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Fundamental Initial Frequency and Frequency Rate
Estimation of Random-Amplitude Harmonic Chirps
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Abstract—We consider the problem of estimating the funda-
mental initial frequency and frequency rate of a linear chirp
with random amplitudes harmonic components. We develop an
iterative nonlinear least squares estimator, which involves a large
number of computations as it requires high resolution search in the
initial frequency and frequency rate parameter space. As an alter-
native, we suggest two suboptimal low-complexity estimators. The
first is based on the high-order ambiguity function, which reduces
the problem to a one-dimensional search. The second method ap-
plies our recently published harmonic separate-estimate method,
which was used for constant-amplitude harmonic chirps. We
present modifications of both methods for harmonic chirps with
random amplitudes. We also provide a framework for estimating
the number of harmonic components. Numerical simulations
show that the iterative nonlinear least-squares estimator achieves
its asymptotic accuracy in medium to high signal-to-noise ratio,
while the two sub-optimal low-complexity estimators perform
well in high signal-to-noise ratio. Real data examples demonstrate
the performance of the harmonic separate-estimate method on
random amplitude real-life signals.
Index Terms—Harmonic chirps, multiplicative noise, random

amplitude chirps.

I. INTRODUCTION

C HIRP parameter estimation has many applications in
signal processing, as chirps are very common in sonar,

radar, communication, speech and echolocations calls. A
common assumption in chirp analysis methods is that the am-
plitude of the signal is constant during each observation time.
The problem of analyzing constant-amplitude chirp signals
has received much attention in literature. The higher-order
ambiguity function (HAF) is commonly used for parameter
estimation of such signals, e.g., [1]–[3]. Other techniques
include the high-order phase function [4], [5], nonlinear
least-squares estimator (NLSE) [6], multi-linear method [7],
quasi-maximum-likelihood [8] or by using time-frequency
representations such as the Wigner-Ville distribution [9] or the
fractional Fourier transform [10].
In some applications such as radar, sonar and communica-

tion, distortions caused by scattering, fluctuations or multi-path
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phenomena result in a signal with time-varying amplitude
[11]–[15]. Chirps with random amplitude are also used to
model formants in speech processing applications [16], [17],
electric currents in induction motor fault analysis [18], and
animals sounds (bats, whales, dolphins, birds etc.).
Previous work on the analysis of time-varying amplitude

signals can be divided into two cases. The first case focuses
on complex exponential signals (i.e., constant frequency).
Frequency estimation for such signals can be achieved using
cyclic moments [11], least-squares (LS) [12] and NLSE
[19], [20], subspace methods [21], high-order spectra [22],
[23] and pulse-pair method [24]. The second case, which
received significantly less attention, considers the model of a
mono-component chirp with time-varying amplitude. Methods
for parameter estimation of such signals include the cyclic
moment approach [13], [16], NLSE and HAF-based estima-
tion [15], high-order instantaneous moments [25] and the
Wigner-Ville distribution-based methods [26], [27].
Herein, we consider a class of multi-component chirps,

where the components satisfy a harmonic relation. For example,
Fig. 1 presents three types of calls, produced by E. Nilssonii
bat [28], G. melas whale [29] and Hippolais icterina bird [30],
showing harmonic chirp signals with random amplitude. The
frequency of each component is an integer multiple of the
time-varying frequency of a fundamental chirp. Such harmonic
signals occur due to propagation through a nonlinear media
such as rotating machinery in vibrational analysis, music and
formants in audio and speech processing, electrical power
systems, and target localization [31], [32]. In some cases,
for example, in active transmission used in tissue harmonic
imaging in ultrasound [33] or by mammals [34], [35] (e.g.,
bats, dolphins, whales) the signal is deliberately transmitted as
a sum of harmonic chirps to increase the detectability of the
source of interest.
We further assume that in each observation window, the com-

ponents can be approximated as a linear frequency modulated
(LFM) chirp signal. Previous solutions for the analysis of har-
monic series assume that the frequency is constant in each ob-
servation window, thus setting a limit on the possible segment
length. Assuming such a model of time-varying frequency en-
ables us to increase the segment length and consequently im-
prove the estimation accuracy. As opposed to multi-component
signal, the harmonic components problem only involves esti-
mating the parameters of the fundamental chirp, as we only esti-
mate the initial frequency and frequency rate of the fundamental
chirp.
We first present an iterative process by extending the NLSE

presented in [15] for mono-component chirp with random am-
plitude, to the current case of a harmonic LFM signal with a
known number of components, which we term the iterative har-
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Fig. 1. Examples of animal harmonic chirps. Time domain samples and spectrogram of (a),(b) an echolocation call produced by an E. Nilssonii bat, (c),(d) an
echolocation call produced by a G. melas whale, and (e),(f) a call of a Hippolais icterina bird.

