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Single-Site Emitter Localization via
Multipath Fingerprinting

Evgeny Kupershtein, Mati Wax, Fellow, IEEE, and Israel Cohen, Senior Member, IEEE

Abstract—A novel method enabling single-site localization of
wireless emitters in a richmultipath environment is presented. The
localization is based on a novel fingerprinting technique exploiting
the spatial-temporal characteristics of the multipath signals re-
ceived by the base station antenna array. The fingerprint is based
on a lower dimensional signal subspace of the spatial-temporal
covariance matrix, capturing the dominant multipath signals.
The performance is validated with both simulated and real data,
demonstrating localization accuracy of about 1 m in typical indoor
environments.

Index Terms—Antenna array, indoor localization, multipath fin-
gerprinting, signal subspace.

I. INTRODUCTION

P OSITION location of a wireless emitter is an old and well-
investigated problem with both military and commercial

applications. Many techniques have been developed to solve
this problem over the last 60 years, most of them based on the
assumption that the wireless signal travels from the source to
the receiving antennas along the line-of-sight (LOS) path con-
necting them. The classical position location techniques, di-
rection-of-arrival (DOA), time-of-arrival (TOA) and differen-
tial-time-of-arrival (DTOA), are all based on this assumption,
with the localization carried out via triangulation, using several
such measurements [1], [2].
In recent years there has been a growing interest in position

location in urban canyons and in indoor venues, where LOS con-
ditions usually do not exist. In these cases, the propagation from
the source to the receiving antennas is usually made through
reflections from buildings and walls, referred to as multipath,
which may be very different from the LOS path. As a result, the
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classical position location techniques are not valid in such sce-
narios.
Fingerprinting techniques have been recently developed

[3]–[25] to overcome this problem. Fingerprinting techniques
are based on the premise that there is a one-to-one relation
between the characteristics of the signals received at the base
stations and the emitter location, i.e., that a fingerprint can
be extracted from the received signals and serve as a unique
identifier of the emitter location. The problem is casted as a
pattern recognition problem, namely, a database of fingerprints
is pre-collected in the desired coverage area, and the location
is determined by matching the extracted fingerprint to the
fingerprint database.
Two types of fingerprinting techniques have been developed

about the same time. The first, developed by Wax et al. [3]–[6]
and further investigated by Nezafat et al. [7]–[9], is based on
using the multipath characteristics, derived from the signals re-
ceived by a multiple-antenna base station (BS), as the location
fingerprint. A review of this technique, referred to as “Loca-
tion Fingerprinting”, was first presented in [10]. The second
technique, developed by Bahl and Padmanabhan [11] and by
Laitinen et al. [12], is based on using the received signal strength
(RSS) obtained at several base stations as the location finger-
print.
The RSS fingerprint depends on many irrelevant parameters

such as the orientation of the transmitter and body shadowing,
but more critically, suffers from high variability along a short
distance of wavelength because of constructive and destructive
multipath interferences. As a result, the accuracy of this tech-
nique is limited and requires signal strength measurements from
multiple BSs to assure an acceptable accuracy. The multipath
based fingerprint, on the other hand, exploits the multipath to
its advantage, rather than suffers from it, thus enabling a much
higher accuracy.
The work of Wax et al. in [3]–[5] was focused on the outdoor

environment and confined to narrowband signals (AMPS) and
used a fingerprint based on the directions-of-arrival of the mul-
tipath signals. In [6] Wax et al. extended their work to wide-
band signals (CDMA) by adding another fingerprint based on
the power delay profile (PDP) of the multipath signals. The
idea of using the PDP as a fingerprint was also investigated by
Nypan et al. [13], Ahonen and Laitinen [14] and Ahonen and
Eskelinen [15]. Meurer et al. [16] proposed using the covari-
ance matrix of the channel impulse response (CIR) as a location
fingerprint rather than the power delay profile. Triki, Oktem and
Slock [17]–[19] have extended the PDP fingerprinting in several
aspects, including adding to the fingerprint the spatial informa-
tion of the antenna array, in both receive and transmit (MIMO),
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as well as the Doppler shifts of the different reflections, for the
case that the mobile terminal is moving. The asymptotic perfor-
mance of the PDP method was investigated under various sta-
tistical models by Oktem and Slock [20], [21]. The applicability
of PDP fingerprinting for UWB localization was investigated by
Altahus et al. [22], Steiner and Wittneben [23], [24].
The current work extends the work of Wax et al. [3]–[6]

