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Abstract—In this paper, we introduce a Markov-switching gen-
eralized autoregressive conditional heteroscedasticity (GARCH)
model for nonstationary processes with time-varying volatility
structure in the short-time Fourier transform (STFT) domain.
The expansion coefficients in the STFT domain are modeled as
a multivariate complex GARCH process with Markov-switching
regimes. The GARCH formulation parameterizes the correlation
between sequential conditional variances while the Markov chain
allows the process to switch between regimes of different GARCH
formulations. We obtain a necessary and sufficient condition for
the asymptotic wide-sense stationarity of the model, and develop a
recursive algorithm for signal restoration in a noisy environment.
The conditional variance is estimated by iterating propagation
and update steps with regime conditional probabilities, while the
model parameters are evaluated a priori from a training data
set. Experimental results demonstrate the performance of the
proposed algorithm.

Index Terms—Generalized autoregressive conditional het-
eroscedasticity (GARCH), hidden Markov model, recursive
estimation.

1. INTRODUCTION

HE generalized autoregressive conditional heteroscedas-
Tticity (GARCH) model is widely used in the field of
econometrics for volatility forecast derivation of economic
rates. This model, first introduced by Bollerslev [1] as a gen-
eralization of the ARCH model [2], explicitly parameterizes
the time-varying volatility by using both recent conditional
variances and recent squared innovations. GARCH models pre-
serve the persistence of the process volatility in the sense that
small variations tend to follow small variations and large vari-
ations tend to follow large variations. Incorporating GARCH
models with hidden Markov chains, where each state (regime)
of the chain implies a different GARCH behavior, extends
the dynamic formulation of the model and enables a better
fit for a process with a more complex time-varying volatility
structure [3]-[5]. However, a major drawback of such models
is that estimating the volatility with switching-regimes requires

Manuscript received September 28, 2005; revised October 15, 2006. This
work was supported by the Israel Science Foundation by Grant 1085/05 . The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. P. Abry.

The authors are with the Department of Electrical Engineering, Tech-
nion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
(e-mail: aari@tx.technion.ac.il; icohen @ee.technion.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2007.894422

knowledge of the entire history of the process, including the
regime path. Consequently, Cai [6] and Hamilton and Susmel
[7] proposed a Markov-switching ARCH model, which avoids
problems of path dependency in a noiseless environment. The
conditional variance in ARCH models depends on previous
observations only, so the Markov chain does not have to be
known for constructing the conditional variance for a given
regime. Gray [8] introduced a variant of Markov-switching
GARCH model relying on the assumption that the conditional
variance given current regime is dependent on the expectation
of the previous conditional variances rather than their values.
Accordingly, the conditional variance depends on some finite,
state dependent, expected conditional variances via their con-
ditional state probabilities. Klaassen [3] proposed modifying
Gray’s model by manipulating the current regime and all avail-
able observations while evaluating the expectation of previous
conditional variances. A different method for reducing the
dependency of the conditional variance on past regimes has
recently been proposed by Haas, Mittnik, and Paolella [4].
Accordingly, a Markov chain governs the ARCH parameters
while the autoregressive behavior of the conditional variance
is subject to the assumption that past conditional variances are
in the same regime as that of the current conditional variance.
Gray, Klaassen and Haas er al. developed their variants of
Markov-switching GARCH models for improved volatility
forecasts of financial time-series under possible existence of
shocks. They assumed that a process is observed in a noiseless
environment so that its past observations provide a complete
specification of its current conditional variance, for any given
regime.

Recently, GARCH models have been employed for mod-
eling speech signals in the time-frequency domain [9]-[11].
Speech signals in the short-time Fourier transform (STFT)
domain demonstrate both “variability clustering” and heavy tail
behavior similarly to financial time-series [11]. Motivated by
these characteristics, it was proposed to model the conditional
variance of speech signals in the STFT domain by a complex,
K -dimensional GARCH model, with statistically independent
elements (given past information) sharing the same GARCH
specification. This time-frequency GARCH (TF-GARCH)
model has been shown useful for speech enhancement applica-
tions, but it relies on the assumption that the model parameters
are time-invariant. In [12], a GARCH model has been utilized
in the time domain for speech recognition applications. The
model parameters, characterizing the speech phonemes, are
assumed speaker independent and time-varying. It was shown

1053-587X/$25.00 © 2007 IEEE



3228

that estimating the GARCH specifications for each speech
segment and using the parameters as part of the signal charac-
teristics, speech recognition performance can be improved.

Inthis paper, we introduce aMarkov-switching time-frequency
GARCH (MSTF-GARCH) model which exploits the advantages
of both the conditional heteroscedasticity structure of GARCH
models and the time-varying characteristics of hidden Markov
chains. Modeling probability density functions of speech sig-
nals by utilizing hidden Markov models has been found useful
in speech recognition applications [13]-[15], and modeling the
speech spectral coefficients as hidden Markov processes with a
probability density prototype in each frame was applied to the
problem of speechenhancement[16], [17]. Here we model the ex-
pansion coefficients of nonstationary random signals in the time-
frequency domain as multivariate complex GARCH processes
with Markov-switching regimes, and obtain a necessary and suf-
ficient condition for the asymptotic wide-sense stationarity of
the model. A corresponding recursive algorithm is developed for
signal restoration in a noisy environment. The conditional vari-
ance is estimated by iterating propagation and update steps with
regime conditional probabilities. The model parameters are esti-
mated from a training data set prior to the signal restoration using
maximum-likelihood (ML) approach, and the number of states
is assumed to be known. We show that the derivation in [18] of
bounds on the mean-square error (mse) of a composite source
signal estimation is applicable for obtaining an upper bound on
the mse of asingle step MSTF-GARCH estimation. Experimental
results demonstrate the improved performance of the proposed
algorithm forrestoration of MSTF-GARCH process compared to
using an estimator which assumes a stationary process and com-
pared to using an estimator which assumes a smaller number of
regimes than the process actually has. Furthermore, it is demon-
strated that the squared absolute values of speech coefficients
in the STFT domain are better evaluated by using the MSTF-
GARCH model than by using the decision-directed approach.

