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Abstract—We consider the problem of jointly determining the
number of harmonic components of a fundamental linear chirp,
and estimating its parameters (i.e., its initial frequency and fre-
quency rate), given time samples of the observed signal. Common
model order criteria select the number of harmonics based on
the maximum likelihood estimator. We develop exact and ap-
proximated maximum likelihood estimators of these parameters.
To avoid an exhaustive search in the initial frequency-frequency
rate space involved by those estimators, we propose an alterna-
tive low-complexity two-step estimation method. The first step
separates the signal to its harmonic components. Then, in the
second step, the parameters of interest are estimated using least
squares method given the phases of the harmonic components.
The method is compared to the exact and approximated maximum
likelihood estimators and to the well-known high-order ambiguity
function based method. Numerical simulations and real data
examples demonstrate that the proposed low-complexity method
can successfully replace the maximum likelihood estimator in the
model order criteria at moderate to high signal-to-noise ratio.
Since the estimates obtained by the proposed method achieve the
Cramer-Rao lower bound at these signal to noise ratios.

Index Terms—Cramer-Rao lower bound, harmonic chirps, max-
imum likelihood estimation.

I. INTRODUCTION

T HE problem of estimating the fundamental frequency of
harmonic time-stationary sinusoids has wide applications

in speech processing, communication, radar and sonar, biomed-
ical systems, electrical power, and semiconductor devices
[1]–[11]. The fundamental frequency is assumed to be constant
during the observation segment, and this assumption sets a
constraint on the possible length of the observation segment.
Short segments will ensure that the assumption is valid, but
better estimation accuracy is achieved if long segments are
used as the signal-to-noise ratio (SNR) is increased.
In some other applications the signal is more appropriately

modeled as a sum of harmonic components of a non-stationary
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signal, i.e., a signal that its frequency content is varied with
respect to (w.r.t.) time, also known as a chirp signal [12]–[14].
For example, in active transmission used in tissue harmonic
imaging in ultrasound [15] or by mammals [13], [14] (e.g.,
bats, dolphins, whales) the signal is deliberately transmitted as
a sum of harmonic linear frequency modulated (LFM) chirps to
increase the detectability of the source of interest, e.g., an organ
in ultrasound or a prey in case of mammals. Such harmonic
signals also occur in other applications due to propagation
through a non-linear media including rotating machinery in
vibrational analysis, music and formants in audio and speech
processing, electrical power systems, and target localization
[16], [17]. Harmonics of higher orders of frequency modulated
chirps, known as polynomial phase signals (PPS) [18]–[20],
or non-linear frequency modulated chirps (e.g., hyperbolic
frequency modulated signals [13]), are also used in synthetic
aperture radar [21], biomedical [22], radio communications, or
marine mammals [13], [14].
Estimating the parameters of chirp signals has received much

attention in literature and has a wide variety of applications. It
is used, for example, in radar [23], vehicle tracking [24], sonar
[16], [17], [20] and underwater communication. Methods for
estimating the parameters of a mono-component LFM include
using maximum likelihood [25], rank reduction techniques
[26], [27], ambiguity function [28] and the Wigner-Ville dis-
tribution [29]. Methods for estimating the parameters of a
multi-component LFM are based on combining a time-fre-
quency transform, such as the Wigner-Ville transform, with an
image processing technique (e.g., the Hough transform) [30],
Monte-Carlo methods such as importance sampling [31] or
Markov chain Monte Carlo [32], using time-frequency repre-
sentations such as the fractional Fourier transform [33], which
is suited to LFM chirps, and the high-order phase function [34].
An LFM signal is a specific case of the PPS family. Es-

timating the parameters of a PPS can be done, for example,
using the well-known high order ambiguity function (HAF)
[35] based parameters estimation for mono-component PPS
[18], [19] and for multi-component signals [36], [37]. The HAF
based estimation is an iterative process. In each iteration, the
highest remaining coefficient of the PPS is estimated and then
subtracted. Therefore, estimation errors propagate to the lower
order coefficients. The product high order ambiguity function
(PHAF) method, based on multi-lag HAF, offers improved per-
formance with a minor increase in computational complexity
[23]. The HAF based estimation methods, and specifically the
PHAF, are very popular as they are simple and relatively low
complexity methods. Other methods for estimating the param-
eters of a mono-component PPS include the phase unwrapping

