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Abstract—In this paper, we introduce a novel approach for im-
proved nonlinear system identification in the short-time Fourier
transform (STFT) domain. We first derive explicit representations
of discrete-time Volterra filters in the STFT domain. Based on these
representations, approximate nonlinear STFT models, which con-
sist of parallel combinations of linear and nonlinear components,
are developed. The linear components are represented by cross-
band filters between subbands, while the nonlinear components are
modeled by multiplicative cross-terms. We consider the identifica-
tion of quadratically nonlinear systems and show that a significant
reduction in computational cost as well as substantial improve-
ment in estimation accuracy can be achieved over a time-domain
Volterra model, particularly when long-memory systems are con-
sidered. Experimental results validate the theoretical derivations
and demonstrate the effectiveness of the proposed approach.

Index Terms—Nonlinear systems, short-time Fourier transform
(STFT), subband filtering, system identification, time-frequency
analysis, Volterra filters.

I. INTRODUCTION

I DENTIFICATION of linear systems has been studied ex-
tensively and is of major importance in diverse fields of

signal processing [1], [2]. However, in many real-world applica-
tions, the considered systems exhibit certain nonlinearities that
cannot be sufficiently estimated by conventional linear models.
Examples of such applications include acoustic echo cancel-
lation [3]–[5], channel equalization [6], [7], biological system
modeling [8], image processing [9], and loudspeaker lineariza-
tion [10]. Volterra filters [11]–[16] are widely used for modeling
nonlinear physical systems, such as loudspeaker-enclosure-mi-
crophone (LEM) systems in nonlinear acoustic echo cancel-
lation applications [4], [17], [18], and digital communication
channels [6], [19], just to mention a few. An important property
of Volterra filters, which makes them useful in nonlinear estima-
tion problems, is the linear relation between the system output
and the filter coefficients. Many approaches, which attempt to
estimate the Volterra kernels in the time domain, employ con-
ventional linear estimation methods in batch (e.g., [15] and [20])
or adaptive forms (e.g., [4] and [21]). A common difficulty as-
sociated with time-domain methods is their high computational
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Fig. 1. Nonlinear system identification in the STFT domain. The unknown
time-domain nonlinear system �� � � is estimated using a given model in the
STFT domain.

cost, which is attributable to the large number of parameters of
the Volterra model. This problem becomes even more crucial
when estimating systems with relatively large memory length,
as in acoustic echo cancellation applications. Another major
drawback of the Volterra model is its severe ill-conditioning
[22], which leads to high estimation-error variance and to slow
convergence of the adaptive Volterra filter. To overcome these
problems, several approximations for the time-domain Volterra
filter have been proposed, including orthogonalized power fil-
ters [23], Hammerstein models [24], parallel-cascade structures
[25], and multimemory decomposition [26].

Alternatively, frequency-domain methods have been intro-
duced for Volterra system identification, aiming at estimating
the so-called Volterra transfer functions [27]–[29]. Statistical
approaches based on higher order statistics (HOS) of the input
signal use cumulants and polyspectra information [27]. These
approaches have relatively low computational cost, but often as-
sume a Gaussian input signal, which limits their applicability.
In [28] and [29], a discrete frequency-domain model is defined,
which approximates the Volterra filter in the frequency domain
using multiplicative terms. Although this approach assumes no
particular statistics for the input signal, it requires a long dura-
tion of the input signal to validate the multiplicative approxi-
mation and to achieve satisfactory performance. When the data
is of limited size (or when the nonlinear system is not time-in-
variant), this long duration assumption is very restrictive.

In this paper, we introduce a novel approach for improved
nonlinear system identification in the short-time Fourier trans-
form (STFT) domain, which is based on a time-frequency rep-
resentation of the Volterra filter. A typical nonlinear system
identification scheme in the STFT domain is illustrated in
Fig. 1. Similarly to STFT-based linear identification techniques
[30]–[32], representing and identifying nonlinear systems in
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the STFT domain is motivated by a reduction in computational
cost compared to time-domain methods, due to processing in
distinct subbands. Together with a reduction in the spectral dy-
namic range of the input signal, the reduced complexity may
also lead to a faster convergence of nonlinear adaptive algo-
rithms. Consequently, a proper model in the STFT domain
may facilitate a practical alternative for conventional nonlinear
models, especially in estimating nonlinear systems with rela-
tively long memory, which cannot be practically estimated by
existing methods. We show that a homogeneous time-domain
Volterra filter [11] with a certain kernel can be perfectly repre-
sented in the STFT domain, at each frequency bin, by a sum of
Volterra-like expansions with smaller-sized kernels. This rep-
resentation, however, is impractical for identifying nonlinear
systems due to the extremely large complexity of the model.
We develop an approximate nonlinear model, which simplifies
the STFT representation of Volterra filters and significantly
reduces the model complexity. The resulting model consists
of a parallel combination of linear and nonlinear components.
The linear component is represented by crossband filters be-
tween the subbands [30], [33], while the nonlinear compo-
nent is modeled by multiplicative cross-terms, extending the
so-called cross-multiplicative transfer function (CMTF) ap-
proximation [34]. It is shown that the proposed STFT model
generalizes the conventional discrete frequency-domain model
[28], and forms a much richer representation for nonlinear
systems. Concerning system identification, we employ the pro-
posed model and introduce an off-line scheme for estimating
the model parameters using a least-squares (LS) criterion. The
proposed approach is more advantageous in terms of com-
putational complexity than the time-domain Volterra approach.
When estimating long-memory systems, a substantial improve-
ment in estimation accuracy over the Volterra model can be
achieved, especially for high signal-to-noise ratio (SNR) con-
ditions. Experimental results with white Gaussian signals and
real speech signals demonstrate the advantages of the proposed
approach.

The paper is organized as follows. In Section II, we derive
an explicit representation of discrete-time Volterra filters in the
STFT domain. In Section III, we introduce a simplified model
for nonlinear systems in the STFT domain. In Section IV, we
consider off-line estimation of the proposed-model parameters
and compare its complexity to that of the conventional time-do-
main approach. Finally, in Section V, we present some experi-
mental results.

II. REPRESENTATION OF VOLTERRA FILTERS IN THE

STFT DOMAIN

In this section, we represent discrete-time Volterra filters
in the STFT domain. We first consider the quadratic case,
and subsequently generalize the results to higher orders of
nonlinearity. We show that a time-domain Volterra kernel can
be perfectly represented in the STFT domain by a sum of
smaller-sized kernels in each frequency bin. Throughout this
work, unless explicitly noted, the summation indices range
from to .

A. Quadratically Nonlinear Systems

Consider a quadratically nonlinear system with an input
and an output . One of the most popular representations of
such system is a second-order Volterra filter that relates
and as follows:

(1)

where and are the linear and quadratic
Volterra kernels, respectively, and and denote
the corresponding output signals of the linear and quadratic
homogeneous components. To find a representation of in
the STFT domain, let us first briefly review some definitions of
the STFT representation of digital signals (for further details,
see, e.g., [35]).