in several aspects. First, it presents a novel and more pow-
erful fingerprint that exploits both the directions-of-arrival
and the differential-delays of the multipath signals. This fin-
gerprint is based on a lower dimensional subspace of the
spatial-temporal covariance matrix wherein the multipath
signals reside, commonly referred to as the signal subspace.
The subspace estimation does not require estimation of the
directions-of-arrival and differential-delays of the multipath
reflections, which is both difficult and computationally inten-
sive problem in rich multipath environments. Moreover, the
subspace captures only the dominant reflections, thus forming
both rich and robust fingerprint that enables, in conjunction
with the powerful similarity-profile matching criterion, ac-
curate single-site localization. Second, it presents necessary
and sufficient conditions that guarantee unique localization.
Third, unlike [6], this method is applicable to any wideband
signal with a repeatable segment. As such, it is applicable to
most modern communication techniques, since they all use a
fixed and repeatable segment of the signal for synchronization
and channel estimation purposes. As shown in the Appendix,
this method is applicable also to localization using the array
channel impulse response (CIR). In addition, unlike [3]–[6],
this work is focused on the indoor environment, yet applicable
also to outdoor environments. Even though both environments
are characterized by rich multipath, the indoors multipath
environment is typically richer and characterized by a larger
angle spread and smaller delay spread.
A general view of the proposed localization method is pre-

sented in Fig. 1. The technique consists of two phases: an off-
line phase and an on-line phase. During the off-line phase, a
database ofmultipath fingerprints is collected in the desired cov-
erage area, with the fingerprint extracted from the BS antenna
array signals. In the on-line phase, the multipath fingerprint is
extracted from the BS antenna array signals and matched to the
fingerprints stored in the database. The location whose finger-
print best matches the extracted fingerprint is selected as the
emitter location.
The outline of the rest of the paper is as follows. In Sections II

and III we present the problem formulation and the conditions
for unique localization. Then, in Sections IV and V we present
the similarity-metric derivation and the signal subspace based
localization method. Sections VI and VII present test results
with simulated and real data. Finally, in Sections VIII and IX
we present the discussion and the conclusions.

II. PROBLEM FORMULATION

Consider an array composed of sensors with arbitrary loca-
tions and arbitrary directional characteristics receiving a wide-
band signal , centered at frequency , impinging

Fig. 1. Block diagram of the proposed localization technique.

on the array through reflections with time delays ,
and corresponding directions . The outputs of the an-
tenna array are sampled simultaneously at times (“taps”),
with an interval of seconds, i.e., each sensor is
sampled at times , where BW is a
signal bandwidth. We refer to the collection of these sam-
ples as a “snapshot”.
We assume that the bandwidth of the signal is small com-

pared to the size of the antenna array, i.e., that the propagation
delays across the array are much smaller than the inverse band-
width of the signal, so that the narrow-band array representation
is applicable. This assumption is definitely valid for the band-
width and antenna array size in modern communication tech-
niques such as Wi-Fi.
We further assume that the antenna array is sampled times

at , forming snapshots, and that the
following conditions hold regarding the signals and the noise:
A.1 The signal is identical for all snapshots.
A.2 The directions-of-arrival and the differential-delays of

the multipath reflections are identical for all the snap-
shots.

A.3 The noise samples
are i.i.d. Gaussian random vari-

ables with zero mean and unknown variance .
A.1 is valid for most modern wireless communication sys-

tems, such as Wi-Fi, since these communication systems have
a repeatable signal part for synchronization and channel esti-
mation purposes. Consequently, we can confine the sampling
times to this repeatable signal part using the synchronization
capabilities of the receiver. A.2 is valid provided that the
snapshots are sampled in a close vicinity of each other and con-
sequently capture the same physical environment, i.e., the same
directions-of-arrival and differential-delays.
Following [26], [27], and using complex envelope represen-

tation, the -th sample of the -th sensor can be expressed as

(1)
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where

is the complex envelope of the signal,

is the delay of the -th reflection relative to the
reference,

is the delay between the -th sensor and the reference
sensor of the -th reflection,

is the amplitude response of the -th sensor to a
wavefront impinging from direction ,

is the complex coefficient representing the phase
shift and attenuation of the -th reflection,

is the additive noise at the -th sensor.