This paper is organized as follows. In Section II, we introduce
the Markov-switching time-frequency GARCH model and obtain
anecessary and sufficient condition for its asymptotic wide-sense
stationarity. In Section III, we address the problem of signal esti-
mation fromnoisy observations. In SectionIV, we derive anupper
bound on a single estimation step mse. In Section V, we address
the problem of model estimation. Finally, in Section VI we pro-
vide some experimental results which demonstrate restoration of
MSTF-GARCH process from noisy observations, and estimation
of conditional variances and squared absolute values in the STFT
domain from noisy speech signals.

II. MARKOV-SWITCHING TIME-FREQUENCY GARCH MODEL

In this section, we briefly review the TF-GARCH model
[11], and introduce a new time-frequency GARCH model with
Markov-switching regimes, which allows further flexibility in
the formulation of the time variation of the conditional variance.

A. Time-Frequency GARCH Model

Let {Xu[t=0,...,T—1,k=0,...,K—1} be the
coefficients of a time-frequency transformation of a dis-
crete-time signal x (e.g., STFT coefficients), where ¢ is
the time frame index and k is the frequency-bin index. Let
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X, & [Xto0,--- ;Xt,K—l]/ be the vector of spectral coeffi-
cients at time frame £, let X7 = X7 2 {X,|t=0,...,7}
represent the set of spectral coefficients up to time 7, and let
Atke|r =) {IX:x|*| X7} denote the conditional variance of the
spectral coefficient at time-frequency bin (¢, k), given the clean
spectral coefficients up to time 7. Let {V;} € C¥ be a complex
Gaussian random process with V; ~ CN (0, Ik ), where Ik is
a K-by-K identity matrix. A K-dimensional time-frequency

GARCH model of order (p, ¢), is defined as follows [11]:

Xtk :\/)‘tk|t—1v;5k7 k=0,....,K -1
)]

q P
Aje—1 =C-1+ > aiXe i 0OXF + Y Bidejp—jo1
i=1 j=1

(2)
where 1 denotes a vector of ones, ® denotes a term-by-term
multiplication and * denotes complex conjugation. The condi-
tional variance vector, Ay, = F {X; ® Xj|X*~1}, referred
to as the one-frame-ahead conditional variance [11], is a linear
function of the coefficients’ past squared values and conditional

variances, where
C>07 051207 i:17"'7q7

Bi 20, j=1,....p 3)
are sufficient constraints for the positivity of the conditional
variance [1]. The time-frequency GARCH has been introduced
in [9] for modeling speech signals in the STFT domain, but the
parameters of the GARCH model are assumed time invariant.
Extending this model such that the model parameters may vary
with time introduces additional flexibility in the model formula-
tion, which may result in better characterization of speech sig-
nals and improved restoration in noisy environments.

B. MSTF-GARCH Formulation

Let S; denote the (unobserved) state at time ¢ and let s; be
a realization of Sy, assuming S; is a first-order Markov chain.
Let 7t £ {X* S'} denote all available information up to time
t, which contains the clean signal coefficients and the regimes
path up to time ¢, S* £ {so,...,s,}. Denote by Atk|t—1,5, =
E{|X[*|Z"7", 5, } the one-frame-ahead conditional variance
of the spectral coefficient X;;, given the information up to time
t — 1 and the chain state s;. We assume that the spectral co-
efficients X, are generated by an m-state Markov-switching
time-frequency GARCH process of order (p, ¢), denoted by
Xy ~ MSTF — GARCH (p, q), which follows:

th = \/ )‘tk‘t—l,sf‘/tk7 k= 07 B '7K -1 (4)

and the one-frame-ahead conditional variance evolves as fol-
lows:

q
Att—1,5, = (s, 1+ Z s, Xi—i © X7,

i=1

P
+3 BrsMjiimimtis, )

=1
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where

G >0,
1=1,...,q,

o7 Z 07 /Bj,s Z 0

j=1...,p, s=1,...,m 6)
are sufficient constraints for the positivity of the one-frame-
ahead conditional variance. It follows from (4) and (5) that the
conditional density of the coefficients depends on past values
(through previous conditional variances) and also on the regime-
path up to the current time. As considered in previous works
on TF-GARCH, we assume that the model parameters are fre-
quency-invariant. This restriction can be easily relaxed for the
case of frequency (or subband) dependent parameters, i.e., (x s,
@i s, and 3; i 5, but the complexity of the model estimation
then grows rapidly (see Section V).

GARCH models provide a rich class of possible parametriza-
tion of conditional heteroscedasticity (i.e., time-varying
volatility) and the hidden Markov chain allows these GARCH
formulations to switch along time. Volatility persistence natu-
rally arises in a single-regime GARCH model. However, the
existence of a Markov chain with different GARCH parameters
allows the process to switch between regimes of different
volatility formulations and different levels of volatility.

C. Stationarity of an MSTF-GARCH Process

The conditional variance of a GARCH process, and in partic-
ularof aMarkov-switching GARCH process, changesrecursively
over time. Consequently, asymptotic wide-sence stationarity is
required to ensure a finite second-order moment [3], [4], [19].
Necessary and sufficient conditions for the asymptotic station-
arity of two variants of GARCH models with Markov-switching
regimes have been derived in [19]. Those models generalize the
models of Klaassen [3] and Haas et al. [4], but they both differ
from our MSTF-GARCH model, which is a multivariate, com-
plex valued process that entails the regime path for the construc-
tion of the conditional variance from past observations. A neces-
sary and sufficient condition for asymptotic wide-sense station-
arity of an MSTF-GARCH process has been derived in [20]. For
the completeness of this paper we briefly summarize these results.