monic-NLSE (IHNLSE). We then suggest a framework to de-
termine the number of harmonic components using peakedness
measures evaluated for the spectrum of the signal. IHNLSE re-
quires exhaustive search in the initial frequency-frequency rate
space. We show that, in order to achieve the optimal accuracy, a
search resolution of and is required for the initial fre-
quency and frequency rate, respectively, where is the number
of samples. We further propose two low-complexity estimators
to avoid such a search. The first is a modification of the HAF-
based estimation method [15]. The second is a modification
of the harmonic separate-estimate (Harmonic-SEES) method
[36], [37] for random-amplitude harmonic chirps, which we
term the harmonic random separate-estimate (HRA-SEES). The
Harmonic-SEES method is a low-complexity estimator based
on the separate-estimate approach, used for estimating the co-
efficients of constant modulus signals [38], [39].
The Harmonic-SEES method was presented in [36] for

parameter estimation of constant-amplitude harmonic linear
chirps. The Harmonic-SEES method consists of two steps.
First, the signal is separated to its harmonic components
using a coarse parameter estimation. Next, the parameters
are estimated from the phases of all the components using
a recursive phase unwrapping and least-squares estimation.
Similarly to NLSE and HAF-based estimator, in order to use
the Harmonic-SEES method on random-amplitude chirp, we
use the squared signal. We then modify the Harmonic-SEES
steps to suit the transformed signal. The Harmonic-SEES, and
consequently HRA-SEES, are similar in a way to the analysis of
chirps using the Radon-Wigner transform [40], which applies
the Radon transform to the Wigner-Ville distribution of the
signal, and the Radon-ambiguity transform [41] which applies
the Radon transform to the ambiguity function of the signal.

We show that both methods can be successfully modified for
harmonic LFM signals with unknown number of harmonic com-
ponents. Simulations show that IHNLSE achieves its analytic
asymptotic accuracy in medium to high signal-to-noise ratio
(SNR) and that both low-complexity methods yield good esti-
mation results for high SNR. Two real-data examples demon-
strate the application of HRA-SEES method to echolocation
calls.

II. THE SIGNAL MODEL

Consider a discrete-time signal composed of attenuated
harmonic components observed in the presence of noise,

(1)

where is the random amplitude of the th harmonic.
The signal is a white Gaussian discrete-time process rep-
resenting the zero mean additive noise with a known variance
, uncorrelated with the amplitudes. We assume that the am-

plitudes can be described as , where
is a real time-varying process and is the constant phase of
the ’th component. We do not assume any other kind of model
for the amplitudes. This is a generalization of the signal model
presented in [15], for multi-component signal. The number of
harmonics, , is not assumed to be known a-priori. The dis-
crete-time th harmonic component signal is

(2)

where is the parameters vector of the normalized
initial frequency and normalized frequency rate. For simplicity,
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all frequencies mentioned hereafter are assumed to be normal-
ized by the sampling rate, , unless otherwise stated. Thus, the
sampling rate is set to .
A special case of the assumed model is the constant-ampli-

tude harmonic chirps, where . This problem was
addressed in [36] and two sub-optimal low-complexity estima-
tion methods were suggested, the Harmonic-SEES and a modi-
fied HAF-based estimation. The problem we address herein is:
Given the samples of an harmonic LFM signal with random am-
plitudes, , estimate the unknown parameter vector, , and
the model order, .

III. MONO-COMPONENT NLSE
We present NLSE of the parameters of harmonic linear chirp

with random amplitudes. We start by presenting the estimator
for a mono-component LFM with a random amplitude [15].
Next, we show that the maximization involved in the mono-
component case cannot be solved for a multi-component signal
and provide a motivation for the iterative approach presented in
the next section.
To start, consider a single LFM with a constant amplitude

(3)

where and is a complex constant
amplitude. The maximum likelihood estimator (MLE) of is
given by [36]

(4)

We see that the MLE is based on considering the maximum of
the squared absolute of a matched filtering process where the
signal is matched to a complex conjugate chirp with the
samemodel as the original chirp signal. An intuitive explanation
of this estimator can be given be examining the values of

at its maximum, the point where equals the true parameters
of the signal, . In the absence of noise we get, by substituting
(1) with into (4), that

(5)

which is the entire energy of the signal.
We now generalize the previous case and consider a single

chirp with random amplitude. The chirp parameters, , and am-
plitude, , can be estimated using nonlinear least-squares
(NLS) approach by minimizing the following criterion [15]

(6)

By taking the derivatives with respect to (w.r.t.) and ,and
equating to zero, NLSE for the chirp parameters is [15, Ap-
pendix A]

(7)

From (7) it is clear that NLSE for has a similar structure as
MLE in (4) with two modifications: (1) the values of the chirp
parameters are twice that of the original chirp, (2) the chirp is
matched to instead of as with MLE. The value of
NLSE at its maximum ignoring noise is given by

(8)

where is the energy of the signal. When the amplitude is a
random process, the squaring of the signal in NLSE results in
the energy of the signal just as in MLE. That is, NLSE extends
the idea of MLE to signals with random amplitude.

