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Abstract—In this paper, we address the problem of multiple
view data fusion in the presence of noise and interferences. Recent
studies have approached this problem using kernel methods, by
relying particularly on a product of kernels constructed separately
for each view. From a graph theory point of view, we analyze this
fusion approach in a discrete setting. More specifically, based on
a statistical model for the connectivity between data points, we
propose an algorithm for the selection of the kernel bandwidth, a
parameter that, as we show, has important implications on the ro-
bustness of this fusion approach to interferences. Then, we consider
the fusion of audio-visual speech signals measured by a single mi-
crophone and by a video camera pointed to the face of the speaker.
Specifically, we address the task of voice activity detection, i.e., the
detection of speech and nonspeech segments, in the presence of
structured interferences such as keyboard taps and office noise.
We propose an algorithm for voice activity detection based on the
audio-visual signal. Simulation results show that the proposed al-
gorithm outperforms competing fusion and voice activity detection
approaches. In addition, we demonstrate that a proper selection of
the kernel bandwidth indeed leads to improved performance.

Index Terms—Kernel method, data fusion, sensor fusion, audio-
visual, voice activity detection, alternating-diffusion, multi-view.

I. INTRODUCTION

MULTIPLE view data fusion is the process of obtaining a
unified representation of data captured in multiple mea-

surement systems of different types. Data fusion has recently
attracted a growing interest in the signal processing and data
analysis communities due to an extensive use of multiple sen-
sors in everyday devices such as computers and smartphones.
Often, data measured in multiple views is contaminated with
noises and interferences which are view specific, and fusing
the views may allow for obtaining representations of the data,
which are robust to the interferences. A challenging example
which we consider in the current work is the fusion of audio and
visual recordings of a speaker. While each view (audio or video)
possibly consists of view-specific interferences (e.g., acoustic
noises or face movements), their fusion may give rise to a robust
representation of speech.

In this paper, we use a kernel based geometric approach to
address the problem of multiple view data fusion. Classical
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methods, e.g., those presented in [1]–[5], represent a class of
non-linear dimensionality reduction methods designed for data
measured in a single view. By learning geometric structures
of high dimensional data, these methods provide low dimen-
sional representations of the data via eigenvalue decomposition
of an affinity kernel. The low dimensional representations pre-
serve the geometry of the data, i.e., local affinities between
data points, and they are successfully used in a wide range of
applications such as anomaly and target detection and speech
enhancement [6]–[9]. However, when the data is corrupted by
structured interferences, the kernel methods learn the structure
of the interferences along with the structure of the data. There-
fore, the obtained low dimensional representation retains the
relations between the data and the interferences, and, as a result,
the kernel methods have a limited robustness to the interfer-
ences.

The potential of improving the robustness of the obtained
representations to interferences by fusing data captured in mul-
tiple views, has recently motivated researchers extending kernel-
based geometric methods to the multiple views case [10]–[22].
Among these studies, we mention the studies presented in
[12], [16], [20]–[22] sharing similar ideas of constructing sep-
arate affinity kernels for each view, and fusing the data by the
product between the affinity kernels. A method of particular in-
terest in this work was presented in [21], where special emphasis
is given to the robustness of the fusion process to interferences.
The authors presented a data fusion method termed alternating
diffusion maps, which is based on fusing the views by multiply-
ing between affinity kernels interpreted as employing separate
diffusion processes on each view in an alternating manner. By
analyzing the method in the continuous setting, it is shown that
the interruptions of a certain view are attenuated by the diffusion
steps of the other views.

The ability of kernel methods to properly learn the geomet-
ric structure of the data is highly dependent on the selection
of the kernel bandwidth, which also has important implications
on the robustness of the methods to interferences. The kernel
bandwidth, also called the scale parameter, defines a local neigh-
borhood such that all data points within the neighborhood are
considered similar, i.e., close to each other. It has an intuitive
interpretation by viewing the kernel methods from the graph
theory point of view, which we adopt throughout this paper. The
affinity kernel defines a graph whose nodes are the data points
and the edges are given by the affinities between the data points.
Accordingly, all data points located within a local neighborhood
defined by the kernel bandwidth are considered connected on
the graph. In the single view case, the kernel bandwidth is cho-
sen according to a trade-off. On the one hand, it has to be large
enough keeping the graph connected, which is a necessary con-
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dition for learning the geometry of the data [5], [23]–[25]. On
the other hand, the kernel bandwidth has to be as small as pos-
sible so that data and interferences will not share the same local
neighborhoods [26]. In the multiple view case, the selection of
the kernel bandwidth is not addressed in the literature, and the
kernel bandwidths are naively chosen in previous studies as if
the data is measured in a single view.

As an application for multiple view data fusion, we consider
in this paper the problem of audio-visual voice activity detection,
in which the goal is to detect time intervals of active speech from
audio-visual recordings. A common practice in the analysis of
speech measured by a video camera is the design of features
modeling the shape and the movement of the mouth. Exam-
ples of such features are the height and the width of the mouth
[27], [28], key-points at the mouth region [29]–[31], intensity
levels of the mouth region [32], and motion vectors [33], [34].
Two main approaches that exist in the literature for the incor-
poration of the audio and video signals, are called early and
late fusion [35], [36]. In early fusion, features, constructed from
the audio and video signals, are concatenated into a single fea-
ture vector and are viewed as data obtained in a single view [37].
In late fusion the signals are often combined using statistical
models such as Bayesian networks that incorporate probabili-
ties of speech presence, obtained separately from each modality
[38], [39]. In [40], we presented a kernel method, in which a
low dimensional representation of the data is learned separately
for each view. Then, two separate estimators for speech pres-
ence are constructed based on the two representations, and the
data is fused by merging the estimators. In this paper, we de-
viate from these two common approaches focusing on learning
the complex mutual structures (relations) of the data in the two
views.