Assuming a stationary Markov chain with stationary prob-
abilities 7 = p(S; = s), the unconditional variance of the
process can be calculated using (4) and (5):

E{X,0X;} =Y m,E{X,©X]|s}

=Y 7 {16, } @)

where

q
E {At|t71,si} = (s, 1+ Z a; s, B {Xt—q', © X:_i|3t}

i=1

P
+ Z Bis F {At7j|t7j71,5t_j ls:} (8)

—
and J

E{Mij—icis,_lse) = Zp(st—i|5t)

xXFE {)\t—7‘,|t—11—1,s,,,,} NG
Note that £/ {/\m_l,gf } denotes the expected value of the con-
ditional variance under the regime S; = s, but E/ {/\t|t—1, s, |}
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denotes a conditional expectation of the conditional variance at
time ¢ where the active regime at that time is unknown. Since
no prior information is given, we have

E {Xt—i, ® Xf_i|8t} = Z p (st—i|3t) E {At7i|t7i71,st_i}

St—i

(10)
and consequently we obtain [20]
E {At|t—1,si} = Cst]- + Z Z (ai,st + /Bivst)
=1 s¢_;
XA, E Mo} (D

where r £ max{p, ¢}, o s, 20Vi>gq, Bis, 20Vi>p,
and A is the transition probabilities matrix, i.e., {A}, i L4, =
p (St = j|Si—1 = i). Define m-by-m matrices K;,7 = 1,...,r
with elements
{Ki}os 2 (s + fi) {47}, s.d=1....m (12)
s ’ P 3,8

and an mr-by-ms matrix as follows

K1 Ko K,
I, 0 0
0 In
vE | (13)
0 ... 0 I, O

Let p () denote the spectral radius of a matrix, i.e., its largest
eigenvalue in modulus, and let ® be an m-by-m square matrix
built from the mz-by-mr matrix (I — ¥)~" such that {®} =
{(l — \I/)fl}'_, i,j = 1,...,m. Then a necessary and suf-
ij

ficient condition for asymptotic wide-sense stationarity of an
MSTF-GARCH process is p (V) < 1, and the asymptotic co-
variance matrix of the process is then a diagonal matrix (see [20]
for a detailed proof):

lim B (X, X[} = (7®¢) I (14)
where ¢ = [(1,...,(n]’s T is the row vector of the stationary
probabilities of the Markov chain, and ()H denotes the Hermi-
tian transpose operation.

This stationarity condition is a necessary and sufficient con-
dition for the existence of a finite second-order moment of the
process. It implies that in some regimes (but not in all of them)
the conditional variance may grow over time (i.e., ), a; s +

>_; Bj.s > 1 for some states s) but still the unconditional vari-
ance can be finite [19], [20].

III. RESTORATION OF NOI1SY MSTF-GARCH PROCESS

In this section, we develop a recursive algorithm for the
restoration of MSTF-GARCH processes observed in additive
stationary noise.

Ahidden Markov processis adiscrete-time finite-state Markov
chain observed through a memoryless invariant channel, where
the chain state is assumed to be hidden but the transition prob-
abilities between sequential states are assumed to be known.
As a consequence of the memoryless channel, the conditional
density of the observed signal at time ¢ (say X;) given the chain
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states;, depends only on the given state and not on previous
observations, i.e., the conditional density of a hidden Markov
process (HMP) realizes p(X¢|s¢, X¢—1, Xi—2,...) = p(Xe|st).
Combining GARCH models with hidden Markov chains, where
each state is assumed to have a different GARCH formulation,
introduces further complexity when trying to forecast or estimate
the process, since the conditional variance of the process evolves
as a function of previous conditional variances, as implied from
(5). Consequently, the conditional density depends on the en-
tire history of the process, i.e., past values and active states. To
avoid this problem, several variants of GARCH processes with
Markov-switching regimes have been proposed, e.g., [3], [4],
[8]. These models formulate differently the conditional variance
at any regime as dependent on past signal observations only.
However, these variants of Markov-switching GARCH models
have been developed for the purpose of forecasting volatility of
financial time-series, assuming that the process is observed in a
noiseless environment, and that all past clean signal values are
given.

We use an MSTF-GARCH (1,1) model, as defined in (4)
and (5), to model complex, nonstationary random signals
and we develop a recursive signal estimation algorithm for
restoring the clean signal and its second-order moment, from
noisy observations. The order (1,1) is chosen for computational
simplicity since higher (p, ¢)-orders imply strong dependency
of successive conditional variances. Therefore, p = ¢ = 1 is
generally assumed for the applications of Markov-switching
GARCH modeling, e.g., [3], [4], [6]-[8]. Let { X1} and { Dy }
denote the spectral coefficients of signal and uncorrelated
additive noise signal, respectively, and let Yy, = Xix + Dy
represent the observed signal. Let X, be a K -dimensional com-
plex-valued stochastic process, which evolves as an m-state
first-order MSTF-GARCH, i.e., X; ~NMSTF-GARCH(1,1),
and let D; represent a K-dimensional complex Gaussian
random noise, D; ~ CA(0,R%), with known diagonal
covariance matrix R? = diag{e?}. We assume that all
MSTF-GARCH model parameters are known, i.e., the initial
regimes probability 7(°), the probability transitions matrix A,
and the GARCH (1,1) parameters in each of the m regimes. Let
(b £ {W(0)7A7<17" '7<m7a17 . "7am7/817‘ t ﬂm} be the set
of parameters which specifies the model, where for a first-order
process we denote 2 aq,s and [ 2 B1,s. In practice, the
model parameters ¢ are estimated from a set of clean training
signals as generally done with hidden Markov models [13],
[16], [17], [21] while the covariance matrix of the noise process
can be estimated using the minimum statistics [22] or the
minima controlled recursive averaging algorithms [23], [24].
The problem of model estimation is addressed in Section V.

The spectral restoration problem is generally formulated as
deriving an estimator X, for the spectral coefficients, such that
the expected value of a certain distortion measure is minimized.
We develop a recursive estimator for the signal’s spectral co-
efficients and for their absolute squared values in the sense of
minimum mean-square error (mmse), and we then extend this
framework to signal restoration in the sense of mmse of the
log-spectral amplitude (LSA), which is often used in speech en-
hancement applications, see for instance [23], [25].