IV. HARMONIC COMPONENTS NLSE
We now consider the case of harmonic chirp. We start by as-

suming that the number of harmonic components, , is known.
Similar to the estimator in (6), we define NLS criterion, using
(1), as

(9)

Attempting to take the derivatives w.r.t. for each and
and equate the results to zero yields a set of equations with

unknowns, which is an under-determined problem. For
a single component LFM, on the other hand, taking the deriva-
tives of (6) w.r.t. yields a set of equations with un-
knowns, which guaranties a solution to (6). Note that if we were
to assume a specific model of the amplitudes, with a parameters
vector , then (9) can be optimized w.r.t. [15].
We therefore wish to adapt themain idea of NLSE solution for

mono-component chirp, which is based on squaring the signal
before the estimation process, in order to sum its entire energy.
For that purpose, we first explore the form of in the multi-
component case,

(10)

where

(11)

and is the indicator function, that equals 1 if and
0 otherwise. Since the noise is a zero mean random process and
it is uncorrelated with the amplitudes, the product between the
harmonic components and the noise is regarded as additional
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Fig. 2. The NLSE cost function, . (a) The entire range of possible pa-
rameters, (b) enlarged area around the strongest peak.

noise rather than a harmonic signal that can be used in the esti-
mation process. We can therefore define

(12)

where is composed of the squared noise, , and all the
products in (10) between the noise and the harmonic compo-
nents. Note that in low SNR, by squaring the signal the noise
is actually amplified and we can expect degraded performance.
It can be seen that is composed of LFM compo-
nents where the first component has parameters that are twice
that of the original fundamental LFM. That is, harmonic
LFM components with the fundamental chirp absent. Clearly,
squaring the signal imposes a constraint on the possible range
for the parameters. In order to avoid aliasing, we assume that
the initial frequency and frequency rate satisfy that ,
where or for decreasing
or increasing chirp, respectively.
Example 1: As an illustrative example, consider the case of

a fundamental LFM where , , .
The number of harmonic components is and the ampli-
tudes are generated as an independent Gaussian processes with
mean 1 and variance 0.25 each. The NLSE cost function de-

fined in (7), , is presented in Fig. 2(a). There are five
peaks, marked in circles, corresponding to the five harmonic
components in . The peaks are well separated. In a close
region around each peak, is similar to that of a single
component signal. Surrounding each peak there are a few minor
peaks. Fig. 2(b) shows a small area around the strongest peak,
surrounding the local maxima. These peaks can be higher than
those belong to the other components, as is the case with the
strong peak in the middle. Due to the presence of these minor
peaks, it is impossible to estimate the parameters by simply lo-
cating the highest peaks in . A possible estima-
tion approach is suggested in the next section.

V. ITERATIVE NLSE FOR HARMONIC CHIRPS
We suggest an iterative approach based on NLSE for a single

component chirp, which we term for simplicity as IHNLSE. We
start by presenting an estimator and derive its asymptotic bias
and variance under the assumption that the number of compo-
nents is known . Next, we show how peakedness measures of
the spectrum of the signal can be used to estimate the number
of components when it is unknown.

A. Known Model Order
Recall that has peaks corresponding to the

harmonic components in . At each iteration, the global
maximum of is located. Then, the component corre-
sponding to the peak found is filtered from the signal using a
de-modulation and filtering scheme proposed in [42]. Note that
standard band-pass linear filtering cannot be applied since the
harmonic components may overlap in frequency.
More specifically, we use and estimate its

strongest component using (7). The estimated parameters are
denoted by . Next, we wish to filter the com-
ponents whose parameters were found from the signal, so that
in the next iteration, will not have a global maximum
at . The random amplitude is not estimated, therefore we
cannot reconstruct the component and subtract it from the
signal. The estimated parameters, , are used to construct
the normalized chirp

(13)

In order to filter the estimated component, the signal is mod-
ulated by , filtered with a high-pass filter designed
to remove frequencies around zero and then modulated back by

. The resulted signal is given by

(14)

where is the high-pass filter and denotes convolution.
Note that the random amplitudes are not subtracted from the
signal, only their chirp modulation. The resulted signal can be
approximated as

(15)

where

(16)
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for some . We assume that filtering any signal,
, with yields .

Therefore

(17)

where . The process is repeated with to
obtain and so on, with a total of times to obtain
the set . Since the number of components, ,
is assumed to be known, the stopping condition for the itera-
tive process is also known (i.e., after iterations). If this
assumption does not hold then a stopping condition, or model
order selection rule, is required. This matter is discussed in de-
tail later.
Each of the vectors estimated above is a multiple

of the parameter vector of the fundamental chirp, . Thus, the
parameters of interest can be estimated by properly averaging
the estimated components. But first we have to associate each
vector, , with the right component, as there is no guaranty
that it belongs to the ’th component. In order to do so we
sort the set of estimated parameters. Similarly to [36], we de-
fine a mapping, , such that

. Then, the parameters can
be estimated by solving the following LS problem

(18)

where

(19)

where is the 1 vector with all elements equal to zero,
and . Where
, for , 2. Solving the above opti-

mization problem yields

(20)

where . The com-
plete process is summarized in Algorithm 1.