In this study, we address the fusion problem of data obtained
in multiple views. We revisit the alternating diffusion maps
method and analyze it from a different point of view than in
[21] using a discrete setting. By adopting ideas from [12], [41],
we study how connected data points on graphs of each view
affect the connectivity of the graph obtained by fusing the views
via the product of the affinity kernels. By assuming a statistical
model on the connectivity between data points in each view, we
use a simple argument to show that the kernel bandwidth of each
view may be chosen such that the graph defined on each single
view is not fully connected. This allows us to use significantly
smaller kernel bandwidths improving the robustness of the fu-
sion process to interferences. Based on the introduced statistical
model, we propose an algorithm for the selection of the kernel
bandwidth. We note that throughout this paper we consider the
selection of the kernel bandwidth for the alternating diffusion
maps method presented in [21]. However, the provided analysis
and the proposed algorithm may be extended with mild modifi-
cations to the methods presented in [12], [16], [20], [22], which
are also based on the product between the affinity kernels of the
views.

Using the alternating diffusion mas with the new algorithm
for determining the kernel bandwidth, we address the problem
of audio-visual voice activity detection, where the goal is to de-
tect segments of the measured signal containing active speech.

We consider a challenging setup in which a speech signal is
measured by a single microphone and a video camera in the
presence of high levels of acoustic noises and transients, which
are short term interruptions, e.g., keyboard taps and office noise
[42], [43]. In the video signal, there exist natural mouth move-
ments during non-speech periods which wrongly appear similar
to speech. The alternating diffusion maps method is particu-
larly suitable for the fusion of the audio-visual data in this
setup since it integrates out the interferences, which are view
specific, i.e., transients measured in the microphone and non-
speech mouth movements measured by the camera. Based on
the alternating diffusion maps method, we propose a data-driven
algorithm for voice activity detection. The algorithm comprises
a simple preprocessing stage of feature extraction and does not
require post-processing, and, in contrast to the method we pre-
sented in [40], it requires no training data. Our simulation results
demonstrate improved performance of the proposed algorithm
compared both to a similar algorithm based on a traditional
selection of the kernel bandwidth and compared to competing
fusion schemes.

The remainder of the paper is organized as follows. In
Section II, we briefly review the alternating diffusion maps
method. In Section III, we analyze the method in a discrete
setting using tools from graph theory, and propose an algo-
rithm for kernel bandwidth selection. In section IV we ad-
dress the problem of audio-visual voice activity detection and
propose an algorithm based on the alternating diffusion maps
method. The improved performance of the proposed algorithm is
demonstrated in Section V.

II. REVIEW OF THE ALTERNATING DIFFUSION MAPS METHOD

Consider a dataset of N samples captured in two different
views given by:

(v1 ,w1) , (v2 ,w2) , ..., (vN ,wN ) , (1)

where vn ∈ RLv and wn ∈ RLw are the nth data points of
the first and the second views, respectively. An example we
will address under this setup is an audio-visual recording of a
speaker, where vn is the nth time frame of the signal captured
in a microphone and wn is the corresponding video frame of
the mouth region of the speaker. The alternating diffusion maps
method presented in [21] is a kernel based geometric method for
data fusion. It is designed to reveal the geometric structure of the
data, which is mutual to the two views ignoring the interferences,
which are captured only in one of the views. In the following, we
shortly describe the construction of alternating diffusion maps.
Let Kv ∈ RN ×N be an affinity kernel representing affinities
between data points in the first view, such that the (n,m)th
entry of the matrix, denoted by Kv (n,m) is given by:

Kv (n,m) = exp
(
−||vn − vm ||2

εv

)
, (2)

where εv is the kernel bandwidth whose selection is discussed
in details in Section III. The affinity kernel Kv in (2) defines a
graph on the dataset in the first view such that each data point is
a vertex and Kv (n,m) is the weight of the edge between vertex
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n and vertex m. Let Mv ∈ RN ×N be a row stochastic Markov
matrix given by normalizing the rows of Kv :

Mv = D−1
v Kv , (3)

where Dv ∈ RN ×N is a diagonal matrix, whose nth element on
the diagonal is denoted by Dv (n, n) and is given by Dv (n, n) =∑N

m=1Kv (n,m). In this study, we use a row normalization
rather than a column normalization used in [21] allowing us
to facilitate the discussion and results in Section III, and our
experimental results showed a negligible effect on the type of
the normalization. The matrix Mv defines a Markov chain on
the graph such that Mv (n,m) is the probability of transitioning
from data point n to data point m in a single step. Similarly to
Kv , let Kw ∈ RN ×N be a matrix representing affinities between
data points in the second view, and let Mw ∈ RN ×N be the
corresponding row stochastic matrix. The views are fused by
constructing a unified matrix, which is denoted by M and is
given by the product of the row stochastic matrices [21]:

M = Mv · Mw . (4)

The matrixM is also row stochastic and it integrates the relations
between the data points over the two views; therefore, we term it
the multiple view Markov matrix. The continuous counterparts
of the matrices Mv and Mw in (4) are typically considered in the
literature as diffusion operators [5]. Likewise, the authors in [21]
considered M as an alternating diffusion operator consisting of
two diffusion steps on the two views, and showed that this
alternating diffusion attenuates the view-specific interferences.
In Section IV, we describe the construction of a unified low
dimensional representation of the data through the eigenvalue
decomposition of the matrix M similarly to obtaining a low
dimensional representation of the data in a single view using
principal component analysis.