It should be pointed out that our formulation assumes that (i)
is fixed during a snapshot, and (ii) may vary from

snapshot to snapshot. (i) is a valid assumption since the time
it takes for an indoor channel to change significantly is of the
order of milliseconds [28], [29], whereas the sampling duration
of a snapshot is of the order of microseconds. (ii)
is a valid assumption since the time between the snapshots is of
the order of milliseconds, and hence slight emitter movement or
channel variations may change from snapshot to snapshot.
Using vector notation, we can rewrite (1) as follows

(2)

where and are the vectors

(3)

(4)

is the vector

(5)

and is the matrix

(6)

with being the vector

(7)

Combining the vectors into the
“snapshot” vector , we can rewrite (2) as

(8)

where and are the vectors

(9)

(10)

and is the matrix

(11)

with denoting the Kronecker product, and is the
steering vector of the array towards direction , given by

(12)

We shall refer to the columns of matrix as the direction-
delay vectors and to the span of the columns of the matrix
as the spatial-temporal signal subspace. Note that the matrix
captures all the direction-of-arrival and the differential-delay

information of the multipath reflections.
As will become clear in the sequel, this spatial-temporal

signal subspace will be the basis for our location fingerprint.

III. CONDITIONS FOR UNIQUE LOCALIZATION

In this section we present necessary and sufficient conditions
that guarantee unique localization.
The following conditions, characterizing the array and the

propagation environment, are assumed for the analysis:
B.1 Any distinct direction-delay vectors are linearly in-

dependent.
B.2 The number of reflections is smaller than the length of

direction-delay vectors, namely .
We should point out that these conditions are mild and are
obeyed in most practical cases.
Following (8) and ignoring the noise, since the noise is de-

coupled from the uniqueness problem by its nature, the snap-
shots of the vector taken at can be expressed as

(13)

where is the matrix

(14)

is the matrix of the reflections’ coefficients

(15)

and is the matrix defined in (11), with
and denoting the di-

rections-of-arrival and differential-delays of emitter reflections.
Note that and T are the only parameters characterizing the
emitter location.
Our objective is to specify necessary and sufficient conditions

under which the solution of the set of (13) is unique
for every batch . To this end, let denote the rank of the
matrix

(16)

Following [30], [31], we can state the following:
An array satisfying conditions B.1–B.2 can uniquely localize

sources having reflections if

(17)
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The line of proof is analogous to [30], [31] and is based on
establishing that if (17) holds true then for every we have

(18)

for any and any set of . Namely, that the set
of directions-of-arrival and differential-delays uniquely speci-
fies the obtained data .
Two special cases are of the particular interest. The first case

is , occurring when the multipath coefficients are un-
correlated. In this case, the necessary and sufficient condition
for unique localization (17) is . By B.2, this implies
that uniqueness is always assured in this case. The second case
is , occurring either when the multipath coefficients are
fully correlated or in case when . In this case, the nec-
essary and sufficient condition for unique localization is

.
These results show that the higher is the size of the spa-

tial-temporal covariance matrix, and the higher is the rank of
the multipath coefficients matrix , the higher is the number
of multipath reflections the array can uniquely localize.

IV. THE ML SPATIAL-TEMPORAL SIMILARITY METRIC

To derive a similarity-metric for the fingerprint matching, we
resort to the estimation of the matrix using the Maximum
Likelihood (ML) criterion.
To this end, we assume that the complex attenuations are

unknown deterministic quantities that need to be estimated in
conjunction with the spatial-temporal matrix . Assuming that
the received vector is sampled at times , yielding
i.i.d. snapshots by A.3, the conditional p.d.f. of the sampled

data is given by

(19)

The ML estimator (MLE), following [32], is given by

(20)

After straightforward derivation and elimination of constant
terms, we get

(21)

Minimization now with respect to , yields

(22)

where denotes the Hermitian conjugate.

