seismic data (traces),
which stems from the presumed continuous and roughly
horizontal structure of the earth layers. Idier and Goussard
[15] proposed two versions of a multichannel deconvolution
method which takes into account the stratification of the layers.
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The two versions are based on two 2D reflectivity models:
Markov–Bernoulli–Gaussian (MBG) I and II. Each model is
composed of a Markov–Bernoulli random field (MBRF) [16],
which controls the geometrical characteristics of the reflectivity,
and an amplitude field, defined conditionally to the MBRF.
The deconvolution is carried out using a suboptimal maximum
a posteriori (MAP) estimator, which iteratively recovers the
columns of the reflectivity section. Each reflectivity column is
estimated from the corresponding observed trace and the esti-
mate of the previous reflectivity column, using an SMLR-type
method. Kaaresen and Taxt [5] also suggest a multichannel
version of their blind deconvolution algorithm, which accounts
for the dependencies across the traces. However, this method
encourages spatial continuity of the estimated reflectors using
an optimization criterion which penalizes nonsparse and non-
continuous configurations. Heimer, Cohen, and Vassiliou [17],
[18] introduced a multichannel blind deconvolution method
which combines the algorithm of Kaaresen and Taxt with
dynamic programming [19], [20] to find continuous paths of
reflectors across the channels of the reflectivity section. How-
ever, layer discontinuities are not taken into account by this
method. Heimer and Cohen [21] also proposed a multichannel
blind deconvolution algorithm which is based on the MBG I
reflectivity model. They first define a set of reflectivity states
and legal transitions between configurations of neighboring
reflectivity columns. Then they apply the Viterbi algorithm [22]
for finding the most likely sequences of reflectors that are
connected across the reflectivity section by legal transitions.

In this paper, we propose two multichannel blind deconvolu-
tion algorithms. Both algorithms are based on the MBG I reflec-
tivity model and iteratively deconvolve the seismic data, while
taking into account the spatial dependency between neighboring
traces. The first algorithm employs in each step a modified ver-
sion of the maximum posterior mode (MPM) algorithm which
estimates the current reflectivity column from the corresponding
observed trace and the estimate of the preceding reflectivity
column. The modified MPM algorithm is a two step procedure.
First, it employs a Gibbs sampler to simulate realizations of the
MBRF and amplitude variables by iteratively sampling from
their conditional distributions, which depend on the estimate of
the preceding reflectivity column. Then, a decision step takes
place in which the MBRF and amplitude variables are estimated
from their realizations. The second algorithm is an extension of
the first. It takes into account the dependency between each re-
flectivity column and both the preceding and subsequent neigh-
bors, in the deconvolution process. It employs in each step a
further modified maximum posterior mode algorithm which si-
multaneously estimates both the current and subsequent reflec-
tivity columns. These columns are determined from the corre-
sponding observed traces and the estimate of the preceding re-
flectivity column. Again, the estimation is carried out in two
steps. First, a Gibbs sampler is employed to simulate realiza-
tions of the MBRF and amplitude variables corresponding to
the current and subsequent reflectivity columns, by iteratively
sampling from their conditional distributions. Then, the MBRF
and amplitude variables are determined from their realizations
in a decision step. Out of the two obtained estimates, only the
estimate of the current reflectivity column is kept. The estimate

of the subsequent column is discarded, as this column will be
determined from estimates of both its preceding and subsequent
neighbors in the next step.

Both multichannel deconvolution algorithms are applied to
synthetic and real data, and demonstrate better results compared
to those obtained by the single-channel deconvolution method
of Rosec et al. [10]. The second algorithm which utilizes more
information in the estimation process of each reflectivity column
is shown to produce better results than the first algorithm.

The paper is organized as follows: In Section II we formu-
late the multichannel blind deconvolution problem. Then we
describe the MBG I reflectivity model and the parameter es-
timation method. In Section III and IV, we introduce the first
and second proposed algorithms, respectively. In Section V we
present simulation and real data results demonstrating the per-
formance of both proposed algorithms compared to a single-
channel deconvolution. We summarize the paper in Section VI.