III. GRAPH THEORY INTERPRETATION FOR KERNEL

BANDWIDTH SELECTION

Recall that the affinity kernel Kv in (2) defines a graph
on {vn}N

n=1 such that each data point vn is a vertex and

Kv (m,n) = exp(−||vn −vm ||2
εv

) is the weight of the edge be-
tween vertex n and vertex m. The kernel bandwidth εv controls
the connectivity of the graph. When ||vn − vm ||2 < εv , high
similarities are obtained between data points n and m, and they
are considered connected; when ||vn − vm ||2 � εv the simi-
larity between the points is negligible and we assume no edge
between the points. In order to capture the geometric structure
of the data, common practice is to set the kernel bandwidth such
that each data point is connected to at least one other point, i.e.:

εv > max
m

[
min

n

(
||vn − vm ||2

)]
. (5)

This choice is a necessary condition for the graph defined on
the dataset to be connected such that there exists a path between
every pair of points. In turn, a connected graph is a necessary
condition for the eigenvectors of the affinity kernel to form a
discrete orthogonal basis. This property is typically used for the
construction of low dimensional representations [5], [25]. Yet,

the kernel bandwidth should be sufficiently small to prevent the
association of data points with different content. In [26], the
authors proposed choosing the value of the kernel bandwidth
by:

εv = C · max
m

[
min

n

(
||vn − vm ||2

)]
, (6)

where C is a parameter typically set in the range of 2 ÷ 3 to em-
pirically guarantee that the graph is connected in the single view
case such that each point is connected to several other points.
We note that the row normalization in (3) does not change the
graph connectivity, but normalize the weights of each point such
that they sum to one. In this paper, we focus on the selection
of the kernel bandwidth according to (6), yet other existing
methods based, for example, on using a fixed number of con-
nections to each point also rely on a similar graph connectivity
[23], [25], [44].

In the multiple view case, the kernel bandwidth in each view
is typically set in the literature as if the data is captured only in
a single view and also require graph connectivity for each view,
e.g, in [12], [16], [20], [21]. In contrast, we show that when
the data is measured in multiple views, the graph of each single
view does not necessarily have to be connected.

To demonstrate this idea, we consider a multiple view graph,
which is defined by the Markov matrix M in (4). The vertices
of the graph are pairs of data points {(vn ,wn )}N

n=1 , and the
matrix M defines a Markov chain on this graph such that the
(n,m)th entry of M is the probability of a transition from vertex
n to vertex m. For simplicity, we relate to (say) vertex n as to
point n even though it is related to the pair of points (vn ,wn ).
The matrix M aggregates the relations between the data points
based on the two views; there exists an edge between point n and
point m in the multiple view graph if the transition probability
between them, given by M(n,m), is non-zero.

To capture the geometric structure of the data, the necessary
condition that each point is connected to at least one other
point applies to the multiple view graph and not to the graphs
of the single views. Namely, the single view graphs can be
disconnected while each point in the multiple view graph is
connected1 as demonstrated by Proposition 1.

Proposition 1: ∀n, ∃m �= n such that M(n,m) �= 0 iff
∀n, ∃m �= n such that Mv (n,m) �= 0 or Mw (n,m) �= 0.

Proposition 1 implies that each point in the multiple view
graph is connected if it is connected at least in one of the views.

Proof: If point n is disconnected in the first view, the nth
row of the affinity kernel of the first view Kv is given by:

(Kv (n, 1),Kv (n, 2), ...,Kv (n, n), ...,Kv (n,N)) =
(0, 0, ..., 1, ...0) .

Consequently, the nth row of the corresponding row stochastic
Markov matrix Mv is given by:

(Mv (n, 1),Mv (n, 2), ...,Mv (n, n), ...,Mv (n,N)) =
(0, 0, ..., 1, ...0) .

1We say that a point is connected if it is connected to at least one other point.
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According to (4) and by the rule of matrix product, the nth row
of M is given by:

(0, 0, ..., 1, ...0) · Mw = (Mw (n, 1),Mw (n, 2), ...,Mw (n, n),

...,Mw (n,N)) .

Therefore, M(n,m) �= 0 iff Mw (n,m) �= 0. If point n is con-
nected to (say) point m in the first view, i.e., Mv (n,m) �= 0,
by the matrix product rule, the nth row in M is given by
a linear combination of row n and row m in Mw ; since
Mw (m,m) �= 0 (each point is connected to itself), we have
that M(n,m) �= 0. �

Namely, the necessary condition to learn the geometry of the
data from two views is that each point is connected at least in
one of the views. Therefore, the kernel bandwidths of each view
may be set to small values without satisfying the requirement
that the graphs of the single views are connected. We will show
in Section V that assigning small values to the kernel bandwidth
increases the robustness of the representation obtained using the
multiple view affinity kernel to interferences.