Substituting (22) back into (21), yields

(23)

where is the projection operator onto the space spanned by
the columns of the matrix .

(24)

It can be easily verified that (23) can also be written as

(25)

where is the trace operator, and is the sample-covari-
ance matrix

(26)

It follows from (23) that the ML estimator of the spatial-tem-
poral matrix is obtained by searching for the spatial-temporal
signal subspace projection matrix that is “closest” to the
sampled vectors , with the closeness
measured by the modulus of the projection of the vectors onto
this subspace.

V. SIGNAL SUBSPACE BASED LOCALIZATION

According to the ML criterion (25), the localization is carried
out by searching in the database for the location that maximizes
the following expression

(27)

where is the sample-covariance matrix (26) and is the
projection operator onto the signal subspace corresponding to
the -th location.

A. The Generation of the Fingerprint Database

The fingerprint database is composed of the sample-covari-
ance and projection matrices of all the locations and
is pre-computed in the off-line phase.
The sample-covariance matrix is computed from snap-

shots of the received vector , collected in the close vicinity
of location . In the close vicinity of a point the directions-of-ar-
rival and the differential-delays of the multipath reflections are
essentially the same, while the coefficients vector varies
from location to location and may vary from snapshot to snap-
shot. The spatial averaging in the close vicinity of a point there-
fore ensures that the matrix becomes full rank and hence that
the full dimension of the signal subspace is captured. The spa-
tial averaging also helps in providing a more comprehensive and
robust characterization of the multipath reflections.
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The expected value of , omitting the index for clarity of
the presentation, is given by

(28)

where

(29)

Recalling B.2 and assuming that the matrix has full
rank, which is a valid assumption provided that the snapshots
are collected as described above, it can be easily verified [33],
[34] that the eigenvalues and eigenvectors of , denoted by

and , respectively,
have the following important property:
The subspace spanned by the eigenvectors

is identical to the subspace spanned by
the columns of the matrix , i.e., .
Based on this identity, the estimation of the projection matrix
of the -th location is carried out as follows:
1) Calculate the sample-covariance matrix of location by

(30)

2) Perform an eigenvalue decomposition of .
3) Estimate the signal subspace dimension .
4) Select the first eigenvectors of corresponding to the
signal subspace: .

5) Estimate the projection matrix by
.

B. Signal Subspace Dimension Estimation

The estimation of the signal subspace dimension is a well-
known problem in array processing and numerous techniques
have been developed to solve it [33]–[35].
Yet, the problem at hand is somewhat different than the clas-

sical problem addressed in the literature. Here we are targeting
a rich multipath environment, such as in indoor venues and
urban canyons, where the number of reflections is usually very
large, and want to ensure that the subspace dimension captures
only the more dominant reflections in the environment and not
the numerous low energy reflections. These low energy reflec-
tions may not be stable enough in real life scenarios because of
movement of people and changing environment. To illustrate
this point, refer to Fig. 2, where a typical multipath, charac-
terizing the indoor environment shown in Fig. 3, is presented.
The multipath signals originate from the location denoted by
the green dot, m, and captured by an an-
tenna array at the orange dot. Fig. 2 shows the two-dimensional
plot of the power of the multipath signals, parameterized by
the angle-of-arrival and time-of-arrival. Note the large number
of reflections and their high dynamic range, and especially the
large number of low energy reflections that are close to the noise
floor.
A typical profile of the eigenvalues of the covariancematrix is

shown in Fig. 4. The small eigenvalues typically capture the low
energy multipath reflections that should, as explained above, be

Fig. 2. The spatial-temporal power profile of the multipath reflections corre-
sponding to the location of green dot, m, in Fig. 3.

Fig. 3. The simulation environment.

excluded from the subspace formation. Based on this observa-
tion, we have disqualified the classical technique based on in-
formation theoretic criteria [36] that is sensitive to low energy
signals, and selected a more robust technique that captures only
the dominant reflections. Specifically, the signal subspace di-
mension is estimated by the number of large eigenvalues that
capture, say, 90% of the signal energy

(31)

where and is a parameter
set, say, to 0.9.