II. PROBLEM FORMULATION AND REFLECTIVITY MODEL

A. Problem Formulation

Multichannel blind seismic deconvolution aims at restoring
a 2D reflectivity section and an unknown seismic wavelet
from a 2D observed seismic data. The seismic wavelet

is a 1D vertical vector of length ,
which is assumed to be invariant in both horizontal and vertical
directions. The reflectivity section is a matrix of size
and the 2D seismic data is a matrix of size , where

. can be modeled as the following
noise-corrupted convolution product:

(1)

where is a matrix of size which denotes an additive
white Gaussian noise independent of with zero mean and
variance .

We use the MBG I reflectivity model so that the stratification
of the layers of the Earth will be taken into account in the decon-
volution process. Since the deconvolution problem is blind, i.e.,

, , and the MBG I model parameters are unknown, a suitable
estimation method needs to be derived. We next describe the
MBG I reflectivity model and subsequently propose a method
for estimating the missing parameters.

B. Prior Model

The Markov–Bernoulli–Gaussian I reflectivity model [15] is
a 2D extension of the 1D Bernoulli–Gaussian representation. It
is composed of a Markov–Bernoulli random field, which con-
trols the geometrical characteristics of the reflectivity, and an
amplitude field, defined conditionally to the MBRF. The MBRF
comprises two types of binary variables: location variables and
transition variables. The location variables, set in a ma-
trix , indicate the position of layer boundaries. Let de-
note the location variable in the position of . Then
is set to one if a reflector exists in the position of , and
is set to zero otherwise. The transition variables, set in three

matrices , , and , determine whether ad-
jacent location variables belong to the same layer boundary or
not. Let , , denote the transition variables in the
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Fig. 1. Location and transition variables: (a) Layer boundaries representation. (b) Location variable � and other location and transition variables affected by it.

positions of , , and , respectively. Then is set to
one if and belong to the same layer boundary and
to zero otherwise. Similarly and are set to one if
belongs to the same layer boundary as and , re-
spectively, and to zero otherwise. Therefore, , and
determine whether layer boundaries whose orientation is diago-
nally ascending, horizontal, and diagonally descending, respec-
tively, exist in the position of . Fig. 1(a) shows a rep-
resentation of layer boundaries and their orientation in several
locations using location and transitions variables. Gray squares
denote the presence of a layer boundary and arrows facing up-
ward, rightward and downward correspond to positions in which

, and , respectively, are set to one. Fig. 1(b) shows
the location variable , all the location variables which may
be on the same boundary with it, and the transition variables be-
tween them.

Let denote a probability distribution function. Then the
MBRF has the following properties.

1) Separability property:

2) The th columns of , , and , denoted , ,

and , respectively, are white and Bernoulli distributed
marginally from the rest of the field.

3) The characteristic parameters of the Bernoulli distributions
are given by

4) Horizontal symmetry:

.

5) Isolated transition variables cannot be set to one:

.
6) Discontinuities along layer boundaries are possible

7) is related to according to:
.

We now turn to the amplitude field . The MBG I model
assumes that the amplitudes of the reflectors are independent
in the vertical direction and that marginally from the rest of the
field, the amplitude of each reflector is normally distributed with
zero mean and variance equal to . The conditional probability
of the amplitude field of the reflectivity
is assumed to have a first-order Markov chain structure, and
each reflector is assumed to be correlated only with reflectors
located on the same boundary. Let denote the th column of

, and let denote the th reflector in . Then the correla-
tion between and reflectors in previous columns depends
on the local geometry of the layers and is described through

. Let (respectively,

, ) be set to one, then we will further refer to the
reflector as a successor of (respectively, ,

) and symmetrically (respectively, ,
) will be referred to as a predecessor of . The

conditional probabilities
can be separated into four cases which depend on the existence
and uniqueness of successors and predecessors.

1) If then there is no reflector at position , and
.

2) If , and if is the unique successor of a unique
predecessor , then is sam-
pled from a first-order autoregressive (AR) process, condi-
tionally to . This case corresponds to interactions
along a single layer boundary. Let control the de-
gree of correlation between reflector amplitudes along the
same boundary and let , then the
AR process is defined by

(2)

3) If and if has no predecessor, then is
sampled from the basic Gaussian distribution .

4) If and if has more than one predecessor,
or symmetrically when is not a unique successor,
then is sampled from the basic Gaussian distribution

.
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Before the deconvolution can be performed, the parameters of
the 2D reflectivity model described above need to be estimated
from the data, along with the seismic wavelet and the noise vari-
ance. We next describe the parameter estimation method.