Algorithm 1: Iterative Harmonic-NLSE (IHNLSE)

Input:
– Input signal

– Model order
Output:

– Estimated parameters

for do

end for

B. Accuracy Analysis
We evaluate the accuracy of the proposed IHNLSE by exam-

ining its bias and variance. At each step the signal of interest
can be expressed as

(21)

The noise, , is composed of the other harmonics as well
as the squared noise. Without loss of generality, we assume that
the components are estimated in order, i.e., . From
(10) and (15) it can be seen that, when estimating

, the noise is given by

(22)

We start by deriving the asymptotic bias and variance of .
Assuming the amplitudes, , and noise, , are uncorre-
lated, it can be shown that

(23)

In order to show that the estimator is asymptotically unbiased,
we show that, asymptotically, achieves a global
maximum at [15]

(24)

Following [15], it can be shown that

(25)

and therefore we obtain

(26)

The cross-product of two chirps with different parameters is
negligible w.r.t. for a sufficiently large value of [36].
Therefore

(27)
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That is, has peaks at each
for with a magnitude of . Since we assume
that the components are estimated in order, the last result implies
that and consequently

. Therefore we conclude that

(28)

and thus the estimator is asymptotically unbiased.
Proposition 1: The asymptotic variance of is given by

(29)

(30)

where is the cross-correlation matrix of the ampli-
tudes whose elements are given by

(31)

Proof: See Appendix A.
Proposition 2: For a single harmonic, i.e., , the results

(29) and (30) converge to the asymptotic variance presented in
[15] for NLSE of a mono-component LFM.

Proof: For , we get that .
In addition, and therefore . Substi-
tuting and into (29) and (30) yields the same result
as in [15], except for a small difference in the frequency nor-
malization, i.e., a factor of and for the initial frequency
and frequency rate, respectively.
So far we obtained the asymptotic bias and variance of the es-

timator in each step of IHNLSE. In order to evaluate the overall
asymptotic bias and variance of IHNLSE, we assume that the
estimators are approximately uncorrelated. This is not accurate,
but can be assumed since the components are well separated
in . Since the mono-component estimator is asymptot-
ically unbiased, it is clear that IHNLSE is also asymptotically
unbiased. The asymptotic variance is given by

(32)

(33)

where .
Note that the last result implies that in order to achieve the

optimal accuracy, a search resolution of and is re-
quired for the initial frequency and frequency rate, respectively.

C. Computational Load
We evaluate the computational complexity of IHNLSE by

calculating the number of on-line multiplications. Each itera-
tion of the process involves a two-dimensional search. In order
to achieve the possible accuracy, the resolutions of the searches
for the initial frequency and frequency rate are and

, respectively. That means that there are an order of
search points. Each point requires a

calculation of the cost function, , which can be done
using multiplications. The modulation and filtering of the
signal is also performed using multiplications. Therefore,
the complexity of each iteration is . Since there are

iterations, the total computational complexity of IHNLSE
is .

D. Unknown Model Order
As mentioned above, when the number of harmonic compo-

nents is unknown, a model order selection criterion is required.
Methods such as minimum description length (MDL) or Akaike
information criterion (AIC) are commonly used and success-
fully applied to multicomponent and harmonic chirps [36]. Both
involve the maximum likelihood cost function [43], which re-
quires estimates of the parameters and amplitudes of each com-
ponent. Since IHNLSE cannot be used to estimate the ampli-
tudes, these criteria are not useful. We therefore suggest to in-
corporate a detection process in the IHNLSE to determine the
number of components.
Example 1 (Cont.): As an example, to illustrate the idea of

this process, Fig. 3 presents the spectrum of for each it-
eration of the IHNLSE, i.e., , where is
the same signal as in Example 1. Fig. 3(a) shows the spectrum
of , with the five harmonic components apparent.
After the first iteration, the strongest component is filtered using
the process described in the previous subsection, as can be seen
in Fig. 3(b). The process is repeated times. Finally, when
all harmonic components are filtered, the spectrum, showed in
Fig. 3(f), has no major peaks and its power is overall lower than
the previous iterations.
We can therefore detect the number of harmonic components

by examining a peakedness measure of the spectrum of .
Such measures were presented in [44]. Particularly, we examine
the Kurtosis, Hoyer, Shannon entropy ( ) and Gaussian
entropy ( ) measures. In addition, we examine the energy
level of the signal as a measure. Definitions for all measures
are presented in Table I for the spectrum of , denoted
by . The measures for the signal from Example 1
are presented in Fig. 4. The measures are normalized so that
they equal 1 at . All measures reach a certain level at

and change very little afterwards, with the exception
of the Gaussian entropy measure which is almost not effected
and thus not suitable for our purpose. The number of harmonic
components can estimated as

(34)

where is a spectrum peakednessmeasure at the ’th iter-
ation and is a monotonically increasing (w.r.t. ) regulariza-
tion to prevent over estimation. The iterative harmonic-NLSE
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Fig. 3. Spectrum of for (a) (i.e., ), (b) , (c) ,(d) , (e) , and (f) (i.e., ).

with model order selection (IHNLSE-MO) is summarized in
Algorithm 2.

Algorithm 2: Iterative Harmonic-NLSE for Unknown Model
Order (IHNLSE-MO)

Input:
– Input signal

– Maximum possible model order
Output:

– Estimated parameters
– Estimated model order

for do
Peakedness measure of

end for

VI. LOW COMPLEXITY ESTIMATORS

In order to avoid the high-resolution two-dimensional search
required for IHNLSE, we present two low-complexity estima-
tors. The first is a modification of HAF estimator [15] for a

Fig. 4. Peakedness measures and energy level of the spectrum of for Ex-
ample 1. Measures are normalized so that they equal 1 at .