C. The Similarity-Profile Matching Criterion

As described above, the localization can be carried out by
searching for the index that maximizes the ML criterion (27).
Yet, due to ambiguity inherent in the physical environment,
some locations may have similar spatial-temporal fingerprints,
and as a result give rise to a certain level of ambiguity error. To
address this problem we next introduce a matching technique
that better copes with these ambiguities.
To this end, following [4], we introduce the notion of simi-

larity-profile (SP). The SP of the -th location captures the
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Fig. 4. A typical eigenvalue profile of the signal covariance matrix.

similarity of the received data at the -th location to the finger-
prints in the database and is defined by

(32)

where is the number of locations in the database and is
the similarity between the data captured in the -th location to
the fingerprint of the -th location

(33)

with

(34)

Notice that the covariance matrices have been normalized
to eliminate dependence on the power of the received signals.
This is done to cope with potential power change of the source
between the off-line and on-line phases.
The motivation for the SP matching is based on the obser-

vation that both similar and dissimilar fingerprints provide
useful identification information on the query fingerprint. Con-
sequently, it is beneficial to employ the whole similarity vector
as the -th location identifier.
To better illustrate this point, we refer to Fig. 5 showing the

SP belonging to the green dot, m, in Fig. 3.
The SP vector (32) is presented as a two-dimensional plot, with
color coding representing the level of similarity (33) be-
tween the -th point and all the other points in the data-base.
Note that this plot peaks at m, as expected,
but also at another point m, reflecting a po-
tential ambiguity point. To cope better with such potential am-
biguities, we propose to use the whole similarity profile, with
its peaks and valleys, as the fingerprint of the -th location.
Using the SP notion we can represent the database, con-

structed during the off-line phase, by the similarity-matrix ,
given by

...
(35)

According to the SP criterion the localization is carried out
by searching over the database for the SP that best matches
the query SP obtained from the received signals. That is,

(36)

Fig. 5. The similarity profile corresponding to the location of the green dot,
m, in Fig. 3.

where is the query SP obtained from the received signals,

(37)

with

(38)

Note that projection matrices and the similarity-matrix

are calculated during the off-line phase, whereas is calcu-
lated in the on-line phase from the sample-covariance matrix .
In the typical case, wherein , the computational

load of (36) can be significantly reduced by leveraging the prop-
erties of the norm. Indeed, following [37] and using the
well-known vec operator, which forms a column vector from
the columns of a matrix by stacking them one under the other,
we can write

(39)
where

(40)

(41)

Assuming has a full rank and denoting by be the
Cholesky factor of , i.e.,

(42)

we can rewrite (36) as

(43)

Now, since is a matrix, as compared to
which is , (43) provides significant computational
saving compared to (36). Indeed, in a typical scenario, with
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and , this technique provides more than
an order of magnitude savings in both the computational load
and storage.
Note also that since and are pre-computed in the off-

line phase, the on-line computation is rather mild and involves
essentially only multiplication of with , the vector of

the elements of the sample-covariance matrix , and a search
over the data-base for the minimum of the norm (43). We
would like to point out that the computational load involved in
the search over the database can be significantly reduced, by
organizing the search in a tree-structured manner and leveraging
the triangular inequality the norm obeys, as in [37].

VI. SIMULATION RESULTS

In this section we present simulation results illustrating the
performance of the proposed localization algorithm.
To simulate a typical indoor propagation environment we

used the 80 m 80 m 5m shopping mall shown in Fig. 3. The
mall’s walls were constructed from typical materials having typ-
ical reflection and penetration coefficients. To simulate the elec-
tromagnetic propagation we used a 3D ray tracing radio wave
propagation simulator. The system parameters—receiver sensi-
tivity, transmit power and antenna gains—have been set to those
typically available in off-the-shelfWi-Fi equipment. The orange
point in the center of the mall denotes the location of the antenna
array. The array was a uniform circular array, with a diameter of
25 cm, having omni-directional antennas. To generate the
data, emitters were distributed uniformly in the mall area with
0.1 m separation. A sample of the emitter locations is shown in
Fig. 3 by the blue points grid. The antenna array and the emit-
ters were placed at a height of 2.5 m and 1.5 m, respectively.
The database was built as a rectangular grid with 1 m sepa-

ration. The test points were selected by random shifts, in both
axes, from the database points. That is, random shifts, and