The remainder of this section revolves around the selection of
the kernel bandwidth. By using a simplifying statistical model
for the graph connectivity, we associate the selection of the ker-
nel bandwidth in the single view case with the average number
of connections, which we denote by δ. Then we show that in
the multiple view case a proper kernel bandwidth is obtained by
reducing the number of connections up to a root factor, i.e.,

√
δ.

Based on this result, we present an algorithm for the selection
of the kernel bandwidths.

Let 1v (n,m) be an indicator which equals one if point n
and point m are connected in the first view and zero other-
wise. For simplicity, we assume that each pair of data points is
connected with probability pv independently from all other data-
points in the view. Namely, {1v (n,m)}n,m are independent and
identically distributed (iid) random variables such that:

1v (n,m) =

{
1, w.p. pv

0, otherwise

}
. (7)

In addition, we assume that the connectivity between data points
in a certain view is independent from the connectivity in the
other views. We note that these two assumptions do not usually
hold in practice. For example, two points being connected to a
third point implies that the two points are close to each other,
and as a result, they are connected with high probability. In
addition, since the data from the different views are measure-
ments of the same phenomenon, high correlation is expected
across the views. Yet, we justify these assumptions by consid-
ering data contaminated with interferences, and assuming that
the interferences reduce these correlations.

Based on this statistical model, the number of connections of
a certain point to the other N − 1 points in the graph of the first
view is given by a binomial distribution, denoted by Bv :

Bv (N − 1, pv ) .

The parameter pv is directly related to the kernel bandwidth εv

in (2); the larger the kernel bandwidth, the higher the prob-
ability that two points are connected. We assume that the

kernel bandwidth, and therefore pv , are chosen such that each
point is connected on average to Sv points, i.e., pv ≈ Sv

N −1 ,
because pv · (N − 1) is the expectation of the binomial distri-
bution. Based on this model, the probability that a certain point
is disconnected is denoted by qv and is given by:

qv = (1 − pv )N −1 .

For large values of N , we approximate qv by:

qv ≈
(

1 − Sv

N − 1

)N −1

≈ e−Sv . (8)

We note that we assumed in (8) that the average number of
connections Sv does not depend on the number of data points N .
In fact, some studies, e.g., the one presented in [23], suggest
setting a constant number of connections to each point regardless
to the size of the dataset.

In the single view case, the kernel bandwidth εv is chosen
such that the graph is connected. Under this statistical model,
it is equivalent to setting Sv such that the probability qv in
(8) approaches zero. Namely, setting the kernel bandwidth is
equivalent to setting the average number of connections Sv to a
certain value δ such that e−δ approaches zero.

We proceed by considering the multiple view case, in which
a similar statistical model is considered for the second view as
well. Let pw, Sw and qw be the equivalents of pv, Sv and qv in
the second view, respectively. We recall that a pair of points,
point n and point m, is connected in the multiple view graph if
the (n,m)th entry of M in (4) is non-zero. The (n,m)th entry
is explicitly written as:

M (n,m) =
∑

l

Mv (n, l) Mw (l,m) .

which implies that point n and point m are connected in the mul-
tiple view graph if there exists a third point l such that points n
and l are connected in the first view and points l and m are con-
nected in the second view. Accordingly, we show in the sequel
that the pair (n,m) is connected with the approximated prob-
ability Sv Sw

N −1 . The probability that the pair (n,m) is connected
via a third point l, l �= n �= m, is pvpw , so there will be on av-
erage (N − 2)pvpw + pv + pw such connected triplets, where
the two right terms correspond to the cases l = m and l = n,
respectively. We rewrite the term (N − 2)pvpw + pv + pw as:

(N − 2) pvpw + pv + pw = (N − 2)
Sv

N − 1
Sw

N − 1

+
Sv

N − 1
+

Sw

N − 1
≈ SvSw

N − 1

where the term N −2
N −1 approximately equals to one for large val-

ues of N , and the terms Sv

N −1 and Sw

N −1 have been neglected since
SvSw is larger than Sv and Sw by one order of magnitude. Typi-
cally, the average number of points connected to a certain point,
Sv in the first view or Sw in the second view, is significantly
smaller than N . Therefore, we assume that Sv Sw

N −1 < 1, and we
view this term as the probability that point n and point m are con-
nected in the multiple view graph. The number of connections
of each point in the multiple view graph is therefore given by
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the following binomial distribution:

B

(
N − 1,

SvSw

N − 1

)
, (9)

and, specifically, each point in the multiple view graph is con-
nected on average to SvSw other points. Based on the binomial
distribution and similarly to (8), the probability that a point is
disconnected in the multiple view graph, which we denote by q,
is approximated by:

q ≈
(

1 − SvSw

N − 1

)N −1

≈ e−Sv SW .

We interpret this result similarly to the result obtained for the
single view case; to meet the condition that each point in the
graph is connected, the probability q has to approach zero, i.e.,
q = e−δ as in the single view case, such that SvSw = δ. As-
suming for simplicity that Sv = Sw , the average number of
connections in each view should be set to Sv = Sw =

√
δ. In

summary, in the multiple view case, we may reduce the aver-
age number of connections of each point by a root factor, and
thus, significantly reduce the size of the kernel bandwidth, while
meeting the requirement on the connectivity of the multiple view
graph. We will show in Section V that this choice of the kernel
bandwidth improves the representation obtained by the multiple
view kernel method.