LetY™ = Y 2 {Y,|t = 0,...,7} be the set of observations
up to time 7. The causal mmse estimator of the coefficients X;
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given the noisy observations up to time ¢ is obtained as follows:

E{X ¥} = p (V") E{Xls0, V'}

St

15)

Denote the state dependent, one-frame-ahead conditional co-
variance matrix of the clean signal as

RI £ B{X,X[|s;,T"7"}. (16)
Following the model formulation this covariance matrix is a
function of R, . and X;_; only. However, the clean signal
values are usually unavailable, nor the sequence of active states,
so the evaluation of (16) requires the whole available observa-
tions. To overcome this problem, we assume that given current
regime, past estimated conditional covariances are sufficient sta-
tistics for the conditional variance estimation [10]. Accordingly,

given the set of estimated one-frame-ahead conditional vari-
ances At = {S\t|t,1’5t|5t =1,.. .,m} which manipulates the
observations up to time ¢ — 1, we may use the following signal
estimator:

X, =3 p(silhe, Vo) E{Xlse. B2 v} a7
where under a Gaussian model
R . . -1
E{Xu|si, B, Yo} = BE, (B2, + RY) Y, as)

Note that R? is a K -by-K diagonal matrix (since {V;,} are sta-
tistically independent) with the estimated state-dependent con-
ditional variance Ay;_1 s, on its diagonal. This state-dependent
conditional variance can be recursively estimated in the mmse
sense by calculating its conditional expectation under s; given
the observation Y;_; and the previous set of estimated condi-
tional variances:

;\t|t—1,st =3 {’\t|t—1,5t |56 A1, Yoo ¢}
=C, 14+, E {Xt—l © Xj_ylse, Avmr, Yo ¢}
+ Bo B { N apas, s e, Yooiio) . (19)

The conditional second-order moment in (19), can be obtained
by

j\t—1\t—1,st =90 {Xt—l O X |5, Aro1, Yoo ¢}

= Zp (St_1|8t,At—1:Yt—1; ‘15)

St—1

x E {Xt—l ® Xr_1|5t—17StyAt—hYt—l;‘;b}

ZP (St—1|3t7]\t—17Yt—1§ ¢)

St—1

. .
X E{Xt—l O XG_ql8t—1, Ae—1jt—2,5,_15

Yt—1§¢}

v (St—1|5t7 Ara, Yooas 45) At—tjt—1,5, -

St—1

(20)
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The expected one-frame-ahead conditional variance in (19),
given the one-frame-ahead regime, can be obtained by

At71|t72,st =3 {/\tfl\t72,5t_1|5t:At—1>Yt—1;¢}
= Z p (5t71|3t7 Atfla Yoo §b)

St—1

x E {/\t—1|t—2,Si,1 |st—1, s¢, Ai—1; ¢}
= Z p (st—1|3t> A1, Y q; (15) At71|t72,st_1-

St—1

21

The third lines in (20) and in (21) rely on the fact that given
all observations up to time ¢ — 1 and given the state s;_1, the
second-order moment of the process at that time, and also its
conditional variance, are independent of any future state. More-
over, notice that Ay ,, and A 5, , in (20) represent the ex-
pected second-order moment of the process based on informa-
tion up to time ¢, given the chain state at the same time, and given
the next state, respectively. Similarly, Ay;—1 5, and Agjp_1 5, ,
in (21) represent the expectation of the one-frame-ahead condi-
tional variance at time ¢ given the chain state s;, and given the
chain state at the next time step, respectively.

_ The mmse estimation of the process’ second-order moment
/\t|t,st in (20) given the estimated one-frame-ahead conditional

variance of the same regime xt\tfl,st (21), can be obtained by
;\t|t,st =K {Xt © X7|s¢, Xt\t—l,sHYt}
=t (Rz + R -
x [02 + Rz, (B, + Rd)_l (Y ® Y;*)] (22)

for s; = 1,...,m, similarly to the method in [10] applied to
the case of a single-regime spectral GARCH. Following the no-
tation in [10] we call (22) the update step as it updates the es-
timation of the signal’s second-order moment at time ¢ from its
estimated one-frame-ahead conditional variance, using the new
observation Y. Substituting (20), (21) and (22) into (19) we
obtain the propagation step which propagates ahead in time to
obtain a conditional variance estimation at the next time, ¢ + 1
(assuming regime s;1), using the available information up to
the current time ¢

Aitiftsir = Coopn L s Atjtsey + Bsrn Atji—1,6,,, - (23)

for s;40 = 1,...,m.
LetAté Ao,Al,...

timated conditional variances up to time ¢, then we can manip-

ulate all previous estimations to recursively evaluate the proba-

,At} be the set of the recursively es-
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bility p (st,1|st, ALY, ¢) in (20) and (21) by
p (Stfl |St7 At_l; thl; ¢)
D (St—1|At717 Yi_1; ¢>) As,_y s,
= - (24)
p (5t|At_17Yt—1; ¢>
where
p (st|At_17 Yt—l; d’) = Z p (st—l |]\t_17 Yt—l; ([5) a5t—1,St .
St—1
(25)

The conditional state probability at the right of (25) can be ob-
tained by

P (Stlf\tth;rﬁ)
b (Yo, silAt; )
b (Yt|f\t;¢>
b (Yt|st7 ;\tlt—l,si> P (3t|At_17Yt71§ <Z>)

- ; b (Yt|3t75\t|t—1,s,,) p (Stmt_lv Yo ¢) 0

where b(-|-) denotes a conditional density function. Specifi-
cally, b ( Y¢|s¢, Agje—1,5, ) is the observation conditional den-

sity which is a complex normal distribution with zero-mean and
R + R covariance matrix

1

b(Yt|3t~,5\t|t—1,si) =07
wh | R, 4+ R

R -1
X exp {Yf’ (R;@ + Rd) Yt} oY)

Computing the conditional density b (Yt |st, ;\t|t_17si tends
to be numerically unstable for large values of K since the diag-
onal values of its covariance matrix (i.e., /\t|t_1,st) are typically
of the same order of magnitude. Therefore, b ( Y¢|s¢, ;\t|t_17si)

tends to zero or infinity exponentially fast as K increases. It
is therefore useful to recursively evaluate a normalized density

b (Yt|st7 Xt|t—1,si) as follows: see (28) at the bottom of the
page, fork = 0, ..., K —1 and substitute it into (26). As can be
seen from (26), this normalization of b (Yt|st, ’\t|t—1,st> does

not affect the value of p (st|fxt, Y
The causal one-frame-ahead conditional variance and
the conditional second-order moment of the process can be

6 (Yrt,(); s 7Yt]:;|3taﬂt|t—1,si) =

(28)
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TABLE 1
VECTOR FORM OF THE RECURSIVE MSTF-GARCH SIGNAL ESTIMATION

Initialization:
p-1(so) =

A1 k-2,50 = A-1,k|-1,50 = Omx1,

fort=0,...T -1

Atk|t—1,s¢

(+) (Atk|t—1,sg +o071),

By édiag{b (Yelse, Meje—1,6,) }

pi(st) = Bi pe—1(se) [1'Bs pe—1(se)] ™"
pi(se+1) = A'pe(st)

fori=1,..
S‘tk\iyswl =C; itk\t,s“
j‘ik\i*1,5t+1 =C th\t—l,sty
Rijes = B2, (B2, + B Y,
k=0,.,K—1

th = p;(st)th\t,st:

k=0,..