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1766 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 7, APRIL 1, 2015

[38], [39], multi-linear time-frequency representation [40], it-
erative methods [41], Wigner-Ville distribution [42], nonlinear
least-squares (NLS) [43], high-order phase function [44]–[46]
and subspace methods [47]. Solutions for multi-component
PPS include the NLS method [48], separation of the signal
components [20] and multi-linear methods [49].
It is noteworthy to mention that most parameter estimation al-

gorithms for multi-component signals assume that the number
of components, i.e., the model order, is known a priori. Other-
wise, an order selection rule should be applied. Statistical selec-
tion criteria, such as the minimum description length (MDL),
Akaike information criterion (AIC) or maximum a posteriori
probability (MAP) [50], has been successfully applied to multi-
components sinusoids [51], [52] and sinusoids with harmonic
components [53].
In this work we address the problem of estimating the pa-

rameters of the fundamental LFM chirp when the number of
harmonic components is unknown. As opposed to multi-com-
ponent chirps estimation problem, it only considers two param-
eters of interest, i.e., the initial frequency and frequency rate of
the fundamental LFM chirp. Estimation methods of these two
parameters for such model have not been presented in literature
to date, and thus it is the motivation of the current work.
The model of harmonic components of a fundamental LFM

chirp can be considered as a special case of the multi-compo-
nent chirps estimation problem. Obviously, one can argue that
the parameters of each harmonic component can be estimated
using any of the multi-component estimation methodmentioned
above. The parameters of the fundamental LFM can then be de-
termined, e.g., by properly averaging the previous estimates.
However, as we later show, this yields a sub-optimal estima-
tion that does not achieve the Cramer-Rao lower bound (CRLB),
even in high SNR.
We start by presenting two model order selection criteria, the

MDL and AIC. Both of them are based on the maximum likeli-
hood estimator (MLE). We then derive the computationally in-
tensive MLE and suggest a reduced complexity estimator. Both
estimators require a two-dimensional high resolution search,
in the order of points to achieve the CRLB, where is
the number of samples. We present two low complexity sub-
optimal estimation methods. The first is a modification of the
well-known PHAF method for signals with harmonic compo-
nents. We then propose a new estimation method, harmonic sep-
arate-estimate (Harmonic-SEES). It is based on the separate-es-
timate (SEES) approach, used for estimating the coefficients of
a constant modulus signals [20]. The Harmonic-SEES uses the
fast Fourier transform (FFT) to obtain a coarse estimation of the
parameters and separate the harmonic components. Once sepa-
rated, the parameters are estimated using a joint least-squares
(LS) given the phases of the components.
We show that asymptotically, given a large number of data

samples, the Harmonic-SEES estimator is unbiased, and obtain
a closed-form expression for its theoretical covariance matrix.
We evaluate the computation load of all four estimationmethods
and show that the MLE involves an order of and mul-
tiplications per harmonic component for the exact and approxi-
mated solutions, respectively, and the Harmonic-SEES only in-
volves an order of multiplications per harmonic com-

ponent, which is substantially smaller computational load. We
show through simulations that the proposed method achieves
the CRLB in moderate to high SNR and can be used instead of
the MLE in order to estimate the number of harmonic compo-
nents.