Next, we describe an algorithm for the selection of the ker-
nel bandwidths. For simplicity, we consider the selection of the
kernel bandwidth of the first view; the selection of the kernel
bandwidth of the second view is equivalent. We start by esti-
mating δ, i.e., the average number of connections to each point,
Sv = (N − 1)pv , when the kernel bandwidth is selected ac-
cording to (6) as if the data is captured only in a single view.
Recalling that pv is the probability that two arbitrary points are
connected, we propose estimating it by:

p̂v =
1

N(N − 1)

∑
m

∑
n �=m

Kv (n,m) , (10)

where p̂v is an estimate of pv , and Kv (n,m) is the (n,m)th entry
of the affinity kernel Kv in (2). According to (2), Kv (n,m) is in
the range of 0 ÷ 1 and a high value of Kv (n,m) indicates that
points n and m are connected. By selecting the kernel bandwidth
according to (6) as if the data captured in a single view, the
estimate of the average number of connections δ, denoted by δ̂,
is given by:

δ̂ = (N − 1) p̂v =
1
N

∑
m

∑
n �=m

Kv (n,m) , (11)

where we recall that δ = Sv = (N − 1)pv . We denote the new
bandwidth of the affinity kernel by εAD

v , where AD is alternat-
ing diffusion, and we select it such that the estimated average
number of connections, which we denote by δAD, is reduced to√

δ̂. We propose selecting εAD
v similarly to (6) by:

εAD
v = CAD · max

m

[
min
n �=m

(
||vn − vm ||2

)]
, (12)

Algorithm 1: Kernel bandwidth selection.
1: Calculate εv in (6) by setting C = 2 as if the data is

captured in a single view
2: Calculate Kv in (2)
3: Estimate δ̂ in (11)
4: Define: C = {Ck}|C|k=1 , where |C| = 40 and Ck = k

|C|
C = 0.05k

5: while |C| �= 1 do
6: CAD = C|C|/2

7: Estimate δAD similarly to (11) by recalculating Kv

with the parameter CAD

8: if δAD >
√

δ̂ then

9: C = {Ck}|C|/2
k=1

10: else
11: C = {Ck}|C|k= |C|/2+1
12: end if
13: end while
14: Using the obtained CAD, calculate the new kernel

bandwidth εAD
v in (12)

where CAD is a parameter in the range of 0 ÷ C. The selection
of a proper kernel bandwidth is reduced to the selection of the
parameter CAD decreasing the average number of connections
by a root factor. We recall that to estimate δ̂ in (11), we choose
C = 2 in (6) as if the data is captured in a single view, and
propose searching the parameter CAD within a discrete set whose
elements lie on a linear grid. Let C = {Ck}|C|k=1 be a discrete set
of size |C|, where Ck , k = 1, 2, ..., |C| are given by Ck = k

|C|C.
We propose applying a binary search within the set such that the
proposed kernel bandwidth, CAD, is given by the element Ck

for which the average number of connections δAD is the closest

to
√

δ̂. We summarize the proposed algorithm in Algorithm 1.

IV. AUDIO VISUAL FUSION WITH APPLICATION TO VOICE

ACTIVITY DETECTION

We consider speech measured by a single microphone and by
a video camera pointed to the face of the speaker. The audio-
visual signal is processed in frames, and we consider a sequence
of N frames, which are aligned in the two views (audio and
video). While speech is measured in the two views, the in-
terruptions are view specific. The audio signal consists of, in
addition to speech, background noise and transients, which are
short-term interferences, e.g. keyboard taps and office noise;
the video signal contains mouth movements during non-speech
intervals, which are considered as interferences since they ap-
pear similar to speech. Our goal is obtaining a representation of
speech, which is robust to noise and interferences. In order to ac-
complish this goal, we apply alternating diffusion maps, where
the kernel bandwidth is determined according to Algorithm 1.

The alternating diffusion maps method is applied in a domain
of features, which are designed to reduce the effect of the inter-
ferences [40]. The audio signal is regarded as the first view, and
it is represented by features based on Mel-Frequency Cepstral
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Coefficients (MFCC), which are commonly used for speech rep-
resentation [45]. Specifically, the nth data point in the first view,
vn ∈ RLv in (1), is the feature vector of the nth frame, and is
given by the concatenation of the MFCCs of frames n − 1, n,
and n + 1. Namely, Lv is the total number of the coefficients in
three consecutive frames. The use of consecutive frames reduces
the effect of transients since speech is assumed more consistent
over time compared to transients, which are rapidly varying.
The data obtained in the second view, i.e., the video signal, is
represented by motion vectors [46] such that the production of
speech is assumed associated to high levels of mouth movement.
The features representation of the nth frame of the video signal,
wn ∈ RLw , is given by concatenating the absolute values of the
motion vectors in frames n − 1, n and n + 1. Similarly to the
audio signal, the use of consecutive frames for representation
reduces the effect of short-term mouth movements during non-
speech intervals. For more details on the construction of the
features, we refer the reader to [40].