TABLE I
DEFINITION OF PEAKEDNESS
MEASURES FOR

single component LFM with a random amplitude. The second
is a modification of the Harmonic-SEES [36] for constant-am-
plitude harmonic chirps.

A. A Modified HAF Estimator
In order to avoid the high resolution two dimensional search

involved in NLSE, a suboptimal estimation method was pro-
posed in [15] based on HAF. We first explain in short the HAF
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method for a mono-component case. For a single LFM, the dis-
crete ambiguity function is given by

(35)

for some constant , where is the transformed noise given
by

The signal is a sinusoid with a time-
varying random amplitude in presence of non-Gaussian noise.
The chirp rate, , can be obtained from using the LS ap-
proach again. This time, however, the result is a one dimensional
search problem. It can be shown that [15]

(36)

Once is estimated according to (36), we determine as

(37)

Note that (36) and (37) essentially find the maximum of the
absolute value of the discrete-time Fourier transform (DTFT)
of and , respectively. Additionally, it is worth noting
that is equivalent to the second order ambiguity function
of . As can be seen, the solution for random-amplitude
signal is similar to the constant amplitude except the squaring
of the signal, just as in NLSE.
Now, we return to the problem of harmonic signals. We wish

to obtain an expression for :

(38)

From (35) we know that the first sum results in harmonic si-
nusoids of order at frequencies with
random amplitudes. The second sum in (38) is the cross terms
between the harmonic components. Substituting (2) into (38), it
can be shown that

(39)

where . That is, the cross terms
in (38) are also LFM signals. So the problem becomes esti-
mating from the fundamental frequency of harmonic si-
nusoid with random amplitude in presence of the transformed
noise and LFM signals. From (38) and (10), it can be shown that

contains random-amplitude harmonic sinusoids of order
with the fundamental frequency missing. That is,

sinusoids at frequencies . The LS ap-
proach used to obtain (36) and (37), results in maximizing a

DTFT. In case of harmonic signals, instead of using DTFT, we
apply the idea of the Harmogram [45], a method for estimating
the fundamental frequency of an harmonic series of sinusoids.
The chirp rate, , can be estimated using a modified Harmo-
gram criterion

(40)

Once is estimated, we define the set of the following sig-
nals

(41)

This is termed de-chirping since that for , each
is a single sinusoid with random amplitude in the presence of
other harmonic components and noise. Finally, is estimated
using a modified Harmogram approach as well

(42)

Note that for , (40) is clearly the same as (36). Then,
by substituting (41) for into (42), we obtain the exact
expression as in (37). That is, for , the solution is exactly
the same as the mono-component case.

B. The Harmonic Separate-Estimate Method for Random
Amplitudes
The Harmonic-SEES is a low-complexity estimation method

for harmonic LFM with constant amplitudes [36]. We now ex-
tend the Harmonic-SEES to the random-amplitude model. Sim-
ilarly to the two previous methods, in order to do so, we define
a pre-processing step of squaring the signal, before applying the
Harmonic-SEES. As noted before, the squared signal contains

harmonics but the fundamental component is missing. That
is, components overall. Therefore, the second modifi-
cation to the Harmonic-SEES is to take into account that the
fundamental component, whose parameters are those we wish
to estimate, is missing. We provide a short summary of the
Harmonic-SEES with the required modifications for random-
amplitude model. We term this method HRA-SEES. When the
number of harmonic components is known, HRA-SEESmethod
is very similar to the Harmonic-SEES method, and a summary
of the method is presented below for clarification. The model
order selection for constant-amplitude model involves MDL or
AIC criteria. Both are not applicable for this case as explained
above. Therefore the model order selection presented in the next
subsection differs from [36].
The first step is separating the signal into harmonic

components. This is achieved with a coarse estimation of the pa-
rameters. Recall that de-chirping the signal with the appropriate
chirp rate yields a sinusoid in presence of other components and
noise. The coarse estimation is done by using the fact that the si-
nusoid will yield a strong peak in the discrete Fourier transform
(DFT) of the de-chirped signal. We define a set of chirp rate
candidates, . For each candidate, we define
de-chirped signals by

(43)
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Fig. 5. De-chriping map of for , from Example 1. The 5 peaks
are marked in circles aligned on the straight marked line. Note the similarity to
Fig. 2, however here it is obtained using DFT.

