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Abstract—We address the application of the linearly constrained
minimum variance (LCMV) beamformer in sensor networks. In
signal processing applications, it is common to have a redundancy
in the number of nodes, fully covering the area of interest. Here we
consider suboptimal LCMV beamformers utilizing only a subset
of the available sensors for signal enhancement applications.
Multiple desired and interfering sources scenarios in multipath
environments are considered. We assume that an oracle entity de-
termines the group of sensors participating in the spatial filtering,
denoted as the active sensors. The oracle is also responsible for
updating the constraints set according to either sensors or sources
activity or dynamics. Any update of the active sensors or of the
constraints set necessitates recalculation of the beamformer and
increases the power consumption. As power consumption is a most
valuable resource in sensor networks, it is important to derive
efficient update schemes. In this paper, we derive procedures for
adding or removing either an active sensor or a constraint from an
existing LCMV beamformer. Closed-form, as well as generalized
sidelobe canceller (GSC)-form implementations, are derived.
These procedures use the previous beamformer to save calcu-
lations in the updating process. We analyze the computational
burden of the proposed procedures and show that it is much lower
than the computational burden of the straightforward calculation
of their corresponding beamformers.

Index Terms— Beamforming, GSC, LCMV.

I. INTRODUCTION

T HE linearly constrained minimum variance (LCMV)
beamformer (BF) is a common and powerful scheme

for signal enhancement in complicated scenarios, usually in-
volving multiple sources. The LCMV-BF was first introduced
by Er and Cantoni [1]. They extended the minimum variance
distortion-less response (MVDR)-BF [2], [3], and proposed a
BF satisfying a set of linear constraints. Multiple constraints
allows for further control of the array beam-pattern, beyond that
of a single steer-direction gain constraint. Breed and Strauss [4]
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proved that the LCMV extension has also an equivalent gen-
eralized sidelobe canceller (GSC) structure, which decouples
the constraining and the minimization operations. Affes and
Grenier [5] and later Gannot et al. [6] reformulated the GSC
structure in the frequency domain, extending its application
to reverberant environments by handling the more general
transfer function (TF). Various strategies for designing the
constraints sets exist, several examples are given next. The
constraints set can be used for extracting a group of desired
speakers out of a mixture of desired and interfering speakers
[7]. Another strategy, used for focusing in near-field scenarios,
defines a spatial area of interest [8]. Finally, the sensitivity,
and robustness of the BF can be controlled by constraining its
derivative in certain look directions [9].
Sensor networks deployed over large areas hold great poten-

tial for signal processing applications, and call upon applying
beamforming techniques. The vast area of deployment allows
for a fine spatial resolution, inversely proportional to the effec-
tive aperture. Moreover, the large number of sensors improves
the ability of the beamformer to cope with multiple sources sce-
narios, as proposed by Markovich et al. [7].
Two major drawbacks result from applying beamforming in

distributed sensor networks. The first drawback is the commu-
nication bandwidth utilization which increases linearly with the
number of sensors, assuming full connectivity of the network
(broadcast mechanism is assumed to be available). The second
drawback is the growing computational burden for constructing
the BF. Several contributions have addressed the problem of re-
ducing the communication bandwidth [10]–[15]. Here we ad-
dress the computational burden drawback.
Two main causes impose severe complexity constraints in a

distributed sensor network. The first cause is energy saving and
battery life. Higher energy consumption results from increased
computational burden, and is manifested in the large number
of mega instruction per second (MIPS). The dynamics of the
network and the environment necessitates updating the BF. Re-
calculation of the BF results in shorter system’s lifetime. The
computational burden is emphasized in wide-band signal appli-
cations in complicated environments such as speech processing
in reverberant environments. Dealing with such long room im-
pulse responses (RIRs) requires calculating BF with, respec-
tively, long impulse responses and involvesmany computations.
The second cause stems from the low cost nodes. Complex al-
gorithms require stronger processing units resulting in more ex-
pensive nodes, and might prevent deployment of large quanti-
ties.
As aforementioned, constructing a BF utilizing all sensor data