The STFT representation of a signal is given by

(2)

where

(3)

denotes a translated and modulated window function, is an
analysis window of length is the frame index, represents
the frequency-bin index is the translation
factor (or the decimation factor, in filter-bank interpretation) and

denotes complex conjugation. The inverse STFT, i.e., recon-
struction of from its STFT representation , is given by

(4)

where

(5)

and denotes a synthesis window of length . Substituting
(2) into (4), we obtain the so-called completeness condition:

(6)

Given analysis and synthesis windows that satisfy (6), a signal
is guaranteed to be perfectly reconstructed from

its STFT coefficients . However, for and for a given
synthesis window , there might be an infinite number of
solutions to (6); therefore, the choice of the analysis window is
generally not unique [36], [37].

Using the linearity of the STFT, in (1) can be written in
the time-frequency domain as

(7)

where and are the STFT representations of
and , respectively. It is well known that in order to per-
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fectly represent a linear system in the STFT domain, cross-
band filters between subbands are generally required [30], [33].
Therefore, the output of the linear component can be expressed
in the STFT domain as

(8)

where denotes a crossband filter of length
from frequency bin to frequency

bin . These filters are used for canceling the aliasing effects
caused by the subsampling factor . The crossband filter
is related to the linear kernel by [30]

(9)

where the discrete-time Fourier transform (DTFT) of
with respect to the time index is given by

(10)

where and are the DTFT of and , re-
spectively. Note that the energy of the crossband filter from fre-
quency bin to frequency bin generally decreases as

increases, since the overlap between and
becomes smaller. Recently, we have investi-

gated the influence of crossband filters on a linear system identi-
fier implemented in the STFT domain [30]. We showed that in-
creasing the number of crossband filters not necessarily implies
a lower steady-state mean-square error (mse) in subbands. In
fact, the inclusion of more crossband filters in the identification
process is preferable only when high SNR or long data are con-
sidered. As will be shown later, the same applies also when an
additional nonlinear component is incorporated into the model.

The representation of the quadratic component’s output
in the STFT domain can be derived in a similar manner

to that of the linear component. Specifically, applying the
STFT to we may obtain after some manipulations (see
Appendix I)

(11)

where may be interpreted as a response of the
quadratic system to a pair of impulses
in the time-frequency domain. Equation (11) indicates that for
a given frequency-bin index , the temporal signal con-
sists of all possible interactions between pairs of input frequen-
cies. The contribution of each frequency pair

to the output signal at frequency bin is
given as a Volterra-like expansion with being its
quadratic kernel. The kernel in the time-frequency

domain is related to the quadratic kernel in the time
domain by (see Appendix I)

(12)

where denotes a 2D convolution and

(13)

Equation (13) implies that for fixed and , the quadratic
kernel is noncausal with noncausal
coefficients in each variable ( and ). Note that crossband
filters are also noncausal with the same number of noncausal
coefficients [30]. Hence, for system identification, an artificial
delay of can be applied to the system output
signal in order to consider a causal response. It can also be
seen from (13) that the memory length of each kernel is given
by

(14)

which is approximately times lower than the memory
length of the time-domain kernel . The sup-
port of is therefore given by where

.
To give further insight into the basic properties of the

quadratic STFT kernels , we apply the 2D DTFT
to with respect to the time indices and , and
obtain

(15)

By taking and to be ideal low-pass filters
with bandwidths (i.e., and
for ), a perfect STFT represen-
tation of the quadratic time-domain kernel
can be achieved by utilizing only kernels of the form

, since in this case the product of
and

is identically zero for . Practically, the
analysis and synthesis windows are not ideal and their band-
widths are greater than , so , and
consequently , are not zero. Nonetheless,
one can observe from (15) that the energy of
decreases as increases, since the
overlap between the translated window functions becomes
smaller. As a result, not all kernels in the STFT domain
should be considered in order to capture most of the energy
of the STFT representation of . This is illustrated in
Fig. 2, which shows the energy of , defined as

, for and
, as obtained by using rect-

angular, triangular and Hamming synthesis windows of length
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Fig. 2. Energy of � ����� [defined in (13)] for � � � and � � �, as
obtained for different synthesis windows of length � � ���.

. A corresponding minimum-energy analysis window
that satisfies the completeness condition [36] for
(50% overlap) is also employed. The results confirm that the
energy of , for fixed and , is concentrated
around the index .

As expected from (15), the number of useful quadratic ker-
nels in each frequency bin is mainly determined by the spectral
characteristics of the analysis and synthesis windows. That is,
windows with a narrow mainlobe (e.g., a rectangular window)
yield the sharpest decay, but suffer from wider energy distribu-
tion over due to relatively high sidelobes energy. Smoother
windows (e.g., Hamming window), on the other hand, enable
better energy concentration. For instance, utilizing a Hamming
window reduces the energy of for

by approximately 30 dB, when compared to
using a rectangular window. These results will be used in the
next section for deriving a useful model for nonlinear systems
in the STFT domain.

B. High-Order Nonlinear Systems

Let us now consider a generalized th-order nonlinear system
with an input and an output . A time-domain th-order
Volterra filter representation of this system is given by

(16)

where represents the output of the th-order homogeneous
Volterra filter, which is related to the input by

(17)

where is the th-order Volterra kernel, and
represents its memory length. This representation

is called symmetric if the Volterra kernels satisfy [11]

(18)

for any permutation . In order to reduce the redun-
dancy of the symmetric representation, the triangular or reg-
ular representations may be employed (for further details, see
e.g., [11]).

Applying the STFT to and following a similar deriva-
tion to that made for the quadratic case [see (11)–(13), and
Appendix I], we obtain after some manipulations

(19)

Equation (19) implies that the output of an th-order ho-
mogeneous Volterra filter in the STFT domain, at a given
frequency-bin index , consists of all possible combinations of

input frequencies. The contribution of each -fold frequency
indices to the th frequency bin is expressed in
terms of an th-order homogeneous Volterra expansion with
the kernel . Similarly to the quadratic case,
it can be shown that the STFT kernel in the
time-frequency domain is related to the kernel
in the time domain by

(20)

where denotes an -D convolution and

(21)

Equations (20)–(21) imply that for fixed indices , the
kernel is noncausal with noncausal
coefficients in each variable , and its overall memory
length is given by

(22)

Note that for and , (19)–(21) reduce to the
STFT representation of the linear kernel (8) and the quadratic
kernel (11), respectively. Furthermore, applying the -D DTFT
to with respect to the time indices

, we obtain

(23)

If both and were ideal low-pass filters with band-
width , the overlap between the translated
window functions in (23) would have been identically zero for

, and thus only kernels of the form
where would have

contributed to the output at frequency-bin index . Practically,
the energy is distributed over all kernels and particularly con-
centrated around the index , as was
demonstrated in Fig. 2 for the quadratic case .
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III. AN APPROXIMATE MODEL FOR NONLINEAR SYSTEMS IN

THE STFT DOMAIN

Representation of Volterra filters in the STFT domain in-
volves a large number of parameters and high error variance,
particularly when estimating the system from short and noisy
data. In this section, we introduce an approximate model for
improved nonlinear system identification in the STFT domain,
which simplifies the STFT representation of Volterra filters and
reduces the model complexity.