, were generated independently for each database point
according to a uniform distribution . This was
done in order to simulate a more realistic situation wherein the
test points and the database points do not coincide. The sample-
covariance matrices of the database and test point were con-
structed from and snapshots, respectively, captured in a
close vicinity of the database/test point. The snapshots used for
the database and for the test points were different.
The signal used in the simulations was the Long Training

Field (LTF) of the preamble of the 802.11a/g/n Wi-Fi packet
[38], which is present in each transmitted packet and is used
for channel estimation, accurate frequency offset estimation and
time synchronization.
The signal-to-noise ratio (SNR) varied from 0 to 60 dB ac-

cording to the path loss from the base station to the emitter lo-
cation and was the same in the database generation and in the
tests. The eigenvalue threshold for subspace dimension esti-
mation (31) was selected to be 0.9 in all simulations.
The localization performance was evaluated by computing

the cumulative distribution function (CDF) of the position lo-
cation errors, with the position location error defined by the Eu-
clidean distance between the location of the test point and the
location of the most likely database grid point selected by the
localization algorithm.

Fig. 6. Performance of the SP and ML techniques for different number of an-
tennas. The number of taps was , the MHz and the number of
snapshots for the database and tests were and , respectively.

Simulation Scenario 1: In this simulation we present the
achievable localization accuracy using the ML (27) and the
SP (43) matching criteria, with a varying number of antennas.
The number of samples (taps) per antenna was and
the signal bandwidth (BW) was 20 MHz, while the number of
signal snapshots used for each database and test location were

and , respectively. To vary the number of
antennas we used 3 and 1 out of the 6 antennas of the array.
As seen in Fig. 6, the accuracy difference between the SP and

the ML criteria is considerable, especially in more challenging
scenarios wherein the level of ambiguity increases, namely
when the number of antennas is reduced from 6 to 3 and from 3
to 1. Since this advantage of the SP criterion was persistent in
all the simulations, we have decided to omit the results of the
ML criterion and concentrate on the SP in the sequel for clarity
of the presentation.
Note also that though there is only marginal accuracy degra-

dation when going from 6 antennas to 3, it is much more signifi-
cant when going from 3 antennas to 1. This clearly demonstrates
the crucial contribution of the spatial dimension in enabling high
accuracy, especially at relatively law bandwidth of 20 MHz.
Simulation Scenario 2: In this simulation we present the dis-

tribution of signal subspace dimension over the mall area as a
function of the number of taps . The number of antennas was

, the MHz, and the number of database snap-
shots .
As seen in Fig. 7, the signal subspace dimension rises with the

increase of the dimension of the snapshot vector but typi-
cally stays below 9, even when the dimension of the snapshot
vector rises to 24 (for ) and 48 (for ).
Simulation Scenario 3: In this simulation we present the in-

fluence of the number of snapshots, and , on the localization
accuracy. The signal bandwidth was 20 MHz and the number of
taps . In the first case (Fig. 8), the number of antennas
was and the number of database snapshots , while
the number of test point snapshots varied. In the second case
(Fig. 9), the number of antennas was and the number



KUPERSHTEIN et al.: SINGLE-SITE EMITTER LOCALIZATION VIA MULTIPATH FINGERPRINTING 17

Fig. 7. Signal subspace dimension for different number of taps. The number of
antennas was , the signal MHz, and the number of database
snapshots .

Fig. 8. Performance of the SP criterion for different number of test point snap-
shots. The number of antennas was , the MHz, the number of
taps , and the number of database snapshots .

of test point snapshots , while the number of database
snapshots varied.
As seen in Figs. 8 and 9, the higher the number of test

point/database snapshots the higher is the accuracy. This can
be attributed to the fact that the higher number of snapshots
provides better covariance matrix estimation and consequently
better signal subspace estimation. Yet, beyond some number
of snapshots, about 25–30, the improvement in accuracy
is marginal. The fact that 25–30 snapshots are sufficient to
fully characterize the signal subspace can be explained by
the relatively low dimension of this subspace, as discussed
above and shown in Fig. 7. Since in practical applications the
typical snapshot interval is of the order of milliseconds, this
implies that the time necessary for localization is of the order
of 100 milliseconds, which is definitely acceptable for most
applications.
Simulation Scenario 4: In this simulation we present the in-

fluence of number of taps on the localization accuracy for a

Fig. 9. Performance of the SP criterion for different number of database snap-
shots. The number of antennas was , the MHz, the number of
taps , and the number of test point snapshots .