:C+a®5\t 1,k[t—1,s¢ +ﬁ®5\t 1,k|t—2,8¢5
Xikjt.sr = Aeklt—1,8, © [Ukl + (Atlc|t 1o [Yerl?) () (Aikjeonee +0k1)]
k :07"'7

b (Ye|se, Xt|t—1,st ) = WﬁK\R; + Rd|71 exp {

,m: Cgi) =a® ® pt(St)/pt(StJrl = Z)
k=0,.., K—

k=0,...,K—1

K —1

k=0,.,K—-1

K-1

~ -1
Y/ (B3, + Ry Yo}, si=1,..m

obtained by
{/\t|t71,St |5t-, ]\r}

(s Ye) £
= Zp (st|A Yt) ;\ tlt—1,s,
> (A V) £

(29)

(30)

while a state smoothing (i.e., noncausal state probability esti-
mation) for the path-dependent MSTF-GARCH model has been
derived in [26] and may be employed for noncausal estimation.

The causal recursive mmse signal restoration algo-
rithm, presented in (17) to (26), has a compact vector
form with respect to the regimes vector. Let s; [S: =
1,...,8 = m] be the regimes vector at time ¢, let

N ~ !/
pulsr) 2 [p(Sr=1ALYL ) p (S =mlAL Y|
be the probabilities of the regimes vector s, conditioned
on all observations up to frame ¢. Let C; be a regimes
probability matrix at time ¢ conditioned on the next
regime and all available observations up to time ¢, i.e.,
Ctij = p(St = i|St+1 :j7 ]\t,Yt), Z“] = 17 e, M. Let
a and B represent the vectors of the m regimes’ GARCH
parameters, i.e., @ = [a1, ..., a,,] and 8 £ [[)’1, ooy Om]’. Let

Atk|7'1,s,.2 I:AtleIY Sry=1r--- )\tk|7'1, Sry —m:| bean m x 1
vector of the kth index estimated conditional variances based
on observations up to time 71, and the corresponding m regimes
vector s, . Denote by a(*) and c§” the ith column of matrices A
and C}, respectively, and let (<) denote a term-by-term division
of two vectors. A step-by-step vector form of the causal signal

estimation procedure is described in Table I.

The algorithm, summarized in Table I, estimates both the
spectral coefficients and their conditional variance in the mmse
sense. A more general signal enhancement problem is formu-
lated as minimization of the following distortion measure:

B{|f (Xu) - (3D

where f(X) is a Borel integrable function. The estimator can
be found from

FEwlPy'}

f (th) =E{f(Xu)|V'} (32)

where
E{f (Xu) |V} = "p(Se = s:dV") E{f (Xer) |5, D'}
(33)

The log-spectral amplitude mmse estimator, obtained by sub-
stituting f (X') = log | X| into (32), is of particular importance
in speech enhancement applications, see for instance [23] and
[25]. The LSA estimator [25] is given by

1 Xo| = exp (E {log | Xux ||\, Yie }) = G (ke 92 |Yir ]

(34
where
& Atk 2 Yl a Ykt
ftk tQk7 Ytk O_tzk Q9tk — 1 T ftk (35)
and
¢ 1 /OO et
G(,9) = 1_i_fexp 2/, dt | . (36)

&1 and vy, represent the a priori and a posteriori SNRs, respec-
tively, [27].
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By substituting (34) into (33), and combining the result with
the phase of the noisy signal [25], we obtain the spectral coeffi-
cient estimator in the mmse-LSA sense

N . A p(s:|¥")
Xk = Y H G (ftk,st ) 19tk,si) 37
where
oy )‘ c|t,s a 3 s
i £ 2Ly, £ TS g
Otk 1+ &k,s,

and p (s¢|Y") is recursively estimated using (26).

IV. ESTIMATION EFFICIENCY

In this section we analyze the mse of a one step ahead mmse
estimation using the proposed recursive algorithm. The recur-
sive formulation of the MSTF-GARCH yields an accumulated
error in the estimation of the variance and the signal. How-
ever, for each regime and in each frame the algorithm evalu-
ates the conditional variance as a weighted sum of previous es-
timated conditional variances and squared absolute values (20),
(21). These weights are proportional to the conditional densi-
ties b (Yt|st7 ;\t|t_175t in (26). Consequently, an over estima-
tion of the conditional variance on a specific frame can be fol-
lowed in the algorithm by giving a high probability (i.e., higher
weight) to a regime with small parameters which compensates
the previous over estimation. Similarly, an under estimation of
the conditional variance can be compensated by giving a high
probability to a regime with large parameters.

Assume that the process is observed perfectly (without noise)
up to time ¢ — 1 and that the regime path is known up to that
time. Then, )\t—1|t—2,s,,,1 can be calculated by (5). Following
Ephraim and Merhav [18] which derive bounds for the mse of
a composite source signal estimation, we assume that: (i) the
Markov chain is stationary and the necessary and sufficient con-
dition for a bounded variance is satisfied; (ii) )\t“,st is square in-
tegrable with respect to b (Yt|/\t|t_1,st) and b (Yt|At|t_1,gt);
and (iii) the regime transition probabilities are positive, i.e.,
aij Z Amin > OVZ,j = 17"'7m

The one-step-ahead mmse estimator (17) is unbiased in the
sensethat E<{ X, 4 = {X}, and following [18] we obtain an
upper bound for the variance of the one-step-ahead estimation
error, assuming that the process is observed with an additive,
independent stationary noise. The one-step-ahead mse is given

by
24 X « \7
€y = ?trE { (Xt - Xt) (Xt - Xt) } (39)
where the signal estimator X, follows:
Xt :E {Xt|It_l7Yt}
=F {Xt|5t—17At71|t—2,st_1>Xt—1-,Yt}
== E {Xt|At~, Yt} . (40)

Under the above assumptions, the mse can be written as [18,
eqgs. (13)-(17)]

(41)
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where

— a1
p2 & EtrE {cov (X¢|A¢, 56, Y4)}

1
= ?tI'E {COV (Xt|At|t—1,st s Sty Yt)} (42)