We start with an STFT representation of a second-order
Volterra filter. Recall that modeling the linear kernel requires

crossband filters in each frequency bin [see (8)], where
the length of each filter is approximately . For system
identification, however, only a few crossband filters need to
be considered [30], which leads to a computationally efficient
representation of the linear component. The quadratic Volterra
kernel representation, on the other hand, consists of ker-
nels in each frequency bin [see (11)], where the size of each
kernel in the STFT domain is approximately . A
perfect representation of the quadratic kernel is then achieved
by employing parameters in each frequency bin.
Even though it may be reduced by considering the symmetric
properties of the kernels, the complexity of such a model
remains extremely large.

To reduce the complexity of the quadratic model in the STFT
domain, let us assume that the analysis and synthesis filters
are selective enough, such that according to Fig. 2, most of
the energy of a quadratic kernel (for fixed and

) is concentrated in a small region around the index
. Accordingly, (11) can be efficiently approxi-

mated by

(24)

A further simplification can be made by extending the so-called
CMTF approximation, which was first introduced in [34], [38]
for the representation of linear systems in the STFT domain. Ac-
cording to this model, a linear system is represented in the STFT
domain by cross-multiplicative terms, rather than crossband fil-
ters, between distinct subbands. Following a similar reasoning,
a kernel in (24) may be approximated as purely
multiplicative in the STFT domain, so that (24) degenerates to

(25)

We refer to as a quadratic cross-term. The constraint
on the summation indices in (25) in-

dicates that only frequency indices , whose sum is or
,1 contribute to the output at frequency bin . This concept

is well illustrated in Fig. 3, which shows the two-di-
mensional plane. For calculating at frequency bin , only

1Since � and � range from 0 to � � �, the contribution of the difference
interaction of two frequencies to the �th frequency bin corresponds to the sum
interaction of the same two frequencies to the �� ���th frequency bin.

Fig. 3. Two-dimensional �� � � � plane. Only points on the line � � � � �

(corresponding to sum interactions) and the line � � � � � � � (corre-
sponding to difference interactions) contribute to the output at the �th frequency
bin.

points on the lines and need to
be considered. Moreover, the quadratic cross-terms have
unique values only at the upper triangle ACH. Therefore, the in-
tersection between this triangle and the lines and

bounds the range of the summation indices in
(25), such that can be compactly rewritten as

(26)

where
. Consequently, the number of cross-terms

at the th frequency bin has been reduced by a factor of two
to . Note that a further reduc-
tion in the model complexity can be achieved if the signals
are assumed real-valued, since in this case must satisfy

, and thus, only points in the grey area
contribute to the model output (in this case, it is sufficient to
consider only the first output frequency bins).

It is worthwhile noting the aliasing effects in the model
output signal. Aliasing exists in the output as a consequence of
sum and difference interactions that produce frequencies higher
than one-half of the Nyquist frequency. The input frequencies
causing these aliasing effects correspond to the points in the
triangles BDO and FGO. To avoid aliasing, one must require
that the value of is zero for all indices and

inside these triangles.
Finally, using (8) and (26) for representing the linear and

quadratic components of the system, respectively, we obtain

(27)
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Fig. 4. Block diagram of the proposed model for quadratically nonlinear sys-
tems in the STFT domain. The upper branch represents the linear component
of the system, which is modeled by the crossband filters � . The quadratic
component is modeled at the lower branch by using the quadratic cross-terms
� .

Equation (27) represents an explicit model for quadratically
nonlinear systems in the STFT domain. A block diagram of
the proposed model is illustrated in Fig. 4. Analogously to the
time-domain Volterra model, an important property of the pro-
posed model is the fact that its output depends linearly on the
coefficients, which means that conventional linear estimation
algorithms can be applied for estimating its parameters (see
Section IV).

The proposed STFT-domain model generalizes the conven-
tional discrete frequency-domain Volterra model [28], where the
linear and quadratic components of the system are modeled in
parallel using multiplicative terms:

(28)

where and are the th-length discrete Fourier
transforms (DFT’s) of the input and the output ,
respectively, and and are the linear and
quadratic Volterra transfer functions, respectively. A major
limitation of this model is its underlying assumption that the
observation frame is sufficiently large compared with the
memory length of the linear kernel, which enables to approxi-
mate the linear convolution as multiplicative in the frequency
domain. Similarly, under this large-frame assumption, the
linear component in the proposed model (27) can be approxi-
mated as a multiplicative transfer function (MTF) [39], [40].
Accordingly, the STFT model in (27) reduces to

(29)
which is in one-to-one correspondence with the frequency-do-
main model (28). Therefore, the frequency-domain model can
be regarded as a special case of the proposed model for rel-
atively large observation frames. In practice, a large observa-

tion frame may be very restrictive, especially when long and
time-varying impulse responses are considered (as in acoustic
echo cancellation applications [41]). A long frame restricts the
capability to identify and track time variations in the system,
since the system is assumed constant during the observation
frame. Additionally, as indicated in [39], increasing the frame
length (while retaining the relative overlap between consecutive
frames), reduces the number of available observations in each
frequency bin, which increases the variance of the system esti-
mate. Attempting to identify the system using the models (28)
or (29) yields a model mismatch that degrades the accuracy of
the linear-component estimate. The crossband filters represen-
tation, on the other hand, outperforms the MTF approach and
achieves a substantially lower mse value, even when relatively
long frames are considered [30]. Clearly, the proposed model
forms a much richer representation than that offered by the fre-
quency-domain model, and may correspondingly be useful for
a larger variety of applications.

In this context, it should be emphasized that the quadratic-
component representation provided by the proposed time-fre-
quency model (27) (and certainly by the frequency-domain
model) may not exactly represent a second-order Volterra filter
in the time domain, due to the approximations made in (24)
and (25). Nevertheless, the proposed STFT model forms a new
class of nonlinear models that may represent certain nonlinear
systems more efficiently than the conventional time-domain
Volterra model. In fact, as will be shown in Section V, the
proposed model may be more advantageous than the latter in
representing nonlinear systems with relatively long memory
due to its computational efficiency.

For completeness of discussion, let us extend the STFT model
to the general case of a th-order nonlinear system. Following
a similar derivation to that made for the quadratic case [see
(24)–(25)], the output of a th-order nonlinear system is mod-
eled in the STFT domain as

(30)

where the linear component is given by (8), and the
th-order homogeneous component is given by

(31)

Clearly, only -fold frequencies , whose sum is or
, contribute to the output at frequency bin . Conse-

quently, the number of cross-terms
involved in representing a th-order nonlinear system is given
by . Note that this number
can be further reduced by exploiting the symmetry property of
the cross-terms, as was done for the quadratic case.