II. PROBLEM STATEMENT AND MODEL ASSUMPTIONS

Consider a discrete-time signal composed of attenuated
harmonic components observed in the presence of noise,

(1)

where is unknown, is the unknown atten-
uation of the th harmonic, is the magnitude and is
the phase, and is a zero mean white circularly symmetric
Gaussian discrete-time process representing the additive noise
with an unknown variance . The th harmonic component in
discrete-time is

(2)

where the phase is defined as
where and are the normalized ini-
tial frequency and normalized frequency rate, where is the
sampling frequency, is the initial frequency of the funda-
mental harmonic, and is the frequency rate of the
fundamental harmonic, where and are the signal bandwidth
and duration time of the fundamental harmonic, respectively.
Also, is the total number of data samples. We as-
sume that the length of the observed signal equals the length
of the chirp, which can be obtained by first detecting the pres-
ence of the signal and then determining its start and end times.
We further assume that ,
where the first and second arguments correspond to the case
of decreasing and increasing chirp harmonics, respectively. Fi-
nally, note that the differences between the initial (or final) fre-
quencies of the chirps are (or ) in case
of increasing (or decreasing) chirps. Thus, to ensure that the
harmonic components are well separated, we assume that the

, where is a pre-defined
frequency interval.
By collecting the samples of the received signal in (1) we

obtain a compact vector-form model given as,

(3)

where we define

, and . The un-
known parameter vector of the model is ,
where is the parameter vector of interest. A
necessary condition to ensure a unique estimate of requires
that the number of measurements, , is larger than the number
of unknowns, . i.e., we assume that . The
problem herein is: Given the observation vector, , estimate
the unknown parameter vector, , and the model order, .
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III. MODEL ORDER SELECTION

When the number of harmonics is unknown, a model order
selection criterion should be used to choose the correct order,
. Two commonly used criteria are the MDL and AIC [50].

Both have the same form, which includes two terms: 1) the min-
imum of the negative log-likelihood function, , where
is the MLE of and 2) a penalty term, a monotonically in-

creasing function w.r.t the model order designed to prevent over
estimation, . That is

(4)

where is the highest possible model order.
In the current case, the observation vector in (3) is distributed

as a complex multivariate circularly Gaussian random vector,
, where is the identity ma-

trix. The negative log likelihood function of the signal in (3) is
obtained by taking the natural logarithm of its probability den-
sity function (pdf) conditioned on both the parameter vector, ,
and an assumed model order . The minimum of the negative
log likelihood is given by

(5)

where is a constant and denotes the MLE estimate given
a number of harmonics. The penalty terms for each criterion are
given by [54]

(6)

where is the number of unknown parameters. A Bayesian
approach can also be used to derive a MAP selection criterion.
However, the result, for this case, is equivalent to the MDL cri-
terion [24].

IV. MAXIMUM LIKELIHOOD ESTIMATION

We present an exact MLE for a given number of harmonics,
which requires an exhaustive search in the normalized initial
frequency-frequency rate space, and involves a large number of
computations at each candidate point in this space. It is known
that chirps with different time varying frequencies are almost
orthogonal. Based on this result and in order to reduce the com-
putations, we further derive the approximated MLE. We term
this estimator as the Harmochirp-gram since it extends the idea
of the Harmogram [7] used for estimating harmonic sinusoids.
This estimator still requires a search in the normalized initial
frequency-frequency rate space. However, the cost function ob-
tained requires less computations at each point in this space.
Simulation results show that the orthogonality approximation
is reasonable as the estimation performances of both estimators
are similar.

A. The Exact MLE

As noted above, the MLE of is found by minimizing
(5). Assuming some model order, , the MLE of , de-

Fig. 1. Illustration of the cost function of the exact MLE.

noted by , is obtained by taking the derivative of (5)
w.r.t. , and equating the derivative to zero. This results in

. Substituting this estimate in (5) yields

the MLE of , denoted by ,

(7)

where is the projection matrix of
.
In Fig. 1 we present an illustration of the cost function, ,

in the space. The cost function is composed from a
narrow ridge, centered around the location of the true parame-
ters and several local maximums at normalized initial frequency
and normalized frequency rates that are half, twice, four times
etc. the true fundamental normalized initial frequency and nor-
malized frequency rate, where in high noise scenario, the esti-
mator may yield false estimates.
Unfortunately, there is no closed-form expression for this es-

timator. Therefore, a two-dimensional exhaustive search in the
initial frequency-frequency rate is required. Finally, taking the
derivative w.r.t. and equating to zero yields