— a1l
77t2 éE Z E{p(5t|3t—1;At;Yt)
S #5¢
X p(§t|3t—1;At:Yt)g(stvgtaAt;Yt)}
43)
and
. Al o o
g (5¢,86, M, Yy) = Etr{ (Xt|t.,si — Xt\t.&i)
N R H
X (Xt\t,st - Xt|t,§t)
=g (St7 gh At|t—1,st ) At]t—l,EUYt) . (44)

The state probabilities in (43) can be evaluated using (26)
(Yt|3t> Ate-1 st) (si_q,s,

(8t|8f 1,A17Yt) Zb (Yt|5t /\t|t 1 si) As,_1,s, )
and the signal estimate glven the state s; is given by

Xijs, = Wo, Y4 (46)

where W, is the conditional Wiener filter: W,, £

R (R? + Rd) Substltutlng (46) into (44), we have

g (3t7 §t7 At? Yt) = YH (WSt - Wgt) (WSt - Wgt) Yt

?

Hyp2
?Y W*t St
The one- step -ahead mse, €7, is decomposed into two positive
terms, /Lt and nt The first is the mse of the estimator X,|, 5
which relies on knowing the true regime at time ¢, and, there-
fore, it is the optimal estimator in the mmse sense. This term is
evaluated by substituting (42) into (46)

— 1
2 = }trZasplstWSiRd.

(47)

(48)

St

The second term 77_t2 is a weighted sum of cross error terms which
depend on pairs of the process regimes. This term is difficult to
evaluate, but it is upper bounded by [18, eqs. (18) and (23)]

_L? S Z amm Si + Ist (St)) (49)
St?ést
where
ISt (§ ) Z tr{ *tStQSi}

St;'fst
X (IRA (50530 | - 1Qs, |72 - 1Q5, I

tr {W2, Rx(s,5:)}
i t}I‘{ *foQst}

), A >0 (50)
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[18, egs. (31)-(39) and (54)—(60)], )5, denotes the covariance
matrix of the noisy signal given the regime s;, and Ry (s¢, 5¢)
is defined by
Ry (s0,50) 2 P +(1-0) Q5 (51)
In the derivation of (50) it is assumed that Ry (s¢, $¢) is pos-
itive definite [18]. Since @, is a diagonal matrix with positive
eigenvalues, Ry (s;, $¢) is positive definite for any 0 < A < 1.
Substituting (50) into (49) and using the diagonality of the co-
variance matrices, we obtain an upper bound for the cross error
term

— 1
= a%ninK
X Z (tr {Wszﬁthi} ) |FlA (St7§t) | ) |QSi|7)\
st #£5¢
X |Q§t |)\71 + tr {WiétRX (St7 gt)}) )
0<A<1. (52)

Itis worthwhile noting that our mse analysis follows the analysis
in [18] but, the latter deals with a memoryless regime-switching
process and a Toeplitz covariance matrix, whereas in our case
both assumptions do not hold.

V. MODEL ESTIMATION

In this section, we address the problem of estimating
the model parameters ¢ = {1r(0) A Gy Gy 1y e,
Qs B, - - -5 Bm }. The ML estimation approach is commonly
used for estimating the parameters of GARCH models (e.g., [1],
[31, [28]) and also for estimating the transition probability ma-
trices (e.g., [21]). The model parameters are estimated from a
training data set of V clean signals of lengths 7,,n = 1,..., N.
Let {XE")

} denote the spectral coefficients of the nth clean
training signal and let X7 £ {XE")|t =0,...,

} The
conditional distribution of the vector Xg") given its past ob-

servations is a mixing of zero mean Gaussian vectors with
diagonal covariance matrices Rgf(n)

b (Xgn)|Xt—1,(n)) - Zp (st|Xt—1,(n)>

xb (Xﬁ")|st, R§;<">) . (53)

Given a set of model parameters ¢, the diagonal covariance
matrix of the density b (X( |s,,R5’( )) can be recursively
estimated by using the estimation algorithm introduced in
Section III, where the signal observations are known in this
case. Assuming that the process is asymptotically wide-sense
stationary, and that the training sequences are sufficiently large,
the initial state probabilities, 1r(0), and the initial conditional
variance, Agj—1,s,, have negligible contribution to the total
likelihood. Therefore it is convenient to choose in the following
optimization problem the stationary values as the initial values,
ie., /\0k| lso = <I>( as the initial conditional variances, and
(0) = 7 as the initial state probabilities.
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The conditional log-likelihood of the training set is given by

T,—1
L) =3 " logh (XMt 1)

n  t=0

(54)

Using the constraints in (6) and imposing A to be a transition
probability matrix, the ML estimates of the model parameters ¢
can be obtained by solving the following nonlinear constrained
optimization problem:

max£(¢)
®
s6.6>0, 6 >0, >0,
M
» aij=1 Vie{l,...,m}. (55)
j=1

For a given parameters set (,5, the sequence of state dependent

conditional variances {At can be evaluated recursively ac-

cording to the method described in Section III and so is the set
of conditional state probabilities p (s;|X*~1). The conditional
log-likelihood (54) can then numerically maximized under the
linear constrains of (55) as specified in [3], [8] or by using se-
quential quadratic programming [29], [30]. The computational
complexity required for the model estimation is much higher
than that required for a single-regime GARCH model since m?
parameters are to be estimated for the transition probabilities
matrix and in addition 3m GARCH parameters are to be eval-
uated. However, using the Markov-switching model, the opti-
mization problem needs to be solved only once, prior to the
restoration procedure. It is well known that the optimal set of
parameters, ¢, is not necessarily unique in a Markovian model
[21] and in addition, the numerical optimization solution may
only guarantee a local maxima of the likelihood function. How-
ever, the flexibility of the model enables better results than that
achievable with a single-regime GARCH model [3], [4]. This is
also shown in our simulation results, both for MSTF-GARCH
processes and for speech signals.

VI. EXPERIMENTAL RESULTS

We demonstrate the performance of the proposed algorithm
when applied to restoration of noisy MSTF-GARCH signals,
and to estimation of conditional variances and squared absolute
values of speech signals in the STFT domain.