C. Parameter Estimation

Our goal is to estimate the parameters and
the MBG I parameters from the ob-
served seismic data . The parameters can be estimated using
the stochastic expectation maximization algorithm of Rosec et
al. [10]. Let denote the th trace of the seismic data. Then
we apply the SEM algorithm to each of the traces and ob-
tain from each trace an estimate . Since the parameters are
assumed common to all the seismic traces, the final estimate

is obtained by averaging the estimates . We
now proceed to estimate the parameters by employing
the parameters to deconvolve each of the traces using the
maximum posterior mode algorithm of Rosec et al. [10]. Subse-
quently, we remove all the isolated reflectors from the obtained
reflectivity estimate and term the result . Letting ,
and denote the number of positions in in which the
orientation of the layer boundaries is ascending, horizontal and
descending, respectively, we propose the following estimators:

(3)

For the estimation of , we use a heuristic estimator, which
calculates the average attenuation ratio between neighboring re-
flectors. Let be the number of layer boundaries in ,
and let be the reflectors of the th
boundary arranged in a vector of length . Note that when

contains layer boundaries which split or merge, each sec-
tion of a boundary before and after the node where the splitting
or merging occurs, is treated as a separate boundary layer. Then

(4)
Once all the missing parameters are known, multichannel de-

convolution can be performed. We next describe the first pro-
posed multichannel deconvolution procedure.

III. RECURSIVE CAUSAL MULTICHANNEL

BLIND DECONVOLUTION

In this section, we propose a multichannel blind deconvo-
lution algorithm, which iteratively deconvolves the seismic
data, while taking into account the spatial dependency between
neighboring traces. The proposed method is based on the MBG
I reflectivity prior model and employs the parameter estimation
method proposed in the previous section. We next describe the
deconvolution scheme of the proposed algorithm.

A. Deconvolution Scheme

The MAP estimator of the matrices , com-
prising the MBRF, and the amplitude field is

(5)
Obtaining the exact MAP solution is very difficult, even when
the efficient Viterbi algorithm is used, because of the large
dimension of the state-space of . However,
Idier and Goussard [15] showed that the a posteriori likelihood

can be expressed as

(6)

where . This formula led them to
propose the following suboptimal iterative maximization pro-
cedure:

1) First column (7)

2) For

(8)

where SMLR-type algorithms were used for the optimization
of the partial criteria (7) and (8). In the first step and
are determined from the first observed trace . In each fol-
lowing step, the reflectivity column , and corre-
sponding hidden binary vectors , are determined from
the current observed trace and the estimates of and

, obtained in the previous step. This maximization pro-
cedure is suboptimal since for each partial criterion is
maximized only with respect to , , and all the previ-
ously estimated quantities remain unchanged. Also, the deter-
mination of is based on observations only up to and sub-
sequent columns of the observed data, which are very informa-
tive about , are not taken into account in its estimation. On the
other hand, this method is much simpler than global maximiza-
tion of , and does take into account the
dependency between neighboring reflectivity columns, unlike
single-channel deconvolution methods.

Here we use a similar iterative maximization procedure,
which employs MCMC methods for the optimization of its
partial criteria. We first rewrite (7) and (8) as

1) First column (9)

2) For

(10)

The first partial criterion can be optimized using the max-
imum posterior mode algorithm presented by Rosec et al. [10].
Finding an optimal solution for the maximization problem (10)
is very hard, since it requires examination of all the possible con-
figurations of , , whose number ranges from to .
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Therefore, we apply instead a modified version of the MPM al-
gorithm. This algorithm estimates the vectors , , from
realizations simulated by a Gibbs sampler, described next.

B. Gibbs Sampler

The Gibbs sampler generates samples of , ,
from the joint distribution .
Let denote a vector without its th sample, i.e.,

. Also, let
denote a Bernoulli distribution with parameter . Then instead
of sampling directly from the joint distribution, the Gibbs
sampler iteratively samples from the conditional distributions:

•

•

•

•

where the derivation of , , , , and
can be found in subsections I and II of the Appendix.

For the simulation of the vectors , , and , the Gibbs
sampler follows these steps iteratively:

1) Initialization: choice of , and .
2) For

For
• compute using (36) and simulate

• compute using (37) and simulate

• compute using (38) and simulate

• compute using (26) and simulate

• simulate if , otherwise

.