for . The chirp rate estimate can be obtained as

(44)

where is the DFT of . Note that in (44) is the index
of the fundamental frequency, and therefore .
Example 1 (Cont.): We further consider the signal in Ex-

ample 1, as an illustrative example. By de-chirping with each
candidate, and then calculating the magnitude of the DFT of
each de-chirped signal, we obtain a de-chirping map. An ex-
ample of the map is presented in Fig. 5. The map contains

peaks marked on the figure. The peaks are aligned on
a straight line, also marked on the figure. The chirp rate selec-
tion in (44) can be thought of as summing equispaced
points along a straight line in the map. We note that there is a
similarity to Hough-based approaches [46].
Note that this process, as can be seen from the example, is

very similar to the NLSE cost function maximization. However,
there are two key differences. First, the number of candidate
chirp rate required is very small relative to NLSE since this is
only a coarse estimate. Second, the use of DFT, rather than the
DTFT, reduces the complexity due to its efficient implementa-
tion, the fast Fourier transform (FFT). In order to compensate
the poor resolution obtained by that process we preform LS es-
timation given the phase of each component. But first, the com-
ponents must be separated.
Once the coarse estimation is obtained, the de-chirped

harmonic components can be separated from each de-chirped
signal, . The harmonic components are then reconstructed
by a simple chirp multiplication [36].
So far, we obtained a set of reconstructed harmonic

components, , of the observed signal. The
information on the initial frequency and frequency rate is hidden
in the phases of the harmonic components. We now can pro-
ceed to the second step of estimating the parameters. This is
done using a joint phase unwrapping and parameter estimation
described in [36] with a simple modification. Since that the fun-
damental chirp is missing, the linear model of the phases has to

TABLE II
COMPARISON OF THE COMPUTATIONAL LOAD OF THE THREE ESTIMATION

METHODS.

be adapted accordingly. That is, we wish to solve the following
LS problem

(45)
where is the unwrapped phase of the ’th compo-
nent, is the 1 vector with all elements equal to
one and with , and

. The estimate of is
given by [36]

(46)

where is an orthogonal projec-
tion matrix, and is defined in (20).

C. Computational Load
We first evaluate the computational complexity of HAF

based method. HAF reduces the problem to two one-dimen-
sional problems, but does not change the search resolution
required to achieve optimal performance. The construction of
the cost function in (40) requires multiplications per
frequency. The number of frequency rates required is in the
order of . The total number of multiplications required
for the frequency rate estimation is therefore .
Next, DTFTs are required, one for each de-chirped signal.
The number of frequencies in this step is in the order of .
The complexity of the initial frequencies estimation is therefore

. To conclude, HAF method involves
multiplications, a significant improvement over the computa-
tional load of IHNLSE.
The computational complexity of HRA-SEES method is

exactly the same as the Harmonic-SEES method, i.e.,
on-line multiplications [36], which is better

than both IHNLSE and HAF methods. The computational loads
of all three estimators are summarized in Table II.

D. Unknown Model Order
So far, in both low-complexity estimation methods, the

number of harmonic components was assumed to be known.
Therefore, similarly to IHNLSE, a model order selection rule is
required. IHNLSE works iteratively. That is, in each step one
component is estimated and removed. However, both low-com-
plexity methods suggested using all the components at once.
Thus, the methods must be applied for every possible . Using
the same approach as in IHNLSE, for a given , once the
parameters are estimated, harmonic components are filtered
from the original signal, , using the same de-modulation
scheme. Note that in this case the filtering is performed on
rather than as in IHNLSE. Again, peakedness measures
of the spectrum of the filtered signal can be calculated to obtain
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a model order selection criterion. The model order selection
framework is summarized in Algorithm 3. The estimation step
can be achieved either with HAF-based estimation or with the
suggested HRA-SEES method.

Algorithm 3:Model Order Selection Framework

Input:
– Input signal

– Maximum possible model order
Output:

– Estimated parameters
– Estimated model order

for to do

Estimate parameters of , , assuming
harmonics.

for to do

end for
Peakedness measure of

end for

VII. PIECE-WISE CONTINUITY
In practice, the signals are often long and processed in seg-

ments. The input signal is windowed, and the signal in (1) is
used to model a single segment, or observation window. We as-
sume that each segment can be approximated by a series of har-
monic LFM signals but the entire signal can be any other model,
for example higher-order polynomial phase signals (PPS).
So far, we have treated the problem of estimating the fre-

quency of the fundamental component of a single segment,
without any prior knowledge. However, the fact that the fun-
damental frequency should be smooth, can be exploited by
imposing a piece-wise continuity constraint, which means that
the initial frequency of each segment should be very close to
the final frequency of the previous segment. Moreover, it can be
expected that the frequency rate should not change significantly
between two consecutive segments.
Denote by the estimated parameters of

the signal at the ’th segment for where is
the number of segments. Denote by the set of all pos-
sible values for the parameters of the th harmonic component,

, 2,

(47)

(48)

for and , where
is the estimated final frequency of the (

)’th segment and and are the maximum allowed dif-
ferences between segments.
Our objective is to impose the piece-wise continuity con-

straint in each estimationmethod.We start with IHNLSE, which
involves the following two dimensional maximization problem
in Algorithm 1

(49)

Substituting (47) and (48) into (49) yields a new optimization
problem given by

(50)

where is the space of all possible parameters for all har-
monic component, i.e.,

(51)

Similarly, in HAF-based method the piece-wise continuity
constraint can be imposed in the optimization problems in (40)
and (42),

(52)

(53)

Both IHNLSE and HAF methods require searching through the
parameters space in order to maximize the cost function. There-
fore, the constraints simply reduce the search range.
Finally, in HRA-SEES, the constraint can be imposed in the

LS problem in the final step, i.e., (45),

(54)
where

(55)

Note that (54) is no longer a simple LS problem but a quadratic
programming problem, which can be solved, for example, using
the reflective Newton method [47]. This is an iterative method,
based on Newton’s method, that generates a descending (w.r.t.
to the cost function) and feasible sequence that convergence to
the optimal solution in quadratic rate. Feasibility is ensured by
reflecting infeasible points around the boundaries of the feasible
region.