IV. QUADRATICALLY NONLINEAR SYSTEM IDENTIFICATION

In this section, we consider the problem of identifying
quadratically nonlinear systems using the proposed STFT
model, and formulate an LS optimization criterion for es-
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timating the model parameters in each frequency bin. The
conventional time-domain Volterra filter identification is
also described, and a comparison between the STFT- and
time-domain models is carried out in terms of computational
complexity. Without loss of generality, we consider here only
the quadratic model due to its relatively simpler structure. The
quadratic model is appropriate for representing the nonlinear
behavior of many real world systems [42]. An extension to
higher nonlinearity orders is straightforward.

Let an input and output of an unknown (quadrati-
cally) nonlinear system be related by

(32)

where denotes a discrete-time nonlinear time-invariant
system, is a corrupting additive noise signal, and is
the clean output signal. Note that the “noise” signal may
sometimes include a useful signal, e.g., the local speaker signal
in acoustic echo cancellation. The problem of system identifi-
cation can be formulated as follows: Given an input signal
and noisy observation , construct a model for describing
the input-output relationship, and select its parameters so that
the model output best estimates (or predicts) the measured
output signal. We denote by the time-domain observable
data length, and by the number of samples in a
time-trajectory of the STFT representation (i.e., length of
for a given ).

A. Identification in the STFT Domain

A system identifier operating in the STFT domain is illus-
trated in Fig. 1. In the time-frequency domain, (32) may be
written as

(33)

To derive an estimator for the system output in the STFT
domain, we employ the quadratic STFT model proposed in the
previous section [see (27)]. Utilizing only crossband filters
around each frequency bin for the estimation of the linear com-
ponent, the resulting estimate can be written as

(34)

The influence of the number of estimated crossband filters
on the system identifier performance is demonstrated

in Section V.
Let be the filters at frequency bin

(35)

where is the cross-
band filter from frequency bin to frequency bin . Let
denote an Toeplitz matrix whose th term is

given by , and let be a concatenation of
along the column dimension

(36)

For notational simplicity, let us assume that and are both
even, such that according to (26), the number of quadratic cross-
terms in each frequency bin is . Then, let

(37)

denote the quadratic cross-terms at the th frequency bin, and
let

(38)

be an matrix, where
is a term-by-term

multiplication of the time-trajectories of at frequency bins
and , respectively. Then, the output signal estimate (34)

can be written in a vector form as

(39)

where , and
is the model parameter vector. The dimension

of is given by

(40)

Denoting the observable data vector by
, and using the above nota-

tions, the LS estimate of the model parameters at the th
frequency bin is given by

(41)

where we assume that is not singular.2 Note that both
and depend on the parameter , but for notational simplicity

has been omitted. Substituting (41) into (39), we obtain an
estimate of the system output in the STFT domain at the th
frequency bin. Repeating this estimation process for each fre-
quency bin and returning to the time-domain using the inverse
STFT (4), we obtain the system output estimator . The sub-
script s is to distinguish the subband-approach estimate from the
fullband-approach estimate [derived in Section IV-B].

Next, we evaluate the computational complexity of the pro-
posed approach. Computing the parameter vector estimate
requires a solution of the LS normal equations

for each frequency bin. This results in
arithmetic operations when using the Cholesky decomposition
[44], where is defined in (40). Computation of the desired

2In the ill-conditioned case, when � � is singular, matrix regularization
is required [43].
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signal estimate (39) requires additional arithmetic oper-
ations. Assuming is sufficiently large, the complexity associ-
ated with the proposed model is

(42)

Expectedly, we observe that the computational complexity
increases as increases. However, analogously to linear
system identification [30], incorporating crossband filters into
the model may yield lower mse for stronger and longer input
signals, as demonstrated in Section V.

B. Identification in the Time Domain

For time-domain system identification, we utilize the second-
order Volterra model, described in (1). Accordingly, an esti-
mator for the system output can be expressed as

(43)

where for the quadratic kernel, the triangular Volterra represen-
tation is used [11].

Let denote the linear
kernel, and let .
The quadratic kernel can be written in a vector notation as

(44)

where similarly we define

(45)

Then, the system output estimate (43) can be written in a vector
form as

(46)

where and is the model
parameter vector. Note that the dimension of , which deter-
mines the model complexity, is

(47)

Let , and let be an
matrix defined as . Then, the
LS estimate of is given by

(48)

Substituting (48) into (46), we obtain an estimate of the system
output in the time domain using a second-order Volterra
model.

As in the subband approach, forming the normal equations,
solving them using the Cholesky decomposition and calculating
the desired signal estimate, require arith-
metic operations. For sufficiently large , the computational
complexity of the fullband approach can be expressed as

(49)

It is worth noting that the complexity of the fullband approach
can be generally reduced by using efficient algorithms that ex-
ploit the special structure of the corresponding matrix in the LS
normal equations [45], [46].

C. Comparison and Discussion

Let denote the relative overlap between consecutive
analysis windows (this overlap determines the redundancy of
the STFT representation). Then, rewriting the subband approach
complexity (42) in terms of the fullband parameters (by using
the relations and ), the ratio between
the fullband and subband complexities can be written as

(50)

Expectedly, we observe that the computational gain achieved
by the proposed subband approach is mainly determined by the
STFT analysis window length , which represents the trade-off
between the linear- and nonlinear-component complexities.
Specifically, using a longer analysis window yields shorter
crossband filters , which reduces the computational
cost of the linear component, but at the same time increases
the nonlinear-component complexity by increasing the number
of quadratic cross-terms . Nonetheless, according to
(50), the complexity of the proposed subband approach would
typically be lower than that of the conventional fullband ap-
proach. For instance, for (i.e., ),

and the proposed approach
complexity is reduced by approximately 300, when compared
to the fullband-approach complexity. The computational effi-
ciency obtained by the proposed approach becomes even more
significant when systems with relatively large second-order
memory length are considered. This is because these systems
necessitate an extremely large memory length for the
quadratic kernel, when using the time-domain Volterra model,
such that and consequently .

An example of a long-memory system is an LEM system
in nonlinear acoustic echo cancellation applications [3]–[5].
The nonlinear behavior of this system is mainly introduced by
the loudspeakers and their amplifiers, especially when small
loudspeakers are driven at high volume. When parallel models
are considered for modeling the LEM system, the memory
length of the nonlinear component will also be determined
by the acoustic enclosure, which typically consists of several
thousands taps [41]. Consequently, attempting to estimate the
LEM system with the time-domain Volterra model involves
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high computational cost, which makes it impractical in real
applications. To reduce the model complexity, the Volterra
filters can be truncated in time [18], but then the system esti-
mate is less accurate. Other time-domain approximations for
Volterra filters employed for acoustic echo cancellation, such
as the Hammerstein model (i.e., a static nonlinearity followed
by a dynamic linear block, as in [3] and [5]), suggest a less
general structure than the Volterra filter. On the other hand,
the proposed STFT model offers both structural generality and
computational efficiency, which facilitate a practical alternative
for the time-domain Volterra approach, especially in repre-
senting systems with long memory.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that demon-
strate the effectiveness of the proposed subband approach in es-
timating and modeling quadratically nonlinear systems. A com-
parison to the conventional time-domain Volterra approach is
carried out in terms of mse performance for both synthetic white
Gaussian signals and real speech signals. The evaluation in-
cludes objective quality measures, a subjective study of tem-
poral waveforms, and informal listening tests. For the STFT, we
use half overlapping Hamming analysis windows of
samples length (i.e., ). The inverse STFT is imple-
mented with a minimum-energy synthesis window that satisfies
the completeness condition [36].