C. MPM Algorithm

We estimate each column , using a modi-
fied version of the MPM algorithm. This algorithm employs the
Gibbs sampler described above to generate realizations of ,
and drawn from . The Gibbs
sampler performs iterations until it reaches a steady-state pe-
riod. The samples produced in the following

iterations are used to first estimate each of ,
, , , and then determine conditionally to

the estimate of . The modified MPM algorithm follows these
steps iteratively.

1) For simulate using the
Gibbs sampler.

2) For
• detection step:

if

otherwise,

if

otherwise,

if

otherwise,

if

otherwise

• estimation step

if

otherwise

3) .

IV. RECURSIVE NONCAUSAL MULTICHANNEL

BLIND DECONVOLUTION

The algorithm proposed in this section is an extended version
of the first proposed algorithm, and uses the same reflectivity
model and parameter estimation method. However, it takes into
account the dependency between each reflectivity column and
both the preceding and subsequent neighbors, in the deconvolu-
tion process. We next describe the deconvolution scheme of this
algorithm.

A. Deconvolution Scheme

Our goal is to improve the performance of the first proposed
algorithm, by taking into account information from both pre-
ceding and subsequent traces in the deconvolution process of
each trace. More specifically, we wish to utilize estimates of
both and , in the estimation process of . However,
an estimate of is not available from previous steps in the
th step of the algorithm, in which is estimated. Therefore,

instead of estimating only in the th step, we simultaneously
estimate both and , conditionally to the estimate of ,
obtained in the previous step. This way, the dependency between

and is taken into account when the former is estimated.
In each step besides the last, only the estimate of is kept out of
the two obtained estimates. The estimate of is discarded,
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as this column will be reestimated in the next step. It is kept
only in the last step, as the estimate of the last column in the 2D
reflectivity section . We note that extending the algorithm to
utilize more than one subsequent reflectivity column in the esti-
mation process of is straightforward. However, simulation re-
sults showed that only a small improvement in the performance
is gained when more than one reflectivity column is estimated
along with , at the cost of a larger computational burden. We
next define the following vectors:

where and denotes a vector of
zeros. Using these concatenated vectors in the deconvolution

process allows us to simultaneously estimate the amplitude, lo-
cation and transition variables associated with both and .
The deconvolution is carried out iteratively, using the following
maximization procedure:

1) First column

(11)

2)

(12)

where .
Similarly to the deconvolution scheme of the first proposed

algorithm, a single partial criterion is optimized in each step.
Direct optimization of these partial criteria is practically impos-
sible, since it requires examination of all the possible configu-
rations of , whose number ranges from to .
Instead, we apply a further modified version of the MPM algo-
rithm to these partial criteria. This MPM algorithm estimates in
the first step , and from , and estimates in the th step,

, , , and from , and . The
first samples of the estimates of and ,

are kept as the desired estimates , , . In
the th step the last samples of the estimates are also
kept as , , , , .

The MPM algorithm employs two different Gibbs samplers in
the estimation process of and , . We describe
these Gibbs samplers next.

B. Gibbs Samplers

In the estimation process of the first reflectivity column, we
employ a Gibbs sampler to generate samples of , , from
the joint distribution . Instead of sampling di-
rectly from this joint distribution, the Gibbs sampler iteratively
samples from the conditional distributions of , , ,

and . The first samples of , , equal zero and the
first samples of , are sampled from:

•

where the derivation of , and can be found in
subsection III of the Appendix. The last samples of , ,

, , are sampled from:
•

•

•
•

For the simulation of the vectors , and , the Gibbs sam-
pler follows these steps iteratively:

1) Initialization: choice of , , .
2) For

For
• compute using (54) and simulate

• if simulate , otherwise

.

For
• compute using (36) and simulate

• compute using (37) and simulate

• compute using (38) and simulate

• compute using (26) and simulate

• simulate if

, otherwise .

Similarly, in the estimation process of the th reflec-
tivity column, , we employ a different Gibbs
sampler to generate samples of , , from the joint
distribution . This Gibbs sam-
pler iteratively samples from the conditional distributions of

and , where the first samples

of , , , , are sampled from:

•

•
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•

•

and the derivation of , and can be found in sub-

section IV of the Appendix. The last samples of , , ,

, are sampled from the same conditional distributions

as the last samples of , , , , .
For the simulation of the vectors , and , the Gibbs

sampler follows these steps iteratively:

1) Initialization: choice of , , .
2) For

For
• compute using (36) and simulate

• compute using (37) and simulate

• compute using (38) and simulate

• compute using (64) and simulate

• simulate if , otherwise

.