VIII. NUMERICAL RESULTS

A. Simulations
We now present examples to compare the performances of

IHNLSE, HAF and HRA-SEES methods. In all of the example
we consider a signal with harmonic components and
the parameters of the fundamental chirp are given by
and . The number of samples is . The
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Fig. 6. RMSE of each estimator vs. SNR for normally distributed amplitudes.
(a) , Normalized initial frequency. (b) , Normalized frequency rate.

phases of all component, , are generated from a uniform
distribution, i.e., . We consider two different
models for the random amplitude. The first model is of normally
distributed amplitudes, in which . In the
second model each amplitude is an AR(2) process with param-
eters . The noise power is adjusted to give
the desired SNR defined as

[dB], where denotes the expecta-
tion operator. In all simulations we use a lag of sam-
ples in HAF-based estimation method [15].
We start by evaluating the root mean squared error

(RMSE) of the estimators when the number of har-
monic components is known. The RMSE is defined as

, 2 where
and are the estimate of and at the th trial,

respectively and = 500 is the number of Monte-Carlo in-
dependent trials. Simulation results for the normally distributed
amplitudes and AR(2) amplitudes are presented in Figs. 6 and 7,
respectively. The results include the RMSE for each estimator
and the theoretical RMSE of IHNLSE is plotted. In addition,
we include the RMSE of the Harmonic-SEES estimator, that as-
sumes constant amplitudes. As can be expected, IHNLSE yields
the best results and almost achieves the theoretical RMSE for
SNR above 3 dB. The difference between the theoretical and
actual errors can be accounted for by the approximations and
assumptions used in deriving the theoretical error. HAF-based
estimator and the HRA-SEES method perform similarly. HAF
has a slightly better threshold SNR while the HRA-SEES
has a slightly better RMSE. Both low-complexity methods
fail to achieve the performance of IHNLSE for the normally
distributed amplitudes, but still achieve very low errors w.r.t.
to the values of the parameters and can be used to initiate a two
dimensional search of IHNLSE. The Harmonic-SEES method
performed worse in high SNR, due to the inaccurate assumption

Fig. 7. RMSE of each estimator vs. SNR for AR(2) amplitudes. (a) , Nor-
malized initial frequency. (b) , Normalized frequency rate.

of constant amplitudes. However, its threshold SNR is lower.
This is probably because that in low SNR the squared noise in
the random-amplitude methods becomes very strong.
Next we evaluate the model order selection criteria, by cal-

culating the probability of selecting the correct number of har-
monic components for various values of SNR. The probability,
, is defined as . The regularization,

, used is defined by where is a normal-
ization constant to ensure . Simulation results for
the normally distributed amplitudes and AR(2) amplitudes are
presented in Figs. 8 and 9, respectively. For both HAF-based
estimation and the HRA-SEES method, there is very little dif-
ference between the performance for the different peakedness
measures. For IHNLSE, the Shannon entropy and the energy
level criteria perform better than the others.
Finally, we wish to examine the sensitivity of each estimator

to errors in the model order selection. For that purpose we eval-
uate the RMSE of each estimator for various values of . Simu-
lation results for the normally distributed amplitudes and AR(2)
amplitudes are presented in Figs. 10 and 11, respectively. Both
IHNLSE and HRA-SEES are very sensitive to errors in the
model order selection, while the HAF-based estimator allows
errors in the number of harmonic components.

B. Real Data

We now demonstrate the HRA-SEES method with the model
order selection for estimating the parameters of two real-data
examples of echolocation calls of a bat and a whale [28], [29].
The same examples were used in [36], where the amplitudes as-
sumed to be constant at each observation window. The signals
are divided into segments of . At each seg-
ment the parameters and the number of harmonic components
are estimated using the HRA-SEES method with the Shannon
entropy measure. The piece-wise continuity constraints were
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Fig. 8. of each estimator vs. SNR for normally distributed amplitudes. (a)
IHNLSE. (b) HAF. (c) HRA-SEES.

and . The quadratic programming
problem was solved using the reflective Newton method [47].
The first example is an echolocation call produced by an E.

nilssonii bat [28]. The signal is about 40 ms long and is sam-
pled at . A spectrogram of the signal is presented
in Fig. 12. The call has four harmonic components with the last
one being very weak. The estimated frequencies are plotted in
dashes line on top of the spectrogram and the selected model
order is plotted above. The markers on the spectrogram corre-
sponds to a peak detection at each time frame. The peak de-
tection shows that the fundamental chirp is not the most domi-
nant. However, the HRA-SEES method successfully estimated
the correct fundamental frequency at each observation window.
The second example is an echolocation call produced by a G.

melas whale [29]. The signal is about 600 ms long and is sam-
pled to . The results are presented in Fig. 13 in
the same format as the previous example. The fundamental fre-
quency line is detected in all segments.
We next examine the effect of the constrained optimization

and the necessity of the model order selection. Fig. 14 presents
the frequency estimates of the G. melas whale for constrained
and unconstrained optimization techniques with a fixed number
of components versus model order selection. The number of
components in the fixed part was set to . Clearly, the con-
strained optimization with model order selection yields the best

Fig. 9. of each estimator vs. SNR for AR(2) amplitudes. (a) IHNLSE. (b)
HAF. (c) HRA-SEES.