requires large bandwidth. The contribution of each of the nodes
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to the noise reduction task is not equal. Given a bandwidth lim-
itation, a subset of the nodes could be chosen to maximize the
noise reduction. Bertrand and Moonen [16] propose an efficient
method for updating the multichannel Wiener filter (MWF)-BF
corresponding to removal or addition of sensors. They derive
equations for efficiently recalculating the MWF-BF based on
the previous BF by applying the block-matrix inversion formula
[17].
In the current contribution, we address the problem of

reducing the computational burden of recalculating the
LCMV-BF when modifying the group of sensors which par-
ticipate in the spatial filtering, denoted as the active sensors or
nodes, or when modifying the constraints set. Here we assume
that the required BF updates are subjected to a controlling
mechanism, referred to as the oracle. The decisions of the
oracle can be motivated by optimizing the tradeoff between
performance and resource usage, handling arbitrary link fail-
ures, and also by determining the desired response for the
various sources, which result in updating of the constraints
set. Updating the configuration of the active sensors could
affect the desired constraints set. For example, adding sensors
increases the dimension of the received signals and allows for
the application of a larger number of constraints. The decision
mechanism of the oracle is out of the scope of the current
contribution.
In this paper, we propose a set of lower complexity proce-

dures for updating the group of active sensors, and the con-
straints set to a given LCMV-BF. We derive the updating pro-
cedures for both the LCMV closed-form BF and its respective
GSC form. The proposed procedures reduce the computational
complexity, and are equivalent to the straightforward calcula-
tion of the LCMV-BF.
The paper is organized as follows. In Section II the problem

is formulated. In Section III four examples for updating
procedures of the LCMV-BF are fully derived. Later in the
Appendix A all eight updating procedures are summarized.
In Section IV we discuss extending the derived algorithms
for adding or removing a group of sensors or constraints. The
computational complexity of the proposed procedures are ana-
lyzed and compared with the complexity of their corresponding
straightforward BF in Section V.

II. PROBLEM FORMULATION

Consider point source signals, some stationary and other
nonstationary, denoted by , propagating
in a multipath environment and impinging on an array com-
prising sensors. The problem is formulated using a narrow-
band model in the short time Fourier transform (STFT) domain,
where is the frame index and is the frequency index. From
hereon, the frequency notation is omitted for brevity. The appli-
cation and the calculation of the BF should be interpreted fre-
quency-wise. The TF relating the th source and the th sensor
is denoted by . Define in vector notation

(1a)

(1b)

(1c)

The received signals vector and its covariance matrix are
given by

(2a)

(2b)

where denotes the total received interferences vector of the
noncoherent signals, denotes the diagonal covariance matrix
of the coherent sources (assuming they are statistically indepen-
dent), and is the covariancematrix of .
Consider a general th-order constraints set

(3a)

(3b)

The optimization criterion of the LCMV-BF is given by

(4)

The closed-form LCMV-BF is described in Section II-A, and
the efficient GSC implementation is described in Section II-B.

A. Closed-Form LCMV-BF

This BF form is obtained by solving (4) directly using La-
grange multipliers. The closed-form LCMV-BF solution to the
problem is given by

(5)

where is defined as follows:

(6)

We denote the solution in (5) as the straightforward LCMV (SF-
LCMV). Its computational complexity is mainly dominated by
the two matrix inversion , and .
In the following sections, we derive algorithms for updating

an existing LCMV-BF. We consider two types of updates. The
first type is sensor updates and the second type is constraint set
updates. For each type of update we derive two procedures. The
first procedure, denoted as the incremental procedure, refers to
adding either a sensor or a constraint to an existing BF. The
second procedure, denoted as the decremental procedure, refers
to removing either a sensor or constraint from an existing BF.
The derived procedures reduce the dimensions of the matrices
to be inverted, and hence reduce the computational complexity
substantially.