(8)

where . Substituting (8) into (5) results in

(9)

Substituting (9) into (4) and discarding all constants yields

(10)

B. The Approximated MLE

The basic assumption of the approximated MLE is that for
large number of samples, the cross-product between the th and
th harmonic components is negligible w.r.t. , i.e.,
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. We thus obtain that, for large number
of samples, . We can then replace the cost func-
tion in (7) by . We
further note that

(11)

where

(12)

and is the discrete
time Fourier transform (DTFT) of computed at the nor-
malized frequency . We term the cost function in (11) as the
Harmochirp-gram. In addition, (12) is termed the de-chirping of

since it transforms a chirp with frequency rate of into
a constant frequency signal.
The estimated parameters using (11) are not the exact MLE

for finite data lengths, but are asymptotically efficient when
the number of samples is large. To obtain these estimates we
actually perform the following steps for each candidate point

: 1) given , we de-chirp the observed signal with a
set of normalized frequency rates which yields the
signals ; 2) Taking the DTFT of each de-chirped
signal, , at normalized frequency, , and com-
bining the absolute values of the DTFT at these frequen-
cies (the second step is similar to the Harmogram technique
[7] which is used to estimate the fundamental frequency of har-
monic sinusoids).
Observe that by substituting (1) into (12) and assuming that
equals the true normalized frequency rate, , we get that

(13)

where is the true normalized initial fre-
quency, , and

are the
de-chirped noise and the residual term due to de-chriping the
other harmonic components. That is,

(14)

where is the Dirichlet kernel which
equals at . Assume that the noise term in (14)
is negligible and consider the case where . The
first term then equals while the second term is ap-
proximately zero according to the analysis in [55]. Approx-
imately, the value of in (11) at the true point is then

which means that the
Harmochirp-gram combines the energies of all the harmonic
components together.
In order to understand how large the number of samples is

required to be in order for the orthogonality assumption to hold,

Fig. 2. The ratio between the main and first diagonals of .

we wish to examine the ratio between the main and first diago-
nals of

(15)

Note that (15) is independent of and thus holds for each
. For , we get that is the magnitude of

the DTFT of a rectangular windowwith length . Fig. 2 present
versus for three different values of . As it can

be seen, has a scaling effect on . Again, considering
the case of , then has a local minimum at

, a side-lobe level of dB and side-lobes fall
rate of dB/octave [56]. Hence, in order to assure more than
20 dB attenuation, we require that

(16)

Note that the scaling, caused by , means that (16) ensures that
the cross product between two components is sufficiently small
for each .

C. Computational Load

We evaluate the computational complexity of the Har-
mochirp-gram and the MLE method by calculating the number
of on-line real multiplications involved in each method. Con-
sider first the Harmochirp-gram in (11). Assume that the
number of possible values of and are and , respec-
tively. At each point, we perform times de-chirping and
DTFT at a single frequency. The de-chirping and the squared
magnitude of the DTFT requires multiplications. The
total number of real multiplications is . Note that
in order to achieve the CRLB, and should be in the order
of and , respectively. Therefore the complexity of
the Harmochirp-gram is . The exact MLE involves
the calculation of (7) at each point. This requires inversion of
an matrix and multiplication of an matrix by

matrix. Assuming , the total complexity of the
exact MLE is .
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V. THE CRAMER-RAO LOWER BOUND

The covariance matrix of any unbiased estimate of , denoted
by , is lower bounded by the in-
verse of the Fisher information matrix (FIM), denoted by ,
that is, , where

(17)

where the sub-matrices of are shown to be given by (see
the Appendix)

(18)

(19)

(20)

where and denote the real
and imaginary parts of , respectively. Also,

with and ,
where we defined for real . Using the
matrix inversion lemma ([55], App. A) we get that the CRLB
on is then given by

(21)

where is the covariance of .