The representation using the specifically designed features
is only partly robust to the interferences. For example, video
features of a non-speech frame may be wrongly similar to the
features of a speech frame if the former contains large move-
ments of the mouth. To further improve the robustness of the
representation to noise, the two views are fused using the alter-
nating diffusion maps method with the improved affinity ker-
nels. Specifically, we construct the affinity kernels of the two
views, Mv and Mw , according to (2) and (3) using the fea-
tures {vn}N

n=1and {wn}N
n=1 , respectively, and fuse the views

by M = Mv · Mw . Then, we construct an eigenvalue decompo-
sition of M such that the eigenvectors aggregate the connections
between the data points within each view and between the views
into a global representation of the data. Since the matrix M
is row stochastic, the eigenvalue with the largest absolute value
is 1 and it corresponds to an all ones eigenvector [5]. This
eigenvector is neglected since it does not contain information.
We note that the eigenvectors of M are not guaranteed to be real
valued as it is guaranteed for the single view matrices Mv and
Mw since the latter are similar to symmetric matrices. There-
fore, one solution is using the singular value decomposition of
M; indeed, Lindenbaum et al. showed in [20] how to construct
a new representation of the data using the singular value decom-
position of M, in which the Euclidean distance between data
points approximates a multiple view variant of the meaningful
diffusion distance [5]. Yet, our experiments have shown that
the eigenvectors corresponding to the several largest eigenval-
ues of M are indeed real and that the two approaches perform
similarly.

We demonstrate the use of the representation obtained by
alternating diffusion maps for the problem of voice activity de-
tection. LetH0 ,H1 be hypotheses of speech absence and speech
presence, respectively, and let 1n denote a speech indicator at
the nth frame, given by:

1n =
{

1; H1

0; H0

}
.

Given a sequence of N frames, the goal is to estimate the speech
indicator, i.e., to separate the sequence of frames to speech and

Algorithm 2: Voice activity detection.
1: Calculate the features of the audio-visual signal

(v1 ,w1), (v2 ,w2), ..., (vN ,wN )
2: Calculate Kv and Kw according to (2) and Algorithm 1
3: Calculate Mv and Mw according to (3)
4: Fuse the views by calculating M in (4)
5: Obtain the leading eigenvector ν1
6: for n = 1 : N do
7: if ν1(n) > τ then
8: 1̂n = 1
9: else

10: 1̂n = 0
11: end if
12: end for

non-speech clusters. We found in our experiments that the ob-
tained representation of the audio-visual signal, and specifically,
its first coordinate, i.e., the leading (non-trivial) eigenvector of
the matrix M in (4), which we denote by ν1 ∈ RN , successfully
separates between speech and non-speech frames. Therefore, we
take a similar approach to [47] and estimate the speech indicator
by comparing the leading eigenvector to a threshold τ :

1̂n =
{

1; ν1(n) > τ

0; otherwise

}
, (13)

where ν1(n) in the nth entry of the eigenvector ν1 . We note
that the leading eigenvector ν1 is widely used in the literature
for clustering and it was shown in [48] that it solves the well-
known normalized cut problem. In contrast to previous works,
in this study the leading eigenvector is obtained from the multi-
ple view Markov matrix such that it clusters the data according
to the two views. Similarly to [47], the leading eigenvector is
used as a continuous measure of voice activity rather than for
binary clustering. Therefore, the threshold value controls the
trade-off between correct detection and false alarm rates, and
it may be chosen according to the specific application at hand.
The proposed voice activity detection algorithm is summarized
in Algorithm 2. Before proceeding to the experimental results,
we note that the proposed representation and hence the speech
indicator are obtained in a batch manner assuming that N con-
secutive frames are available in advance. Yet, as described in
[40], a training set may be used to construct the representation,
and then it can be extended to new incoming frames, e.g., using
the Nyström method, in an online manner [49].

V. SIMULATION RESULTS

We use a dataset that we recently presented in [40]. The sig-
nals are recorded using a microphone and a frontal video camera
of a smartphone pointed to the face of the speaker. The video
signal is processed in 25 fps and it comprises the region of
the mouth of the speaker automatically cropped out from the
recorded video as described in [40] and illustrated in Fig. 1. The
audio signal is processed in 8 kHz using time frames of 634 sam-
ples with 50% overlap, such that this setup aligns between the
audio and the video signals. According to this type of alignment,
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Fig. 1. An example of a video frame and the cropped mouth region.

the pair of points (vn ,wn ) corresponds to the same time frame
n, as required by the alternating diffusion maps method. In this
context, we note that due to the different sampling rates, the raw
audio data comprise samples of the measured phenomenon in
different (finer) time scales than the video data. In this paper,
we neglect the miss-alignment in the measurement time that is
below a single time frame, and consider the pair (vn ,wn ) as
two measurements obtained simultaneously. The dataset com-
prises 11 sequences of different speakers, each of which is 60 s
long containing speech and non-speech intervals. Each of the
11 sequences is processed separately such that the number of
frames in each sequence is N ≈ 1500.

The signals are recorded in a quiet room and we synthetically
add different types of background noise and transients to the
audio signal. The transients are taken from an online free corpus
[50] and they are normalized such that they have the same
maximal amplitude as the clean audio signal. Based on the
clean audio, we mark the ground truth in each frame, such that
frames with energy level higher than 1% of the highest energy
level in the sequence are marked as speech frames. This setup of
voice detection has a fine resolution of few tens of milliseconds,
and it is useful for application such as speech recognition where
single phonemes should be isolated [51], [52].