B. GSC-Form LCMV-BF

This BF form is obtained by splitting the applied filters into
two components, i.e., . The components and

lie in the column-subspace of the constraint matrix and its
complement null-subspace, respectively. The GSC formulation
of the problem is given by

(7a)

(7b)
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(7c)

(7d)

The GSC form is decomposed into two branches. The upper
branch, also known as the quiescent BF, is denoted by . It
is responsible for maintaining the constraints set. The lower
branch is comprised of two parts: the blocking matrix (BM) and
the subsequent noise canceller (NC) denoted by and , respec-
tively. The objective of the BM is to block the signals arriving
from the constraints set subspace and generate interfer-
ence-only reference signals. Its dimensions are ,
and it can be calculated, for example, by applying the singular
value decomposition (SVD) to the constraints matrix [18].
We will assume that all the columns of the BM are orthogonal,
as in [7]. Note that an orthogonal BM can always be constructed.
The NC uses the reference signals from the output of the BM to
estimate the noise component at the output of the quiescent BF
and therefore reduce its level. We denote the GSC-form BF in
(7) as the straighforward GSC (SF-GSC) BF.
The computational complexity of the SF-GSC BF is mainly

dominated by the SVD used for constructing the BM, and by
the matrix inversion . In the following sections, we derive
algorithms for updating an existing GSC-BF. We consider two
types of updates. The first type is sensor updates and the second
type is constraint set updates. For each type of update we derive
incremental and decremental procedures which circumvent the
SVD and the matrix inversion, and hence reduce the computa-
tional complexity substantially. The NC is usually implemented
as an adaptive NC (ANC) using the least mean squares (LMS)
algorithm [6]. The LMS algorithm consumes operations
per frequency bin. Due to its low complexity and adaptive na-
ture, it is unnecessary to formulate an update procedure to the
ANC.
Please note that in the following sections some notations may

be re-defined for brevity. Explicitly, when considering sensor
addition or removal, a constraints set comprising constraints
is assumed. Also, when considering constraint addition or re-
moval, an array comprising sensors is assumed.

III. LOW-COMPLEXITY BEAMFORMER UPDATING METHODS

Algorithms for adding or removing a single constraint to the
LCMV-BF and the associated GSC implementation are now de-
rived. The algorithms are denoted by

, where stands for sensor or constraint, respec-
tively, U stands for update, stands for incremental or
decremental, respectively, and GSC\LCMV stands for the GSC
or the closed-form implementations, respectively. For example,
the sensor update incremental closed-form implementation al-
gorithm is denoted by SUI-LCMV. For brevity we do not derive
all eight algorithms in details. Instead, we chose to elaborate
on the derivation of four representative procedures, namely the
SUI-LCMV, SUI-GSC, CUI-GSC and the SUD-GSC in the fol-
lowing sub-sections. The derivation of the other algorithms is
based on the same methods. A summary of all eight algorithms
is given in Appendix A.

A. Derivation of the SUI-LCMV Algorithm

Assume an sensors and constraints LCMV-BF is
active

(8)

where is the constraints matrix, is the
desired response vector, and the constraints set is

(9)

Now, a new sensor (indexed ) becomes available. Define the
augmented constraints set

(10)

where is a vector extending the constraints set to
sensors.
The covariance matrix of the sensors is given by

(11)

Applying the block matrix inversion formula [17], the inverse
of the covariance matrix equals

(12)

where

(13a)

(13b)

(13c)

Considering the definition of in (6), the updated in terms
of is given by:

(14)

(15)

where

(16)

Applying theWoodbury identity [19] to the inverse of (15),
equals

(17)

Finally, the updated BF, , is given in terms of the previous BF
terms, , , , , and , by substituting (12), (17) in (5)
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Fig. 1. Block-diagram of the SUI-LCMV procedure.

(18a)

(18b)

(18c)

A block-diagram of the SUI-LCMV algorithm is depicted in
Fig. 1. The procedure is summarized in Alg. 1.