Fig. 10. Performance of the SP criterion for different number of taps. The
number of antennas was , the MHz, and the number of data-
base and test point snapshots was and , respectively.

6-antenna array and bandwidths of 20 MHz and 80 MHz. The
number of database and test point snapshots was and

, respectively.
As seen in Figs. 10 and 11, the higher is the number of taps the

better is the accuracy. This can be attributed to the fact that the
higher number of taps allows capturing longer-delay reflections
and as a result to provide a more robust fingerprint with lower
ambiguity. The improvement in accuracy for 20 MHz occurs at
lower number of taps than that for 80 MHz since the sampling
time for the 20 MHz and 80 MHz are 50 ns and 12.5 ns, respec-
tively, implying that for a higher bandwidth a larger number of
taps is required to capture the multipath delay spread.
Note also that in the case of a single tap there is a signifi-

cant degradation in accuracy as well as much higher ambiguity
level, reflected by the higher error in upper percentile of the CDF
graph. This highlights the inability of spatial-only fingerprint to
provide enough location distinction.
Simulation Scenario 5: In this simulation we present the

achievable accuracy for a 3-antenna array using different signal
bandwidths, 20 MHz, 40 MHz, and 80 MHz. The number of
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Fig. 11. Performance of the SP criterion for different number of taps. The
number of antennas was , the MHz, and the number of data-
base and test point snapshots was and , respectively.

Fig. 12. Performance of the SP criterion for different BWs. The number of
antennas was , the number of taps , and the number of database
and test point snapshots was and , respectively.

taps was , while the number of database and test point
snapshots were and , respectively.
As seen in Fig. 12, the achievable accuracy improves as the

bandwidth increases. Note that the effect of the larger bandwidth
is more noticeable here, as compared to that between Figs. 10
and 11, since here the scenario is more challenging—a smaller
number of antennas and test point snapshots.
Simulation Scenario 6: In this simulation we present the

achievable accuracy in the case of antenna using dif-
ferent signal bandwidths, 20 MHz, 40 MHz, and 80 MHz. The
simulation parameters were identical to those of scenario 1
except that here number of taps was .
As can be seen in Fig. 13, there is a large improvement in

accuracy as the bandwidth increases, demonstrating the impor-
tance of the improved time resolution resulting from the in-
creased bandwidth in the case of single antenna.
Note also that the ambiguity level, reflected by the higher

error in upper percentile of the CDF graph, is considerably

Fig. 13. Performance of the SP criterion for different BWs. The number of
antennas was , the number of taps , and the number of database
and test point snapshots was and , respectively.

higher than in the case of 6 and 3 antennas presented in Fig. 6.
This high level of ambiguity highlights the inability of tem-
poral-only fingerprint to provide enough location distinction.

VII. REAL DATA RESULTS

In this section we present experimental results illustrating the
performance of the proposed localization algorithm with real
data.
The experiment was conducted at the 33 m 33 m 5 m of-

fice floor shown in Fig. 14. The BS was an 802.11g Wi-Fi ac-
cess point (AP) having a uniform circular array, with a diameter
of 25 cm and omni-directional antennas. The antenna
array was located at the red dot. The emitter was a laptop com-
municating with the BS over Wi-Fi. The antenna array and the
emitter were placed at a height of 3 m and 1.5 m, respectively.
The green square points, separated by 0.5 m, denote locations
of database points. The database covariance matrices were built
by spatial averaging of the captured data in the vicinity of these
points. The test point locations were selected by random shifts
from the database points, in a similar way to the simulations.
To enable performance comparison with simulated data in

both the experiment and simulation we used antennas,
BW of 20 MHz, taps, and for the database
and for the test points. The eigenvalue threshold for
subspace dimension estimation (31) was selected to be 0.9. The
signal used was the long training field (LTF) of the preamble of
the 802.11g Wi-Fi packet [38] with MHz.
As seen in Fig. 15, the accuracy achieved with real data is

about 1 m and closely matches that obtained with the simulated
data. This clearly validates the proposed method and the simu-
lation results.