For follow the same steps as the
Gibbs sampler described above.

C. MPM Algorithm

The second proposed algorithm employs a further modified
MPM algorithm. This MPM algorithm estimates , , in
the first step, and estimates , , , in the
following steps. It uses the two versions of the Gibbs sampler
described in the previous subsection to generate realizations of

, , and , where the first iterations are considered a
learning period. Only the samples produced in
the subsequent steady state period are used to first
estimate each of , , , and then determine

conditionally to the estimate of .
The further modified MPM algorithm follows these steps it-

eratively.
1) For simulate using the Gibbs

samplers.
2) Use the same detection step as in Section III-C, where

, and are replaced by

and , respectively.

3) .

V. EXPERIMENTAL RESULTS

A. Synthetic Data

We generated a 2D reflectivity section of size 76 100,
shown in Fig. 2(a), using the MBG I model. We then convolved
it with a 25 samples long Ricker wavelet and added white
Gaussian noise, with signal-to-noise ratios (SNRs) of 0 and
5 dB, where the SNR is defined as

SNR (13)

We created 20 realizations for each SNR, two of them with
SNRs of 0 and 5 dB are shown in Fig. 2(b) and (c), respectively.
We then used the proposed parameter estimation method to find
the missing parameters corresponding to each of the data sets.
The total number of iterations of the SEM algorithm was set to
4000, where the first 3000 iterations served as the burn-in pe-
riod after which the algorithm reaches a steady state. The true
wavelet, along with wavelets estimated for the realizations in
Fig. 2(b) and (c) are shown in Fig. 2(d) and (e), respectively. The
true parameters are shown in Table I, along with the means and
standard deviations (in brackets) of the parameters estimated
from the realizations with the different SNRs.

The true and estimated parameters were employed by the de-
convolution schemes of the two proposed multichannel algo-
rithms, and the single-channel MPM algorithm of Rosec et al.
[10]. The reflectivity sections recovered by single-channel de-
convolution and those obtained with the true parameters were
used for comparison reasons. The total number of iterations
of the MPM algorithms of Rosec et al. and the first and second
proposed algorithms was set to 8000, 8000, and 16 000, and
the corresponding burn-in period was set to 4000, 4000, and
8000 iterations, respectively. The average processing times of a
data set of size 100 100 on Pentium Core 2 Duo E8400, by
Matlab implementations of the single-channel and the first and
second proposed algorithms, were 8.86, 9.17, and 47.69 min, re-
spectively. Note that each reflectivity column estimated by the
single-channel and multichannel deconvolution algorithms had
gone through a postprocessing procedure. Whenever this pro-
cedure found two or three successive reflectors, or two reflec-
tors separated by one sample, it replaced them by their center
of mass. We will hereafter refer to the first and second pro-
posed algorithms as MC-I and MC-II, respectively. The results
of single-channel deconvolution and the MC-I and MC-II algo-
rithms, obtained with the true and estimated parameters for the
seismic data with SNR of 5 dB, depicted in Fig. 2(c), are shown
in Fig. 3. The results obtained with the estimated parameters
for the seismic data with SNR of 0 dB depicted in Fig. 2(b), are
shown in Fig. 4. Visual comparison between these results shows
improved performance of both the MC-I and MC-II algorithms
over the performance of the single-channel deconvolution algo-
rithm. For both SNR levels the estimates of MC-I and MC-II are
more continuous, contain less false detections and are generally
closer to the true reflectivity than the single-channel deconvolu-
tion results. It can also be seen that, as one would expect, better
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Fig. 2. Synthetic reflectivity, wavelet and data sets: (a) Synthetic 2D reflectivity section. (b) 2D seismic data ���� � 0 dB�. (c) 2D seismic data ���� � 5 dB�.
(d) True wavelet (solid) and its estimate (dashed) for ��� � 0 dB. (e) True wavelet (solid) and its estimate (dashed) for ��� � 5 dB.

TABLE I
SYNTHETIC 2D EXAMPLE: TRUE AND ESTIMATED PARAMETERS

results are obtained with the true parameters than with the esti-
mated ones.