B. Derivation of the SUI-GSC Algorithm

Similarly to (7), suppose now that an sensors GSC BF
maintaining constraints is given by

(19a)

(19b)

(19c)

(19d)

where we assume that the ANC has converged to . The latter
filter is the appropriate Wiener filter for estimating the noise
component at the output of the quiescent BF based on the noise
references at the output of the BM. We further assume that is
an appropriate BM. The BM can be
calculated for example by using the SVD of [18]. We assume
that the BM is orthogonal, i.e., .
Consider adding the th sensor and updating the BF. The

updated constraints set is defined as in (10). The updated
matrix is given by substituting (10) in (19d)

(20)

Applying the Woodbury identity to the inverse of (20), is
given by

(21)

The sensors quiescent BF is given, similarly to (19b), by
replacing and with and from (10), (21):

(22a)

(22b)

(22c)

Fig. 2. Block-Diagram of the SUI-GSC procedure.

Next, we address the problem of updating the BM. Since we
added the th sensor, there should be signals at the
output of the BM. The updated BM, , should block the signal
subspace, i.e., . The first reference sig-
nals are equivalent to the older ones. This can be verified by

adding a row of zeros to , i.e.
. We suggest to use

(23)

as the th column of the updated BM. is orthogonal
to the first columns of since

where the last transition is again due to .
is also orthogonal to since

where the last transition is due to the definition of in (19d).
Therefore, augmenting by is a proper BM of constraints

(24)

After updating the quiescent BF and the BM, another refer-
ence signal is added. In the general case the new reference signal
and the previous reference signals are correlated. Therefore, not
only the NC filter of the new reference signal needs to be deter-
mined, but also the NC filters of the previous reference signals
need to be adjusted. As mentioned earlier, we rely on the low
complexity and fast convergence of the LMS algorithm for up-
dating the NC coefficients. The resulting NC after convergence
is given by substituting (11), (22a), (24) in (19c)

(25)

A block-diagram of the SUI-GSC algorithm is depicted in
Fig. 2. The algorithm is summarized in Alg. 5.
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C. Derivation of the CUI-GSC Algorithm

Suppose that an sensors constraints GSCBF is given
by

(26)

(27)

(28)

(29)

where is the constraints matrix, is the
desired response vector and is an appropriate

BM. As was previously stated, we assume that the
BM is orthogonal, i.e. .
Consider adding the th constraint and updating the BF. The

updated constraints set is

(30a)

(30b)

Updating the matrix in (29) with the th constraint yields

(31)

where . The inverse of is given by applying the block
matrix inversion formula

(32)

where

(33)

The updated quiescent BF designed to maintain the con-
straints set is given by substituting the updated values of ,
and from (32), (30a), (30b) in (27)

(34a)

(34b)

Next, we update the BM. Notice that the rank of the BM
equals the number of sensors minus the number of constraints
(assuming the constraints set are linearly independent), i.e.

. Therefore, the rank of the BM corresponding to the modi-
fied constraints set is smaller by one than that of the former BM.
Hence, we would like to reduce the dimensions of the current
BM to such that its columns are an orthogonal
set and that

(35)

The new constraint vector can be written as a combination of
two components

(36)

The first component lies in the constraints subspace, and
the second component lies in its corresponding null-subspace,
hence spanned by the columns of . The new BM should
block both and , the component of not spanned by

Fig. 3. Block-diagram of the CUI-GSC procedure.

the columns of . This can be obtained by: 1) rotating the cur-
rent BM such that all but one of its columns are orthogonal to
the second component of ; 2) deleting that column. The House-
holder transformation [20] can be applied to satisfy both re-
quirements. The transformed BM is given by

(37)

where is defined as

(38)

denotes the angle extraction of a complex number
, is the projection of onto ,

i.e. , and is the last entry of . It follows that:

(39a)

(39b)

Note that since the Householder transformation is unitary, the
rotated basis remains orthogonal. The orthogonality property
of is imperative for assuring that all columns of but the
last one are orthogonal to . Finally, the updated BM is
obtained by deleting the last column of :

(40)

where is an matrix constructed by removing
the last row of the identity matrix .
In a similar manner to the NC update of the SUI-GSC proce-

dure in Section III-B, the updated NC filters after convergence
are given in a vector form by substituting (40), (2b), (34a) in
(28)

(41)

A block-diagram of the CUI-GSC algorithm is depicted in
Fig. 3. The algorithm is summarized in Alg. 7.