VIII. DISCUSSION

In this section we discuss several aspects affecting the local-
ization accuracy.
It should be clear from the simulations that given a rich mul-

tipath environment, the localization accuracy is a function of
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Fig. 14. The office floor wherein the real data experiment was conducted.

Fig. 15. Performance of the SP criterion for real data compared to that of sim-
ulated data. In both we used antennas, 20 MHz BW, taps, and
the number of database and test point snapshots was and
respectively.

many system parameters including the antenna array size, the
number of antenna elements, the BW of the signal, the number
of taps, the number of snapshots used for the database grid and
the number of snapshots used for the test points. As seen in the
simulations, these system parameters can be traded, up to a de-
gree, to compensate for each other.
The localization accuracy can be improved by either using

some sort of interpolation between the database grid points or
by using a finer grid. Yet, the improvement in accuracy has its
limit, dictated by the system parameters and by the noise level
characterizing the environment and the database generation.

The accuracy is affected also by the value of the parameter
used for the subspace dimension estimation. The higher is the
higher is the estimated dimension and hence the richness of the
fingerprint. We have found that varying in the range 0.8–0.9
has mild effect on the accuracy and that 0.9 presents overall the
best performance, serving as a good compromise between the
conflicting desires for enriching the fingerprint, on the one hand,
and for robustness of the fingerprint, on the other hand.
Last, but not least, it should be clear that in case an area is

covered by more than one base station, using all the information
from the overlapping base stations should improve the localiza-
tion accuracy. Naturally, there are several ways to exploit the
overlapping coverage, with varying level of computational load
and accuracy.

IX. CONCLUSION

We have presented a novel method enabling single-site lo-
calization based on a spatial-temporal fingerprint of the multi-
path reflections. This spatial-temporal fingerprint is based on a
lower dimensional subspace of the spatial-temporal covariance
matrix—referred to as the signal subspace—capturing the di-
rections-of-arrival and the differential-delays of the dominant
multipath reflections. The fingerprint matching is based on the
SP criterion, which outperforms considerably the conventional
ML criterion, especially in challenging scenarios that are prone
to ambiguity.
The high level of accuracy of this method, demonstrated by

simulations and real data results, and its mild computational
load, make it a promising candidate for providing high quality
and ubiquitous localization in indoor environments.

APPENDIX

In this Appendix we show that our method is applicable also
to localization using the array channel impulse response (CIR).
In modern communication systems the CIR is usually ob-

tained by exploiting a known signal, referred to as training
signal, specifically included in the transmitted signal for this
purpose. The CIR is obtained by de-convolution of the received
signal with this training signal.
It follows from the problem formulation presented in

Section II above that the -th sample of the estimated CIR
corresponding to the -th sensor and -th snapshot can be
expressed by

(44)

where is the convolution of the transmit and receive filters
and are samples of the CIR esti-
mation noise. We assume that the estimation noise conforms to
the assumption A.3.
Note that expression (1) and (44) are essentially identical,

differing only in the signal part. Yet, since is repeatable
from snapshot to snapshot, A.1–A.2 apply here as well.
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Stacking the estimated CIR samples in a vector form analo-
gously to (9), we get

(45)

Since this expression is identical to our problem formulation
(8), we can straightforwardly apply our localization method to
the sample-covariance of the array CIR, given by

(46)

Note that our localization method differs from the PDP
methods in two aspects. First, its fingerprint is based on the
signal subspace spanned by the dominant reflections. Second,
its matching algorithm is based on the SP criterion.
The advantage of using the CIR for localization, as com-

pared to using the received signals with a repeatable part, is
the indifference of the localization algorithm to different repeat-
able parts (training signals). Yet, its computational load, in both
the off-line and on-line phases, is higher because of the extra
de-convolution step required to obtain the CIR estimates.
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