In the first experiment, we evaluate the proposed voice activ-
ity detection algorithm by comparing it to other versions of the
algorithm based only on a single view (audio or video). We term
the versions of the algorithm based on the first and the second
view “Audio” and “Video”, respectively, and the correspond-
ing speech indicators are estimated by comparing the leading
eigenvectors of the matrices Mv in (3) and Mw to a threshold,
respectively. In addition, we examine another four approaches
for the fusion of the views using the corresponding row stochas-
tic matrices. In the first approach, the fused matrix is given
by the Hadamard product between the matrices: Mv ◦ Mw ,
where ◦ denotes point-wise multiplication; in the second ap-
proach, the views are fused by a simple sum: Mv + Mw ; in
the third and the forth approaches we use point-wise minimum
and maximum functions. These approaches are termed in the
plots “Hadamard”, “Sum”, “Min” and “Max”, respectively. We

note that both in the proposed algorithm and in the compet-
ing methods, the speech indicator is estimated by the leading
eigenvector obtained by the eigenvalue decomposition with an
arbitrary sign. To set the sign of the eigenvector, one may for
example consider the variability of the video signal over time
such that the lack of mouth movement over several consecutive
frames indicates absence of speech. In this study, the sign of
the eigenvector is assumed to be known for all the methods.

In addition to the different merging schemes, we compare
the proposed algorithm to the method presented in [36] termed
“Tamura” in the plots. The performances of the algorithms are
presented in Fig. 2 for different types of transients in the form of
ROC curves, i.e., plots of probability of detection versus prob-
ability of false alarms. The larger the Area Under the Curve
(AUC) is, the better the performance of the algorithms are, and
the AUC of each algorithm is presented in the legend box. It can
be seen in the plots that the algorithm based on the video signal
provides relatively poor performance compared to the other al-
gorithms. This is mainly since the ground truth is set to a fine
resolution, and the video signal is not sensitive enough. For ex-
ample, video frames of a closed mouth may be measured during
both speech and non-speech intervals. We note that in most of
the previous studies, the video signal is used for the detection
of long speech intervals of several words, and it cannot detect
speech in fine resolutions. In addition, we note that we also
compared the proposed algorithm to the algorithm we recently
presented in [40]. However, due to the challenging problem set-
ting considered in this study, for which the speech is detected
at a fine resolution, we found that incorporating the visual in-
formation as proposed in [40] does not improve the detection
scores. Hence the simulation of [40] is not presented in the plots.

The audio signal in Fig. 2 also performs poorly due to the pres-
ence of transients, which are not properly separated from speech.
The alternative fusion approaches, slightly benefit from the fu-
sion of the sensors and provide performances comparable to the
performance obtained by the audio signal. The proposed fusion
of the audio-visual signal provides improved performance and
outperforms all the other algorithms.

To further gain insight on the performance of the proposed
algorithm for voice activity detection, we present in Fig. 3 an
example of speech detection in a sequence contaminated by
hammering. In this experiment, we set the threshold value in
(13) to provide 90% correct detection rate and compare the false
alarms resulting from the proposed algorithm to the false alarms
resulting from the algorithm presented in [36]. As demonstrated
in Fig. 3 (top), significantly less false alarms are received by the
proposed algorithm compared to the competing detector such
that the latter wrongly detects most of the transients as speech.

In Figs. 2 and 3, we calculate the parameters εv and εw for
both the proposed and the alternative fusion approaches ac-
cording to (6) by setting C = 2 as if the data is obtained in
a single view. We note that also for the alternative fusion ap-
proaches, the necessary condition for the connectivity holds for
the unified graphs defined by the corresponding fusion rules
and not for the single view graphs. Accordingly, to properly se-
lect the kernel bandwidth for these approaches, further analysis
of the connectivity of their corresponding graphs is required.
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Fig. 2. Probability of the detection vs probability of false alarm. Transient
type: (a) hammering, (b) door-knocks, (c) microwave.

Specifically, when εv = εw , the Hadamard approach is equiv-
alent to concatenating each pair of data points (vn ,wn ) into
a column vector, which is regarded as a data point obtained in
a single view (see Lemma 1 in [20]). In this case, the kernel
bandwidth indeed may be selected as in the single view case;
however, by setting εv = εw , the same weights are assigned to

Fig. 3. Qualitative assessment of the proposed algorithm for voice activ-
ity detection, with a hammering transient. (Top) Time domain, input signal-
black solid line, true speech- orange squares, true transients- purple stars,
“Tamura” with a threshold set for 90 percents correct detection rate- green trian-
gles, proposed algorithm with a threshold set for 90 percents correct detection
rate- blue circles. (Bottom) Spectrogram of the input signal.

the distances between points in each view, which is not neces-
sarily optimal since the data may be of different value range in
the two views. Since in this study we focus only on the anal-
ysis of the kernel product, we find it convenient to compare
the alternative fusion schemes by similarly selecting the kernel
bandwidths of all the methods in a traditional manner as if the
data is obtained in a single view.