D. Derivation of the SUD-GSC Algorithm

Suppose that an sensors and constraints GSC-BF is
given by

(42a)

(42b)

where are defined as in (10) and (20), respectively, and
is an orthogonal BM. Now, consider that the th
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Fig. 4. Block-diagram of the SUD-GSC procedure.

sensor becomes unavailable. Here we derive the equations for
updating the BF using its previous value. The updated is
given by applying the Woodbury identity to the inverse of (20)

(43)

Substituting (43), (10) in (42b) yields

(44a)

(44b)

(44c)

Next we address updating the BM.We apply the Householder
transformation step and diagonalize the last row of . Define

(45)

where is the entry in . The rotated BM
is given by

(46)

It can be verified that the last row of equals

(47)
Since the Householder transformation is unitary, the orthogo-
nality of the BM is kept. The rotated matrix keeps blocking the
original constraints matrix, i.e. . Finally, the
updated dimensional BM is obtained
by deleting the last row and last column of

(48)

and the NC is given after convergence by (7c).
A block-diagram of the SUD-GSC algorithm is depicted in

Fig. 4. The algorithm is summarized in Alg. 6.

IV. ADDING/REMOVING A GROUP OF SENSORS/CONSTRAINTS

In a partially connected sensor network, some nodes are ac-
cessible only indirectly through some other nodes. In these net-
works a change in a single link can affect the activity of multiple
nodes. Here we discuss adding or removing multiple nodes or
multiple constraints to an LCMV-BF.
Two basic methods are used by the algorithms derived in this

paper. The first method is the block matrix inversion formula

TABLE I
COMPLEXITY OF BASIC OPERATIONS

[17] which is used for inverting an matrix based on the
already calculated inverse of an submatrix.
Two strategies can be adopted in the application of the block
matrix inversion formula in cases of sensor/constraint
updates. One strategy utilizes sequential updates as derived
previously. An alternative strategy uses the more general ver-
sion of the block matrix inversion formula. Namely, the inverse
of the sub-matrix is utilized in the inver-
sion of the matrix. The latter strategy results in more
cumbersome expressions. As both strategies involve equivalent
computational burden, the sequential strategy of multiple up-
dates is preferred.
The second method used in this paper, is the Householder

transformation step [20], which is used for rotating an orthog-
onal basis such that all of its new basis vectors but one are or-
thogonal to a predefined vector. A sequence of Householder
transformation steps can be applied for multiple sensor/con-
straint updates. The detailed derivation of these algorithms, as
well as their complexity analysis, is out of the scope of the cur-
rent contribution.

V. COMPLEXITY EVALUATION

In this section we compare the complexity of the straightfor-
ward LCMV-BF closed-form and GSC form implementations
with their updated form counterparts. Opposed to the straight-
forward BFs, the updating procedures rely on calculation results
of previous BFs, and therefore impose memory requirements.
We consider both computational complexity and memory re-
quirements. The computational analysis is based on the com-
plexity of basic operations [21] defined in Table I.
A summary of the complexity of the compared BF is given in

Table II. The proposed updating procedures reduce the compu-
tational complexity of the SF-LCMV implementation, which is

, to while increasing the memory
requirement to . Similarly, regarding the GSC im-
plementation, the updating procedures reduce the computational
complexity from in the straightforward
implementation to , while increasing the memory
requirements to . Please note that the computational com-
plexity of the LCMV and the GSC updating procedures is sim-
ilar, whereas the memory requirement of the GSC procedures
is much lower than its LCMV form counterparts. The number
of computations versus the number of sensors while the number
of constraint is fixed to is depicted in Figs. 5 and 6 for
the closed-form and for the GSC form implementations, respec-
tively. It is evident that the updating procedures impose a lower
computational burden. The number of computations versus the
number of constraints while the number of sensors is fixed to

is depicted in Figs. 7 and 8. Again, it is evident that
the updating procedures impose a lower computational burden.
It is interesting to note that the number of computations of the