Fig. 10. Sensitivity of the estimators to errors in the model order for normally
distributed amplitudes.

Fig. 11. Sensitivity of the estimators to errors in the model order for AR(2)
amplitudes.
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Fig. 12. Model order selection and parameter estimation of an echolocation
call produced by a E. Nilssonii bat. The diamonds mark peak detection in the
spectrogram.

Fig. 13. Model order selection and parameter estimation of an echolocation
call produced by a G. melas whale. The diamonds mark peak detection in the
spectrogram.

Fig. 14. Comparison of frequency estimates for constrained and unconstrained
optimization techniques with fixed or variable model order.

results. The unconstrained optimization with model order es-
timates the fundamental frequency correctly in all but two seg-
ments. Using a fixed number of harmonic components results in
poor estimation results. The constrained optimization estimate
fails in the first segment. Due to the constraints, the failure of

the first segment affects the estimation in the rest of the signal.
The unconstrained optimization with a fixed number of compo-
nents detects the correct fundamental frequency in about half of
the segments.

IX. CONCLUSION

A. Summary
We considered the problem of estimating the parameters

of the fundamental frequency of harmonic LFM with random
amplitudes when the number of harmonic components is un-
known. We suggested three estimation methods. The first is
an iterative method based on NLSE, which requires a two-di-
mensional high resolution search. The second is a modification
of HAF-based estimation for mono-component LFM, and the
third is a modification of the Harmonic-SEES for harmonic
LFM with random amplitudes. We showed through simulations
that IHNLSE achieves its asymptotic variance at medium to
high SNR and that the two low-complexity methods perform
well in high SNR. We also showed that peakedness measures
of the spectrum of the signal can be successfully used in order
to estimate the number of components in all three methods.

B. Future Research
The work presented herein can be further extended in a

number of interesting directions. In this work we assumed that
the signal can be modeled as a sum of harmonic LFM com-
ponents in each observation window. Thus, we allow longer
segments, compared to existing methods that assume constant
frequency model. We can further increase the segment length
by assuming a model of harmonic PPS. The difficulty in doing
so is with the first step of the coarse estimation. Currently, this
is done by searching for the optimal de-chirping, which for
th order PPS would require dimensional search. A

possible approach to obtain the coarse estimation is to extend
the quasi-maximum-likelihood [8], originally proposed for
mono-component PPS, to multi-component signals.
Another possibility is to employ frequency tracking. The

piece-wise continuity constraints ensure that the frequency
estimates are smooth. However, the constraints do not exploit
the structure of the signal. For example, we can assume that the
signal is a high order PPS and predict, using Kalman filtering,
the parameters for the next step. The prediction can replace the
first step of de-chirping selection. Moreover, at the end of the
process the state variable will provide the estimated parameters
of the PPS.

APPENDIX
DERIVATION OF THE NLS ASYMPTOTIC VARIANCE

In this section we derive the asymptotic variance of NLSE for
harmonic linear chirps. Recall the signal of interest at a single
iteration of NLSE for some

and

(56)
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is an additive non Gaussian noise. We now derive the second
order statistics of the noise. The second moment of that noise is
given by

(57)

Since is a zero-mean circularly-symmetric complex normal
variable, and . In addition,
the noise is assumed to be uncorrelated with the amplitudes.
Hence,

(58)
(59)

(60)

(61)

(62)

(63)

for any . Recall that . There-
fore

(64)
Assuming that the amplitudes are uncorrelated, we get

(65)

where is the cross-correlation matrix of the amplitudes
whose elements are given by .
Therefore we obtain

(66)

Similarly it can be shown that

(67)

As noted in [15], the optimization problem in (6), used to
estimate the parameters of is equivalent to

(68)

where is constant such that , and .
Following the same steps as in [15, Appendix B], it can be
shown that

(69)

where ,

(70)

and

(71)

for , 1, 2, where is the frequency normaliza-
tion for each parameter, i.e., for the constant phase,

for the initial frequency and for the
frequency rate. Note that (70) and (71) are different from [15]
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due to different frequency normalization, but otherwise similar.
Substituting (66) and (67) into (71) yields

(72)

In order get a large sample approximation of the result, we as-
sume that is time independent. That is, we as-
sume the for any . This assump-
tion holds, for example, when the amplitudes are independent
and normally distributed. We now wish to examine the elements
in the sum in (72)

(73)

Therefore, for large number of samples we get

(74)

Finally, substituting (74) into (69) yields (29) and (30). This
concludes the derivation of the asymptotic variance of NLSE.
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