A. Performance Evaluation for White Gaussian Input Signals

In the first experiment, we examine the performances of the
Volterra and proposed models under the assumption of white
Gaussian signals. The system to be identified is formed as a
parallel combination of linear and quadratic components as
follows:

(51)

where is the true linear kernel and denotes
the output of the quadratic component. The input signal

and the additive noise signal are uncorrelated
zero-mean white Gaussian processes with variances and

, respectively. We model the linear kernel as a nonsta-
tionary stochastic process with an exponential decay envelope,
i.e., , where is the unit step
function, is a unit-variance zero-mean white Gaussian
noise, and is the decay exponent. In the following, we use

, and an observable data length of
samples. For evaluating the quality of the system

estimate, the normalized mse is defined as

(52)

where is the clean output signal [i.e., ],
, and and are the system output estimates

obtained by the proposed subband approach and the fullband
Volterra approach, respectively (see Section IV).

In the first experiment, we assume that the output signal of
the true-system’s quadratic component is generated

Fig. 5. MSE curves as a function of the SNR for white Gaussian signals, as
obtained by the proposed STFT model (34) and the conventional time-domain
Volterra model (43). The optimal value of � is indicated above the corre-
sponding MSE curve. The true system is formed as a combination of linear and
quadratic components, where the latter is modeled according to (53). (a) NLR
of 0 dB. (b) NLR of �20 dB.

according to the quadratic model proposed in (26). That is, de-
noting by the inverse STFT operator, can be ex-
pressed as

(53)

where are the true quadratic
cross-terms. These terms are modeled here as a unit-variance
zero-mean white Gaussian process. For both models, a memory
length of is employed for the linear kernel, where
the memory length of the quadratic kernel in the Volterra
model is set to 30. Fig. 5 shows the resulting mse curves as
a function of the SNR [the SNR is defined as the power ratio
between the clean output signal and the additive noise
signal ], as obtained for a nonlinear-to-linear ratio (NLR)
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TABLE I
MSE OBTAINED BY THE PROPOSED MODEL FOR SEVERAL� VALUES AND BY

THE VOLTERRA MODEL, UNDER VARIOUS SNR CONDITIONS. THE NLR IS 0 DB

of 0 dB [Fig. 5(a)] and dB [Fig. 5(b)]. The NLR represents
the power ratio between the output signals of the quadratic and
linear components of the true system. For the proposed model,
several values of are employed in order to determine the
influence of the number of estimated crossband filters on the
mse performance, and the optimal value that achieves the min-
imal mse (mmse) is indicated above the mse curve. Note that
a transition in the value of is indicated by a variation in the
width of the curve. Fig. 5(a) implies that for relatively low SNR
values, a lower mse is achieved by the conventional Volterra
model. For instance, for an SNR of 20 dB, employing the
Volterra model reduces the mse by approximately 10 dB, when
compared to that achieved by the proposed model. However,
for higher SNR conditions, the proposed model is considerably
more advantageous. For an SNR of 20 dB, for instance, the
proposed model enables a decrease of 17 dB in the mse using

(i.e., by incorporating 9 crossband filters into the
model). Table I specifies the mse values obtained by each value
of for various SNR conditions. We observe that for high
SNR values a significant improvement over the Volterra model
can also be attained by using only the band-to-band filters (i.e.,

), which further reduces the computational cost of the
proposed model. Clearly, as the SNR increases, a larger number
of crossband filters should be utilized to attain the mmse, which
is similar to what has been shown in the identification of purely
linear systems [30]. Note that similar results are obtained for a
smaller NLR value [Fig. 5(b)], with the only difference is that
the two curves intersect at a higher SNR value.

Fig. 5 also provides an insight into the influence of under-
modeling errors on the mse performance. Undermodeling errors
occur whenever a given model does not admit an exact descrip-
tion of the true system. In our case, the undermodeling error
of the Volterra model is due to the nonlinear component of the
system, which cannot be accurately described by a second-order
homogeneous Volterra filter. In the proposed model, on the other
hand, the undermodeling error is a consequence of restricting
the number of crossband filters in the linear component of the
model [while the system’s nonlinear component (53) can be per-
fectly represented by the model]. These undermodeling errors
cause the mse curves of both models to saturate. The saturation
values of the Volterra model and the proposed model, for any
value of (except for ), are given at the right column of
Table I (35 dB SNR). For the mse curve, the saturation
is attained at a relatively high SNR value [approximately 80 dB,
for a 0 dB NLR; not displayed in Fig. 5(a)]. This may be attrib-
utable to the fact that the linear component of the system can
be represented almost perfectly with only four crossband filters

TABLE II
AVERAGE RUNNING TIME IN TERMS OF CPU OF THE PROPOSED APPROACH

(FOR SEVERAL K VALUES) AND THE VOLTERRA APPROACH. THE

LENGTH OF THE OBSERVABLE DATA IS 24 000 SAMPLES

around each frequency bin [30], such that the undermodeling
error in this case becomes insignificant. Furthermore, a compar-
ison of Fig. 5(a) and (b) indicates that the saturated mse value
of the Volterra model decreases as the NLR decreases, which
stems from the fact that the error induced by the undermodeling
in the nonlinear component becomes less substantial as the non-
linearity strength decreases.

The complexity of the fullband and subband approaches (for
each value of ) is evaluated by computing the central pro-
cessing unit (CPU) running time3 of the LS estimation process.
The running time in terms of CPU seconds is averaged over sev-
eral SNR conditions and summarized in Table II. We observe,
as expected from (50), that the running time of the proposed
approach, for any value of , is substantially lower than that
of the Volterra approach. Specifically, the estimation process of
the Volterra model is approximately 12 and 4.5 times slower
than that of the proposed model with and , re-
spectively. Moreover, Table II indicates that the running time of
the proposed approach increases as more crossband filters are
estimated, as expected from (42).

Next, we compare the Volterra and proposed models for a
quadratically nonlinear system with a relatively large memory
length. We assume that the quadratic component of the true
system is given by

(54)

where is similar to that used in the previous experiment.
A system represented by (51) and (54) can be viewed as a mem-
oryless polynomial of the form followed by the
linear kernel . Such a representation has been employed
in acoustic echo cancellation applications, where memoryless
nonlinearities occur in the power amplifier of the loudspeaker
[5], [23]. Note that the memory length of the quadratic compo-
nent is now equal to that of the linear component, and therefore,
large values of should be used in the Volterra model in order
to achieve satisfactory results. Fig. 6 shows the resulting mse
curves as a function of the SNR, where for the Volterra model,
a relatively small memory length and a large one

are used. Clearly, as the SNR increases, the pro-
posed model outperforms the Volterra model (even for long ker-
nels) and yields the mmse. For instance, for an SNR of 25 dB,
an improvement of 16 dB can be achieved by using the proposed
model rather than the Volterra model with .