MARKOVICH-GOLAN et al.: SENSORS/CONSTRAINTS IN LCMV BEAMFORMERS 1211

TABLE II
NUMBER OF COMPUTATIONS AND MEMORY USAGE OF VARIOUS CLOSED-FORM

AND GSC-FORM LCMV-BF

Fig. 5. Number of computations versus for LCMV-BF with .

CUI-GSC and the SUD-GSC is not monotonically increasing
with . This is attributed to the fact that the dimensions of the
BM are reversely proportional to the number of constraints. In
many applications, the number of constraints can be increased
with the number of available sensors. In Figs. 9 and 10 the com-
putational complexity is depicted versus the number of sensors,
while the number of constraints is set to . The com-
plexity reduction is evident from these figures as well.
The overall computational saving is proportional to the BF

update rate, whereas the memory complexity is fixed and con-
siderably low. In a dynamically changing network a substan-
tial computational saving is expected. Please notice that even
in the case of a single update of the BF, less computations are
required when using the proposed updating procedures than in
the straightforward recalculation.

Fig. 6. Number of computations versus for GSC-BF with .

Fig. 7. Number of computations versus for LCMV-BF with .

Fig. 8. Number of computations versus for GSC-BF with .
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Fig. 9. Number of computations versus for LCMV-BF with ,

Fig. 10. Number of computations versus for GSC-BF with .

VI. CONCLUSION

Procedures for adding/removing active sensors or constraints
to/from an existing LCMV-BF have been derived. Different
procedures were derived for both the closed-form and GSC-
form implementations. These procedures use the information
of the former BF and save calculations, at the expense of some
memory requirements. The computational burden of the pro-
posed procedures was analyzed and compared with the compu-
tational burden of their corresponding straightforward BF recal-
culation. It is evident from the comparison that the number of
computations in the proposed procedures is much lower than in
straightforward calculation, while the increase in the memory
complexity is considerably low. The proposed procedures are
beneficial in sensor network applications, where the dynamics
of the network and of the environment require frequent updates
of the BF, whereas the computational capability is often limited.

APPENDIX A
ALGORITHMS SUMMARY

In Section III we derived the SUI-LCMV, SUI-GSC, CUI-
GSC, and SUD-GSC algorithms. The derivation was based on

matrix algebra, the Woodbury identity, the block matrix inver-
sion formula and the Householder transformation. We use sim-
ilar methods to derive the rest of the algorithms, namely the in-
cremental or decremental updates of either the number of sen-
sors or the number of constraints for the GSC or the closed-form
implementations. We therefore omit the derivation of the rest of
the algorithms for brevity. Instead, in the following, we sum-
marize all the proposed low-complexity beamformer updating
methods. The sensor updating algorithms SUI-LCMV, SUD-
LCMV, SUI-GSC, SUD-GSC, and the constraint updating al-
gorithms CUI-LCMV, CUD-LCMV, CUI-GSC, CUD-GSC are
summarized in Algs. 1, 2, 5, 6, and Algs. 3, 4, 7, 8, respectively.

Algorithm 1: Summary of the SUI-LCMV procedure

input:

output:
begin

end

Algorithm 2: Summary of the SUD-LCMV procedure

input:

output:
begin

end
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Algorithm 3: Summary of the CUI-LCMV procedure

input:

output:
begin

end

Algorith 4: Summary of the CUD-LCMV procedure

input:

output:
begin

end

Algorithm 5: Summary of the SUI-GSC procedure

input:

output:
begin

end

Algorithm 6: Summary of the SUD-GSC procedure
input:

output:
begin

end

Algorithm 7: Summary of the CUI-GSC procedure
input:

output:
begin

end

Algorithm 8: Summary of the CUD-GSC procedure

input:

output:
begin

end
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