A. MSTF-GARCH Signals

The proposed model estimation and signal restoration algo-
rithm has been applied to MSTF-GARCH models of 3 and 5
regimes, degraded by additive independent white noise with
0 to 15 dB input signal-to-noise ratio (SNR). For each state
space (m = 3,5), a set of 20 stationary models have been
simulated with uniformly distributed parameters on the interval
(0,1]. For each model, the parameters, ¢, are estimated from
a set of 10 training signals, each of time length 7" = 100 and
dimension K = 100. The estimated parameters are employed
for restoration of a set of test signals containing 20 noisy sig-
nals of the same size, and basically four types of estimated vari-
ances are compared by incorporating them into the signal’s re-
cursive mmse estimator of (17) and (18). The “theoretical limit”
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is referred to as the estimator which exploits the true condi-
tional variances, /\t‘t_l,st, of the simulated process. This esti-
mator is the optimal estimator in the mmse sense and its per-
formance is compared with those of the recursive estimators.
The “MSTF-GARCH, true model ” is referred to as the recursive
signal estimator, described in Section III, which manipulates
the true parameters set, ¢, and the “MSTF-GARCH, m = i”
estimator employs a set of estimated parameters, ¢A> assuming
that the model has 7 regimes. For Ehe “MSTF-GARCH, m = 1"
estimator, the set of parameters, ¢, is estimated using the ML
approach as described in Section V. The performance of our
algorithm is also compared with that of an estimator that as-
sumes a “constant variance’” process. For that estimator (only),
the vector of “stationary” variances, are evaluated for each noisy
signal from the corresponding clean signal.

Fig. 1(a) shows the SNR improvement obtained by using the
different estimators, when applied to 3-state MSTF-GARCH
signals. It can be seen that even when assuming a small number
of regimes, still the MSTF-GARCH estimator outperforms the
“constant variance” estimator, and the results achieved by as-
suming 3 or 5 regimes are comparable to those obtained by using
the true model parameters. Fig. 1(b) shows estimation results for
5-state MSTF-GARCH processes, under the assumption of 1, 3,
5, or 7 regimes. The estimation performances improve with the
increase of the number of assumed regimes, but using a larger
number of regimes than the true number (e.g., 7 instead of 5 or
5 instead of 3) yields less accurate results.

The time-varying behavior of the recursive estimator is
demonstrated for a 5-state MSTF-GARCH signal degraded
by additive white noise with 5 dB SNR. Fig. 2 shows trace of
the instantaneous output SNR for each time frame, obtained
by the optimal estimator, the recursive estimators with pre-
sumable 1 or 5 regimes (i.e., “MSTF-GARCH, m = 1,5")
and a “constant variance” estimator. The varying volatility of
the process implies time-varying performances for all those
estimators. Nevertheless, under the assumption of five regimes
our recursive estimator follows the optimal estimator with a
relatively small degradation in performance. The single-regime
estimator yields comparable results as the 5-regimes estimator
for frames with large input SNR. However, for frames with low
input SNR the results obtained by the single-regime estimator
are comparable to those obtained by the “constant variance”
estimator.

B. Speech Signals

The idea of using different states for the enhancement of
speech signals was first introduced by Drucker [31]. He as-
sumed five categories of speech signals, comprising fricatives,
stops, vowels, glides, and nasals. The application of HMMs for
speech enhancement requires a higher number of states [16],
[17] since these models allow only a single density, or a finite
set of mixture-densities, for the spectral coefficients in each
state. The GARCH-based models allow continuous values of
conditional variances with possible transients resulting from
switching states. Hence, a small number of states may be suf-
ficient for the representation of the coefficients’ second-order
moments. Furthermore, the dynamic of the spectral coefficients
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Fig. 1. SNR improvements obtained by using different MSTF-GARCH

based estimators when applied to: (a) 3-state MSTF-GARCH signals; and
(b) 5-state MSTF-GARCH signals. MSTF-GARCH models with various
number of regimes are considered and compared with the true MSTF-GARCH
parameters, the theoretical limit, and a constant variance estimator.

is frequency dependent. Therefore, we assume different param-
eters in different sub-bands.

The speech signals used in our evaluation are taken from the
TIMIT database. The training set includes 10 different utter-
ances from 10 different speakers, half male and half female.
The speech signals are sampled at 8 kHz and normalized to
the same energy. Transformation into the STFT domain is
obtained by using half overlapping Hamming analysis window
of 32 ms length. We consider 1, 3, and 5-state MSTF-GARCH
models for the speech signals and estimate the one-frame-ahead
conditional variance for test speech signals, not on the training
set. Fig. 3 shows typical estimates of the one-frame-ahead
conditional variance, ;\tk|t_1, at frequencies of 1, 2, and 3
kHz, using the different MSTF-GARCH models and assuming
independent model parameters in each frequency subband. The
estimated conditional variances are compared with the clean
signal’s squared absolute value |th|2. It can be seen that by
increasing the number of regimes, the conditional variance
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Fig. 2. Trace of instantaneous output SNR achieved by the proposed algorithm
when applied to a realization of a 5-state MSTF-GARCH process degraded by
additive white noise with 5 dB SNR, and restored by an MSTF-GARCH esti-
mator, assuming 1 and 5 states.
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Fig. 3. Typical traces of one-frame-ahead conditional variance estimates
for speech signals at frequencies: (a) 1 kHz; (b) 2 kHz; and (c) 3 kHz. The
conditional variances are estimated by MSTF-GARCH models of single-state
(dashed-dotted line), 3 states (dotted line), and 5 states (dashed line), and
compared with the clean signal’s squared absolute value (solid line).

yields a better prediction of the squared absolute value of the
signal. Moreover, it can be seen that the conditional variance
estimated by a single-regime model is smoother than that esti-
mated based on a multiregime model, and the latter better tracks
rapid changes in the signal’s energy with possible switching
of regimes. During the first few frames, the speech signal is
absent and thus, as long as the squared absolute value is below
the minimum variance allowed by the model, the predicted
variances are determined by the model threshold. However,
the predicted variances converge to the absolute squared value
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as soon as the latter exceeds this threshold. Larger number
of states may allow better representation of the conditional
variance in different magnitude ranges and different volatilities,
at the expense of greater computational com

Many speech enhancement algorithms employ the decision-
directed approach for the speech spectral variance estimation
[27], [32]. Accordingly,

R 2
Xt—l,k‘

AP = max{ a

+(1-a)

x (1Yinl = 0) i ¢ (56)
where @(0 < & < 1) is a weighting factor that controls the
tradeoff between noise reduction and transient distortion intro-
duced into the signal. A larger value of & results in a greater
reduction of the musical noise phenomena, but at the expense
of attenuated speech onsets and audible modifications of tran-
sient components. The parameter &,i, is a lower bound on the
a priori SNR.