3The simulations were all performed under MATLAB; v.7.0, on a Core(TM)2
Duo P8400 2.27 GHz PC with 4 GB of RAM, running Windows Vista, Service
Pack 1.
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Fig. 6. MSE curves as a function of the SNR for white Gaussian signals, as
obtained by the proposed STFT model (34) and the conventional time-domain
Volterra model (43). The true system is formed as a memoryless polynomial of
the form ���� � � ��� followed by a linear block.

We observe that as the SNR increases, the mse performance
of the Volterra model can be generally improved by using a
longer memory for the quadratic kernel [at the expense of a con-
siderable increase in computational complexity, as indicated by
(49)]. This phenomenon is related to the problem of model-order
selection, a fundamental problem in many system identification
applications [1], [47]–[52], where in our case the model order
is determined by the memory length of the quadratic Volterra
kernel. Generally, the optimal model order is affected by the
level of noise in the data and the length of the observable data.
As the SNR increases or as more data is employable, the op-
timal model complexity increases, and correspondingly longer
quadratic kernels can be utilized to achieve lower mse. The same
reasoning is also relevant to explaining why the number of esti-
mated crossband filter in the proposed subband model increases
for larger SNRs. The experimental results show that a Volterra
model in the time domain is not sufficient for identification of
nonlinear systems with relatively long memory. The advantage
of the proposed model is demonstrated in estimation accuracy
and computational efficiency.

B. Acoustic Echo Cancellation Scenario

In the second experiment, we demonstrate the application of
the proposed approach to acoustic echo cancellation using real
speech signals. We use an ordinary office with a reverberation
time of about 100 ms. A far-end speech signal is fed
into a loudspeaker at high volume, thus introducing non-negli-
gible nonlinear distortion. The signal propagates through
the enclosure and received by a microphone as an echo signal
together with a local noise . The resulting noisy signal is
denoted by . In this experiment, the signals are sampled
at 16 kHz. Note that the acoustic echo canceller (AEC) perfor-
mance is evaluated in the absence of near-end speech, since a
double-talk detector (DTD) is usually employed for detecting
the near-end signal and freezing the estimation process [53],

Fig. 7. Speech waveforms and residual echo signals, obtained by the time-do-
main Volterra approach and the proposed subband approach. (a) Far-end signal.
(b) Microphone signal. (c)–(e) Error signals obtained by a purely linear model
in the time domain, the Volterra model with� � ��, and the proposed model
with� � �, respectively. For all models, a length of � � �	
 is assumed in
the linear kernel.

[54]. A commonly-used quality measure for evaluating the per-
formance of AECs is the echo-return loss enhancement (ERLE),
defined in dB by

(55)

where

(56)

is the error signal (or residual echo signal) and is defined
in (52).

Fig. 7(a) and (b) shows the far-end signal and the microphone
signal, respectively. Fig. 7(c)–(e) shows the error signals as ob-
tained by using a purely linear model in the time domain, a
Volterra model with , and the proposed model with

, respectively. For all models, a length of is
employed for the linear kernel. The ERLE values of the corre-
sponding error signals were computed by (55), and are given
by 14.56 dB (linear), 19.14 dB (Volterra), and 29.54 dB (pro-
posed). Clearly, the proposed approach achieves a significant
improvement over a time domain approach. This may be at-
tributable to the long memory of the system’s nonlinear com-
ponents which necessitate long kernels for sufficient modeling
of the acoustic path. Furthermore, a purely linear model does
not provide a sufficient echo attenuation due to nonlinear un-
dermodeling [55]–[57]. Subjective listening tests confirm that
the proposed approach achieves a perceptual improvement in
speech quality over the conventional Volterra approach (audio
files are available on-line [58]).

VI. CONCLUSION

Motivated by the common drawbacks of conventional time-
and frequency-domain methods, we have introduced a novel
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approach for identifying nonlinear systems in the STFT do-
main. We have derived an explicit nonlinear model, based on
an efficient approximation of Volterra-filters representation in
the time-frequency domain. The proposed model consists of
a parallel combination of a linear component, which is repre-
sented by crossband filters between subbands, and a nonlinear
component, modeled by multiplicative cross-terms. We showed
that the conventional discrete frequency-domain model is a
special case of the proposed model for relatively long observa-
tion frames. Furthermore, we considered the identification of
quadratically nonlinear systems and showed that a significant
reduction in computational cost can be achieved over the
time-domain Volterra model by the proposed approach. Experi-
mental results have demonstrated the advantage of the proposed
STFT model in estimating nonlinear systems with relatively
large memory length. The time-domain Volterra model fails to
estimate such systems due to its high complexity. The proposed
model, on the other hand, achieves a significant improvement
in mse performance, particularly for high SNR conditions.
It is worthwhile noting, though, that the experimental results
presented in this paper are applicable only for purely quadratic
systems. When higher nonlinearity orders are considered, one
should employ the extended STFT model [see (30)-(31)] and
follow a similar identification process to that made for the
quadratic case.

Overall, the results have met the expectations originally put
into STFT-based estimation techniques. The proposed approach
in the STFT domain offers both structural generality and com-
putational efficiency, and consequently facilitates a practical al-
ternative for conventional methods.

Since practically many real-world systems are time-varying,
the approach proposed in this paper should be made adaptive
in order to track these variations. Recently, an adaptive estima-
tion of the model parameters and a detailed convergence anal-
ysis of the adaptation process was introduced [59]. Future re-
search will concentrate on constructing a fully adaptive-control
scheme, which exploits the attractive properties of the proposed
model and provides a balance between complexity, convergence
rate and steady-state performance.

APPENDIX

DERIVATION OF (11)

Using (2) and (1), the STFT of can be written as

(57)

Substituting (4) into (57), we obtain

(58)

where

(59)

Substituting (3) and (5) into (59), we obtain

(60)

where denotes a 2D convolution with respect to the time in-
dices and , and

(61)

From (60), depends on and rather
than on and separately. Substituting (60) into (58), we
obtain (11).

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their con-
structive comments and helpful suggestions.

REFERENCES

[1] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper
Saddle River, NJ: Prentice-Hall, 1999.

[2] R. Pintelon and J. Schoukens, System Identification: A Frequency Do-
main Approach. Piscataway, NJ: IEEE, 2001.

[3] H. Dai and W. P. Zhu, “Compensation of loudspeaker nonlinearity in
acoustic echo cancellation using raised-cosine function,” IEEE Trans.
Circuits Syst. II, vol. 53, no. 11, pp. 1190–2006, Nov. 2006.