In order to quantify the performances of the MC-I and MC-II
algorithms and compare them to each other and to the perfor-
mance of the single-channel algorithm, we used the four loss
functions suggested by Kaaresen in [23]. Let be a 1D reflec-
tivity sequence and be its estimate, and let and be
the and norms, respectively. Also, let

and
denote the number of missed and false detections in , respec-
tively. Then the loss functions are

(14)

Kaaresen also suggested to make the loss functions more real-
istic, by regarding estimated reflectors that were close to their
true positions as partially correct. Therefore we added three loss
functions which treated reflectors in with an offset of one
sample from their true location as if they were set in their true lo-
cations, with half their amplitude. For these reflectors a penalty
of 0.5 was added to both the missed and false detection mea-
sures. The new loss functions are

(15)

where is
a difference measure,

or is a missed de-
tection measure, and

or is a false detec-
tion measure. Since we are dealing with 2D reflectivity signals,
we calculated the loss functions for their column stack forms.
We also normalized by the norm of the column stack
form of the true reflectivity and normalized the rest of the loss
functions by the number of reflectors contained in the true re-
flectivity. The means and standard deviations of the loss func-
tions calculated for the estimates obtained by single-channel de-
convolution and the MC-I and MC-II algorithms are shown in
percents in Tables II and III. The values displayed in Table II
correspond to the results obtained with the true and estimated
parameters, for the seismic data with SNR of 5 dB. Similarly,
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Fig. 3. Synthetic 2D data deconvolution results obtained with the true parameters (TP) and the estimated parameters (EP) for SNR of 5 dB. (a) Single-channel
deconvolution results (TP). (b) MC-I results (TP). (c) MC-II results (TP). (d) Single-channel deconvolution results (EP). (e) MC-I results (EP). (f) MC-II results
(EP).

Fig. 4. Synthetic 2D data deconvolution results. (a) Single-channel deconvolution results for ��� � 0 dB. (b) MC-I results for ��� � 0 dB. (c) MC-II results
for ��� � 0 dB.

TABLE II
COMPARISON BETWEEN THE QUALITY OF RESTORATION OF THE SINGLE-CHANNEL DECONVOLUTION (SC), MC-I, AND MC-II ALGORITHMS,

OBTAINED WITH THE TRUE AND ESTIMATED PARAMETERS, FOR SNR OF 5 dB

the values in Table III correspond to the results obtained for the
data with SNR of 0 dB.

It can be seen that for both SNR levels, and for all the loss
functions, the mean values calculated for the estimates of the
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TABLE III
COMPARISON BETWEEN THE QUALITY OF RESTORATION OF THE SINGLE-CHANNEL DECONVOLUTION (SC), MC-I, AND MC-II ALGORITHMS,

OBTAINED WITH THE TRUE AND ESTIMATED PARAMETERS, FOR SNR OF 0 dB

Fig. 5. Real data deconvolution results: (a) Real seismic data. (b) Single-channel deconvolution result. (c) MC-I results. (d) MC-II results.

MC-I and MC-II algorithms are smaller than the respective
mean values calculated for the estimates of the single-channel
deconvolution algorithm. This implies that both the MC-I and
MC-II algorithms produce better results than the single-channel
algorithm. It can also be seen that for both SNR levels the
MC-II algorithm outperforms the MC-I algorithm, and that
the improvement is getting smaller as the SNR increases.
Not surprisingly, lower mean values of the loss functions are
measured for all the higher SNR estimates, meaning that all
the algorithms performed better when the noise level was low.
Also, lower mean values of the loss functions are obtained
with the true parameters than with the estimated ones, however
the difference between the mean values obtained in these two
cases is getting smaller as the SNR increases. Finally, MC-II
seems to be more robust to model parameter inaccuracies than
MC-I. Although MC-II performs only slightly better than MC-I
when the model parameters are known, it produces significant
improvement in the case of blind deconvolution.