We also evaluate the performance of the proposed algorithm
for different values of the kernel bandwidth εv , and present the
results in Fig. 4, where plots of the AUC of the proposed voice
activity detector versus the parameter C in (6) for different
types of noise and interferences are depicted. We recall that the
parameter C represents the kernel bandwidth such that in the
single view case, connected graphs typically correspond to C
values in the range 2 ÷ 3, and disconnected graphs correspond
to C values less than 1. The red solid line in Fig. 4 is obtained
by changing only the parameter C related to the audio signal
while keeping the parameter related to the video signal fixed
(with a constant value C = 2). The blue dot in the plots is CAD,
i.e., the proposed kernel bandwidth obtained by algorithm 1. We
empirically found that it is sufficient to search CAD over a grid
with a step size of C

|C| = 0.05, since tuning parameter values
with larger accuracy showed negligible effect on the estimated
average number of connections in the graph. It can be seen in
the plots that by reducing the value of the parameter C the AUC
is improved up to a peak obtained when C ≈ 0.5. The peak
value in the plots is the sweet spot in the trade-off in the kernel
bandwidth selection. On the one hand, small values of the ker-
nel bandwidth remove wrong connections in the graph between
speech and non-speech frames, resulting in a representation in
which these frames are better separated. On the other hand, too
small kernel bandwidth causes the multiple view graph to be dis-
connected. Indeed, the significant degradation of the AUC for
parameter values below the peak may indicate that the multiple
view graph is disconnected such that the obtained audio-visual



6414 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 24, DECEMBER 15, 2016

Fig. 4. AUC vs the parameter C of the audio view. (a) background noise:
babble noise with −5 dB SNR, (b) transient type: keyboard-taps, background
noise: colored Gaussian noise with −5 dB SNR.

representation no longer captures the geometric structure of
speech. The fact that the peak is obtained for parameter value
below 1 indicates that a better representation of the audio-visual
signal is obtained by setting the kernel bandwidth such that the
graph of the audio signal is disconnected. These plots demon-
strate the idea that the kernel bandwidth should be chosen as
the smallest possible keeping the graph of the multiple views
connected. In addition, Fig. 4 demonstrate the performance of
Algorithm 1 for the selection of the kernel bandwidth. The pa-
rameter C obtained by the algorithm, i.e., CAD, successfully
provides AUC close to the peak value.

The slight deviation of CAD to the left of the peak may be ex-
plained by the assumptions on the statistical model in Section III,
which may not hold in practice. Specifically, the assumption that
the connectivity in one view is independent of the connectivity
in the other view does not hold in practice, since both views
measure the same phenomenon. By taking the other extreme,
assuming that the two views are fully dependent, i.e., the affinity
matrices in the two views are identical, it may be shown in the
continuous domain that the kernels product is equivalent to two

diffusion steps of the size of the kernel bandwidth [53]. Namely,
it is equivalent to multiplying the kernel bandwidth by a factor
of two. Therefore, the kernel bandwidth in the multiple view
case should be divided by two to maintain the connectivity as in
the single view case. Accordingly, when the correlation between
the views is not negligible, the proper kernel bandwidth should
be set using the value of C in the range of [CAD, 1], where
C = 1 corresponds to the case of full correlation between the
views. Since the maximum in Fig. 4 is obtained for a value of
C, which is significantly smaller than 1, it implicitly implies a
low correlation between the connectivity in the two views.

We note that we also applied Algorithm 1 for the selection
of the kernel bandwidth of the video signal. We found in our
experiments that it performs comparably to the selection of
the kernel bandwidth as in the single view case. Indeed, we
expect to benefit from the algorithm only when there are high
levels of noise and interferences. The video signal is considered
relatively clean even though there exist some non-speech mouth
movements, which may be wrongly detected as speech. In the
case of clean signals, audio or video, there are significantly
fewer wrong connections in the graphs of the single views, and
hence, reducing the kernel bandwidths does not improve the
obtained representation.

VI. CONCLUSIONS

We have addressed the problem of multiple view data fusion.
We revisited the alternating diffusion maps method and pro-
posed a new interpretation from a graph theory point of view,
in which the affinity kernels of the single and multiple views
define graphs on the data. By introducing a statistical model
of the connectivity between data points on the graphs, we
showed that fusing the data by a product of the affinity kernels
increases the average number of connections in the multiple
view case. Accordingly, the kernel bandwidth, controlling the
connectivity between the data points, may be set significantly
smaller than in the single view case. Specifically, we showed
that the proper kernel bandwidth is the one reducing the aver-
age number of connections by a root factor, and presented an
algorithm for its selection. Using the alternating diffusion maps
method with the improved affinity kernel, we have addressed
the problem of audio-visual fusion. In particular, we have con-
sidered the task of voice activity detection in the presence of
transients; we have shown that the representation obtained by
alternating diffusion maps allows for accurate speech detection
using the first coordinate, i.e., the leading eigenvector. Our simu-
lation results have demonstrated that the incorporation of visual
data significantly improves the detection scores both compared
to detecting speech based on only the audio data and compared
to alternative merging schemes. In addition, our simulation re-
sults have demonstrated that reducing the kernel bandwidth
below the values typically used in the single view case improves
the robustness of the fusion to transient interferences and con-
sequently the voice activity detection scores. Finally, we have
demonstrated that the proposed algorithm for the kernel band-
width selection allows for selecting near optimal values of the
kernel bandwidth.
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