[4] A. Guérin, G. Faucon, and R. L. Bouquin-Jeannés, “Nonlinear acoustic
echo cancellation based on Volterra filters,” IEEE Trans. Speech Audio
Process., vol. 11, no. 6, pp. 672–683, Nov. 2003.

[5] A. Stenger and W. Kellermann, “Adaptation of a memoryless pre-
processor for nonlinear acoustic echo cancelling,” Signal Process.,
vol. 80, no. 9, pp. 1747–1760, 2000.

[6] S. Benedetto and E. Biglieri, “Nonlinear equalization of digital satellite
channels,” IEEE J. Sel. Areas Commun., vol. SAC-1, pp. 57–62, Jan.
1983.

[7] D. G. Lainiotis and P. Papaparaskeva, “A partitioned adaptive approach
to nonlinear channel equalization,” IEEE Trans. Commun., vol. 46, no.
10, pp. 1325–1336, Oct. 1998.

[8] D. T. Westwick and R. E. Kearney, “Separable least squares identifi-
cation of nonlinear Hammerstein models: Application to stretch reflex
dynamics,” Ann. Biomed. Eng., vol. 29, no. 8, pp. 707–718, Aug. 2001.

[9] G. Ramponi and G. L. Sicuranza, “Quadratic digital filters for image
processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
no. 6, pp. 937–939, June 1988.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 20, 2010 at 08:51 from IEEE Xplore.  Restrictions apply. 



AVARGEL AND COHEN: NONLINEAR SYSTEMS IN THE STFT DOMAIN 303

[10] F. Gao and W. M. Snelgrove, “Adaptive linearization of a loudspeaker,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Toronto,
Canada, May 1991, pp. 3589–3592.

[11] W. J. Rugh, Nonlinear System Theory: The Volterra- Wiener Ap-
proach. Baltimore, MD: John Hopkins Univ. Press, 1981.

[12] T. Koh and E. J. Powers, “Second-order Volterra filtering and its
application to nonlinear system identification,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-33, no. 6, pp. 1445–1455, Dec.
1985.

[13] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Sys-
tems. New York: Krieger, 1989.

[14] V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Process.
Mag., vol. 8, no. 3, pp. 10–26, Jul. 1991.

[15] G. O. Glentis, P. Koukoulas, and N. Kalouptsidis, “Efficient algorithms
for Volterra system identification,” IEEE Trans. Signal Process., vol.
47, no. 11, pp. 3042–3057, Nov. 1999.

[16] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing.
New York: Wiley, 2000.

[17] A. Fermo, A. Carini, and G. L. Sicuranza, “Simplified Volterra fil-
ters for acoustic echo cancellation in GSM receivers,” in Eur. Signal
Process. Conf., Tampere, Finland, 2000.

[18] A. Stenger, L. Trautmann, and R. Rabenstein, “Nonlinear acoustic echo
cancellation with 2nd order adaptive Volterra filters,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., Phoenix, AZ, Mar. 1999, pp.
877–880.

[19] E. Biglieri, A. Gersho, R. D. Gitlin, and T. L. Lim, “Adaptive cancel-
lation of nonlinear intersymbol interference for voiceband data trans-
mission,” IEEE J. Sel. Areas Commun., vol. 2, no. 5, pp. 765–777, Sep.
1984.

[20] R. D. Nowak, “Penalized least squares estimation of Volterra filters and
higher order statistics,” IEEE Trans. Signal Process., vol. 46, no. 2, pp.
419–428, Feb. 1998.

[21] S. Im and E. J. Powers, “A block LMS algorithm for third-order fre-
quency-domain Volterra filters,” IEEE Signal Process. Lett., vol. 4, no.
3, pp. 75–78, Mar. 1997.

[22] R. D. Nowak and B. D. V. Veen, “Random and pseudorandom inputs
for Volterra filter identification,” IEEE Trans. Signal Process., vol. 42,
no. 8, pp. 2124–2135, Aug. 1994.

[23] F. Kuech and W. Kellermann, “Orthogonalized power filters for
nonlinear acoustic echo cancellation,” Signal Process., vol. 86, pp.
1168–1181, 2006.

[24] E. W. Bai and M. Fu, “A blind approach to Hammerstein model iden-
tification,” IEEE Trans. Signal Process., vol. 50, no. 7, pp. 1610–1619,
Jul. 2002.

[25] T. M. Panicker, “Parallel-cascade realization and approximation of
truncated Volterra systems,” IEEE Trans. Signal Process., vol. 46, no.
10, pp. 2829–2832, Oct. 1998.

[26] W. A. Frank, “An efficient approximation to the quadratic Volterra
filter and its application in real-time loudspeaker linearization,” Signal
Process., vol. 45, pp. 97–113, 1995.

[27] P. Koukoulas and N. Kalouptsidis, “Nonlinear system identification
using Gaussian inputs,” IEEE Trans. Signal Process., vol. 43, no. 8,
pp. 1831–1841, Aug. 1995.

[28] K. I. Kim and E. J. Powers, “A digital method of modeling quadrat-
ically nonlinear systems with a general random input,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 36, no. 11, pp. 1758–1769, Nov.
1988.

[29] C. H. Tseng and E. J. Powers, “Batch and adaptive Volterra filtering of
cubically nonlinear systems with a Gaussian input,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), 1993, vol. 1, pp. 40–43.

[30] Y. Avargel and I. Cohen, “System identification in the short-time
Fourier transform domain with crossband filtering,” IEEE Trans.
Audio Speech Lang. Process., vol. 15, no. 4, pp. 1305–1319, May
2007.

[31] C. Faller and J. Chen, “Suppressing acoustic echo in a spectral envelope
space,” IEEE Trans. Acoust., Speech, Signal Process., vol. 13, no. 5, pp.
1048–1062, Sep. 2005.

[32] Y. Lu and J. M. Morris, “Gabor expansion for adaptive echo cancella-
tion,” IEEE Signal Process. Mag., vol. 16, pp. 68–80, Mar. 1999.

[33] A. Gilloire and M. Vetterli, “Adaptive filtering in subbands with critical
sampling: Analysis, experiments, and application to acoustic echo can-
cellation,” IEEE Trans. Signal Process., vol. 40, no. 8, pp. 1862–1875,
Aug. 1992.

[34] Y. Avargel and I. Cohen, “Adaptive system identification in the short-
time Fourier transform domain using cross-multiplicative transfer func-
tion approximation,” IEEE Trans. Audio Speech Lang. Process., vol.
16, no. 1, pp. 162–173, Jan. 2008.

[35] M. R. Portnoff, “Time-frequency representation of digital signals and
systems based on short-time Fourier analysis,” IEEE Trans. Signal
Process., vol. ASSP-28, no. 1, pp. 55–69, Feb. 1980.

[36] J. Wexler and S. Raz, “Discrete Gabor expansions,” Signal Process.,
vol. 21, pp. 207–220, Nov. 1990.