B. Real Data

We applied the proposed parameter estimation method to real
seismic data from a small land 3D survey in North America
(courtesy of GeoEnergy Inc., TX) of size 400 200, shown
in Fig. 5(a). Three-dimensional denoising was applied to the
data [24], which was subsequently decimated in both time and
space. The time interval is 8 ms and the in-line trace spacing

is 25 m. The estimated wavelet is shown in Fig. 6, and the es-
timated parameters are presented in Table IV. Similarly to the
case of the synthetic data, the estimated parameters were em-
ployed by the deconvolution schemes of the MC-I and MC-II
algorithms, and the MPM algorithm of Rosec et al. The reflec-
tivity sections obtained by single-channel deconvolution, MC-I
and MC-II are shown in Fig. 5(b), (c), and (d), respectively.
Comparing these reflectivity sections, it can be seen that the
estimates obtained by MC-I and MC-II contain layer bound-
aries which are more continuous and smooth than the ones ob-
tained by the single-channel deconvolution. These algorithms
also manage to detect parts of the layers that the single-channel
deconvolution missed. It can also be seen that the estimates pro-
duced by the MC-I and MC-II algorithms are quite close, how-
ever the latter managed to recover parts of the layer boundaries
missed by both the single-channel and first proposed algorithms.
Note that since the true reflectivity section is unknown, the loss
functions (14) and (15) cannot be used to assess the performance
of the proposed algorithms on real data.

VI. CONCLUSION

We have proposed two multichannel blind deconvolution al-
gorithms. Both algorithms, which take into account the spatial
dependency between neighboring traces in the deconvolution
process, produce visually superior deconvolution results, com-
pared to a single-channel deconvolution algorithm, for synthetic
and real data. The second algorithm uses more information from
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Fig. 6. Real data estimated seismic wavelet.

TABLE IV
REAL DATA EXAMPLE: PARAMETERS ESTIMATED FOR THE REAL DATA

neighboring traces in the deconvolution process of each trace,
and therefore performs better than the first proposed algorithm,
on synthetic and real data. Qualitative assessment of synthetic
data deconvolution results shows improved performance of both
proposed algorithms compared to the single-channel algorithm.
It also shows that the second proposed algorithm improves on
the first, but this improvement is getting smaller as the SNR in-
creases.

One topic for future research is developing new versions of
the two proposed algorithms, based on the MBG II model [15].
This model uses a different amplitude field than the MBG I
model, which may lead to different quality of the deconvolu-
tion results. The performance of the new algorithms can be as-
sessed and compared to that of the original ones. Another topic
for future research is the extension of the second proposed algo-
rithm to handle 3D input data. In this case the recovered reflec-
tivity is a 3D signal and a 3D estimation window can be used so
that neighboring reflectivity columns from 8 directions will be
taken into account in the estimation process of each reflectivity
column.

APPENDIX I
DERIVATION OF THE PARAMETERS , AND

Our goal is to derive the BG distribution
. We start by

factoring this distribution as

(16)

Noting that

(17)

with , and defining

(18)

we get, after some algebraic manipulations

(19)

with

(20)

(21)

(22)

Similarly, we get that

(23)

Finally, from (19) and (23) we get that

(24)

and

(25)

where

(26)

APPENDIX II
DERIVATION OF THE PARAMETERS , AND

We will now derive the conditional probabili-
ties for the three types of transition variables. Let

, then we start with
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, which can
be expressed by

(27)

Let , then we first note that

only when
and . Next, let

(28)

(29)

(30)

(31)

(32)

Then using (27), (29), and (31), we get

(33)

and using (27), (30), and (32) we get

(34)

Now, from (33) and (34), we get that

(35)

with

if

otherwise
(36)

Similarly, it can be shown that

if

else
(37)

and

if

else
(38)

APPENDIX III
DERIVATION OF THE PARAMETERS , AND

Our goal is to derive the BG distribution
. Let

, then this distribution can
be rewritten as

(39)

Now, defining

(40)

(41)
if and are correlated
otherwise

(42)

(43)

and

(44)
we get that

(45)

(46)

with

(47)

(48)

and as defined in (21) and (22), respectively.
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Similarly, let

(49)

and

(50)

then

(51)

Finally, from (46) and (51) we get that

(52)

and

(53)

where

(54)

APPENDIX IV
DERIVATION OF THE PARAMETERS , , AND

The BG distribution
can be rewritten

as

(55)

Let

(56)

then using (18), (41), (42), and (44) we get that

(57)

with

(58)

(59)

and as defined in (21) and (22), respectively.
Similarly, let

(60)

then using (50) we get that

(61)

Finally, from (57) and (61) we get that

(62)
and

(63)

where

(64)
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