The GARCH modeling enables an analytical derivation of the
decision-directed estimator [33]. Considering the degenerated
case of a single-state and a single-frequency ARCH (1) model
(i.e., B = 0), the update step (22) can be written as

Aikje = Qe derje—1 + (1 — G (lYtkl2 - 0;3) (57)
with
5\2
G 21 thlt—1 (58)

and 0 < a4 < 1. Substituting the propagation step for j\tk“_l
(23) into (57) with « = 1, we obtain

;\tk|t = awnk {|Xt—1,k|2 |yt71}
+ (1= au) (Yl = 0}) + @ (59)

For ( < E{|XH,,€|2 |yt—1}, (59) is similar to the de-
cision-directed variance estimation (56) with dtk2 = @ and
where F {|Xt_1,k|2 |yt—1} holds for ‘Xt—l,k which is
the squared absolute value of the spectral coefficient estimate
based on the observations Y*~!. Accordingly, the degener-
ated ARCH-based variance estimation with & = 1 and low
valued ( is closely related to the decision-directed estimator
with a time-varying frequency-dependent weighting factor
o, However, the GARCH (and ARCH) modeling approach
manipulates the spectral variance as a random process, whereas
the decision-directed approach assumes the spectral variance
is a parameter which is heuristically evaluated. In addition, the
decision-directed approach thresholds the estimated variance to
be larger than £mina,% while in the GARCH modeling, the lower
bound is inherently incorporated into the variance estimation.
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Fig. 4. Typical traces of estimated squared absolute values for speech signal at
frequency of 2 kHz. The variances are estimated by a 5-state MSTF-GARCH
model (dashed-dotted line), decision-directed approach (dotted line) and com-
pared with the clean signal’s squared absolute value (solid line). The SNRs are
(a) 0 dB and (b) 10 dB.

Since ;\tk|t_1 > (, from (22) we obtain the following lower
bound

Atk|t—1 9 Atklt—1

oh+ = - Vi | ¢ > 0.

)\tk|t > =
Atkjt—1 t O

tk|t—1 + O ;3

(60)
Modeling the spectral coefficients as an MSTF-GARCH allows
further flexibility for the variance estimation. Fig. 4 demon-
strates the estimated squared absolute values of a speech signal
corrupted by a white Gaussian noise with SNR of (a) 0 dB and
(b) 10 dB. The signal squared absolute value at frequency of
2 kHz is compared with its estimated variance using 5-state
MSTF-GARCH model and by using the decision-directed
approach. It shows that the MSTF-GARCH approach with five
states yields a better estimate of the squared absolute value both
under high and low SNR conditions, especially in low energy
bins. Furthermore, the MSTF-GARCH approach enables a
better tracking of rapid changes in the coefficients energy than
the decision-directed approach.

The differences between Figs. 3 and 4 is that the former
demonstrates the prediction of the coefficients’ variances (i.e.,
the conditional variance) in a noiseless environment while
the latter shows their second-order moments’ estimation in a
noisy environment. The variance prediction has a small delay
of tracking rapid changes and the update step yields a better
estimate of the squared absolute value in high energy bins.
However, when noisy observations are employed, low-energy
bins may be under the noise level and thus the estimation may
be less accurate (for both the MSTF-GARCH approach and the
decision-directed approach).

Figs. 3 and 4 demonstrate that the proposed MSTF-GARCH
model, when compared to a single-regime model, or to the de-
cision-directed approach, improves the variance prediction and
the squared absolute value estimation of speech signals in the
STFT domain. Still, one needs to derive a frequency-dependent
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model and to estimate the signal presence probability in each
time-frequency bin of the noisy speech signal based on the pro-
posed model, which is a subject for further research.

VII. CONCLUSION

We have proposed a statistical model for nonstationary
processes with time-varying volatility structure in the STFT
domain. Exploiting the advantages of both the conditional
heteroscedasticity structure of GARCH models and the
time-varying characteristics of hidden Markov chains, we
model the expansion coefficients as multivariate, complex
GARCH process with Markov-switching regimes. The corre-
lation between successive coefficients in the time-frequency
domain is taken into consideration by using the GARCH for-
mulation which specifies the conditional variance as a linear
function of its past values and past squared innovations. The
time-varying structure of the conditional variance is determined
by a hidden Markov chain which allows a different GARCH
formulation in each state.

We showed that an ML estimate of the model can be practi-
cally obtained from training signals (assuming that the number
of states is known), and developed a recursive algorithm for
estimating the signal and its conditional variance in the STFT
domain from its noisy observations. The conditional variance
is recursively estimated for any regime by iterating propa-
gation and update steps, while the evaluation of the regime
conditional probabilities is based on the recursive correlation
of the process. Experimental results demonstrate the improved
performance of the proposed recursive algorithm compared to
using an estimator which assumes a stationary process, even
when the number of assumed regimes is smaller than the true
number. When the number of assumed regimes approaches the
true one, the recursive estimator yields comparable restoration
results to those achievable by using the true model parameters.
The conditional variance of an MSTF-GARCH process, as
well as the instantaneous SNR on each frame, change over
time. It is demonstrated that the recursive estimation approach
has relatively small performance degradation compared to the
theoretical estimation limit in the mmse sense. Performance
evaluation with real speech signals demonstrates better vari-
ance estimation when using a multiregime model, compared to
using a single-regime model, and improved squared absolute
value estimation in a noisy environment compared to using the
decision-directed approach.

Several extensions of this paper, which may be interesting
for further research, include analysis of the algorithm sensi-
tivity to the number of the assumed states, the parameters values
and the training set; generalization of the multivariate complex
Markov-switching GARCH model, such that the conditional
covariance matrix is not necessarily diagonal and the correla-
tion between distinct frequency-bins is also taken into account;
and finally estimation of the signal presence probability in the
time-frequency domain and modification of the recursive signal
estimation algorithm under signal presence uncertainty.
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