[37] S. Qian and D. Chen, “Discrete Gabor transform,” IEEE Trans. Signal
Process., vol. 41, no. 7, pp. 2429–2438, Jul. 1993.

[38] Y. Avargel and I. Cohen, “Identification of linear systems with adaptive
control of the cross-multiplicative transfer function approximation,” in
Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., Las Vegas, NV,
Apr. 2008, pp. 3789–3792.

[39] Y. Avargel and I. Cohen, “On multiplicative transfer function approx-
imation in the short-time Fourier transform domain,” IEEE Signal
Process. Lett., vol. 14, no. 5, pp. 337–340, May 2007.

[40] Y. Avargel and I. Cohen, “Nonlinear acoustic echo cancellation based
on a multiplicative transfer function approximation,” in Proc. Int. Work-
shop Acoust. Echo Noise Control (IWAENC), Seattle, WA, Sept. 2008,
pp. 1–4, paper no. 9035.

[41] C. Breining, P. Dreiseitel, E. Hänsler, A. Mader, B. Nitsch, H. Puder,
T. Schertler, G. Schmidt, and J. Tlip, “Acoustic echo control,” IEEE
Signal Process. Mag., vol. 16, no. 4, pp. 42–69, Jul. 1999.

[42] G. L. Sicuranza, “Quadratic filters for signal processing,” in Proc.
IEEE, Aug. 1992, vol. 80, no. 8, pp. 1263–1285.

[43] A. Neumaier, “Solving ill-conditioned and singular linear systems: A
tutorial on regularization,” SIAM Rev., vol. 40, no. 3, pp. 636–666, Sept.
1998.

[44] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Balti-
more, MD: The Johns Hopkins Univ. Press, 1996.

[45] G. Glentis and N. Kalouptsidis, “Efficient multichannel FIR filtering
using a step versatile order recursive algorithm,” Signal Process., vol.
37, no. 3, pp. 437–462, Jun. 1994.

[46] G. Glentis and N. Kalouptsidis, “Efficient order recursive algorithms
for multichannel least squares filtering,” IEEE Trans. Signal Process.,
vol. 40, no. 6, pp. 1354–1374, Jun. 1992.

[47] F. D. Ridder, R. Pintelon, J. Schoukens, and D. P. Gillikin, “Modified
AIC and MDL model selection criteria for short data records,” IEEE
Trans. Instrum. Meas., vol. 54, no. 1, pp. 144–150, Feb. 2005.

[48] G. Schwarz, “Estimating the dimension of a model,” Ann. Stat., vol. 6,
no. 2, pp. 461–464, 1978.

[49] P. Stoica and Y. Selen, “Model order selection: A review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47,
Jul. 2004.

[50] G. C. Goodwin, M. Gevers, and B. Ninness, “Quantifying the error in
estimated transfer functions with application to model order selection,”
IEEE Trans. Autom. Control, vol. 37, no. 7, pp. 913–928, Jul. 1992.

[51] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

[52] J. Rissanen, “Modeling by shortest data description,” Automatica, vol.
14, no. 5, pp. 465–471, 1978.

[53] J. Benesty, D. R. Morgan, and J. H. Cho, “A new class of doubletalk
detectors based on cross-correlation,” IEEE Trans. Speech Audio
Process., vol. 8, no. 2, pp. 168–172, Mar. 2000.

[54] J. H. Cho, D. R. Morgan, and J. Benesty, “An objective technique
for evaluating doubletalk detectors in acoustic echo cancelers,” IEEE
Trans. Speech Audio Process., vol. 7, no. 6, pp. 718–724, Nov. 1999.

[55] A. E. Nordsjo, B. M. Ninness, and T. Wigren, “Quantifying model error
caused by nonlinear undermodeling in linear system identification,” in
Preprints 13th World Congr. IFAC, San Francisco, CA, 1996, vol. I,
pp. 145–149.

[56] B. Ninness and S. Gibson, “Quantifying the accuracy of hammerstein
model estimation,” Automatica, vol. 38, no. 12, pp. 2037–2051, 2002.

[57] J. Schoukens, R. Pintelon, T. Dobrowiecki, and Y. Rolain, “Identifica-
tion of linear systems with nonlinear distortions,” Automatica, vol. 41,
no. 3, pp. 491–504, 2005.

[58] Y. Avargel, Homepage [Online]. Available: http://sipl.technion.ac.il/
~yekutiel

[59] Y. Avargel and I. Cohen, “Adaptive nonlinear system identification in
the short-time Fourier transform domain,” IEEE Trans. Signal Process.,
vol. 57, no. 10, pp. 3891–3904, Oct. 2009.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 20, 2010 at 08:51 from IEEE Xplore.  Restrictions apply. 



304 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 1, JANUARY 2010

Yekutiel Avargel (S’06) received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical engineering from the
Technion—Israel Institute of Technology, Haifa, in
2004, 2007, and 2008, respectively.

From 2003 to 2004, he was a Research Engineer
with RAFAEL Research Laboratories, Haifa, Israel
Ministry of Defense. Since 2004, he has been a Re-
search Assistant and a Project Supervisor with the
Signal and Image Processing Lab (SIPL), Electrical
Engineering Department, Technion. His research in-
terests are statistical signal processing, system iden-

tification, adaptive filtering, and digital speech processing.
Dr. Avargel received in 2008 the Jury award for distinguished graduate stu-

dents and the SIPL Excellent Supervisor award.

Israel Cohen (M’01–SM’03) received the B.Sc.
(summa cum laude), M.Sc. and Ph.D. degrees in
electrical engineering from the Technion—Israel
Institute of Technology, Haifa, in 1990, 1993, and
1998, respectively.

From 1990 to 1998, he was a Research Scientist
with RAFAEL Research Laboratories, Haifa, Israel
Ministry of Defense. From 1998 to 2001, he was a
Postdoctoral Research Associate with the Computer
Science Department, Yale University, New Haven,
CT. In 2001, he joined the Electrical Engineering

Department, Technion, where he is currently an Associate Professor. His
research interests are statistical signal processing, analysis and modeling of
acoustic signals, speech enhancement, noise estimation, microphone arrays,
source localization, blind source separation, system identification, and adaptive
filtering. He is a coeditor of the Multichannel Speech Processing section of
the Springer Handbook of Speech Processing (New York: Springer, 2007), a
coauthor of Noise Reduction in Speech Processing (New York:Springer, 2009).

Dr. Cohen served as Guest Editor of a special issue of the EURASIP Journal
on Advances in Signal Processing on Advances in Multimicrophone Speech
Processing and a special issue of the EURASIP Speech Communication Journal
on Speech Enhancement, and a Co-Chair of the 2010 International Workshop
on Acoustic Echo and Noise Control. He received the Technion Excellent Lec-
turer awards in 2005 and 2006, and the Muriel and David Jacknow award for
Excellence in Teaching in 2009. He served as Associate Editor of the IEEE
TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING and IEEE
SIGNAL PROCESSING LETTERS.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 20, 2010 at 08:51 from IEEE Xplore.  Restrictions apply. 