A. The Large-Samples Approximation of the CRLB

Observe that the terms appears in the expres-
sions of and via the matrices , and .
The th element of is given by,

(22)

The value of along the main diagonal is ,
which for , is approximately . We as-
sume that for , i.e., we neglect
the off-diagonal terms of the matrix. We thus obtain after few
simple mathematical steps that the different FIM in (18)–(20)
are approximately given as

(23)

(24)

(25)

Substituting (23)–(25) in (21) yields that the large-samples
CRLB on the parameter vector is given by,

(26)

The large-samples CRLB on the estimation error of the normal-
ized initial frequency and frequency rate are,

(27)

Observe that
, where the inequality holds for .

By estimating the normalized initial frequency and frequency
rate using all the harmonic components, we improve the esti-
mation error w.r.t. . Furthermore, the estimation accuracy of
and decrease as and , respectively, which

can be obtained using the DTFT as is being used by the Har-
mochirp-gram.

VI. PRODUCT HIGH ORDER AMBIGUITY FUNCTION

The PHAF method for estimating parameters of a multi com-
ponent PPS was introduced in [23]. It is a low complexity sub-
optimal estimation method that uses multi-lag HAF [18] to re-
duce the dimension of the problem to one dimensional search.
We now wish to present the methods and its application to the
estimation of the parameters of harmonic LFM signals.
The second order ambiguity function is defined as [23]

(28)

where and is a delay, in samples.
The ambiguity function, when applied to LFM, transform the
signal into a complex sinusoids [23]. That is, will be a
sum of complex sinusoids at the frequencies .
Therefore, should have strong peaks at the expected
frequencies. Given a set of lags, , the PHAF
is defined as a product of scaled second order ambiguity func-
tions

(29)

The scaling procedure aligns the sinusoids to the same fre-
quency. Hence, will have very strong peaks at

. Note that (28) is constructed using a
DTFT. Thus, a high resolution search is still required. However,
as opposed to the MLE, the problem is now reduced to a one
dimensional search. As we showed, the required resolution in
order to achieve the CRLB is .
Following the estimation procedure for a multi-component

signals from [23], the parameters are estimated as follows. First,
the frequency rates of each component, , are esti-
mated separately by picking the highest peaks in (29). Then,
de-chirped signals are defined as

(30)

Each de-chirped signal should be composed of a complex sinu-
soid in presence of interfering harmonics. The initial frequency
of each component, , are thus estimated as

(31)
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Fig. 3. The Harmonic-SEES estimator.

We define the estimated parameters vectors
. We define a mapping of

the components numbers, , such that
. Then, the parameters can

be estimated by solving the following LS problem

(32)

where

(33)

is the vector with all elements equal to zero,
and

. Solving the above problem yields

(34)

where .

Once is estimated, can be substituted in (8) instead

of the in order to estimate the conditional negative log-
likelihood and select the number of harmonics according to (10).
A major problem with the PHAF based estimation is that the

parameters are estimated separately. Therefore, the estimation
error of the frequency rate will propagate to the estimation of
the initial frequency [23].

A. Accuracy Analysis

For a single LFM component at high SNR, the PHAFmethod
is known to achieve the CRLB [23]. That is, we assume that

the estimated parameters of each component, , is given

by where is a zeros-mean Gaussian
process with a covariance given by the CRLB for a single LFM.
Therefore, according to (26), we assume that

(35)

where accounts for the additive noise and the interference
of the other components. We further assume that the errors of
any two components are uncorrelated, i.e.,
for . The estimations of each component actually are cor-
related but we model that as an interference that contribute more

noise. As noted in [23], analyzing is very complicated. We
can therefore conclude that

(36)

(37)

In order to compare the PHAF estimator to the optimal esti-
mator, we examine the ratio between the variance of the MLE
and that of the PHAF method

(38)

(39)

for . The MLE is asymptotically efficient. Therefore,
from the last result, we get that for the PHAF estimator
cannot, even in high SNR, achieve the CRLB. As shown before,
the MLE error improves by a factor of . From the last result
it seems that the PHAF estimator improves only by a factor of
. Generally, since , this is not a tight lower bound

and the actual error should be even higher.

B. Computational Load

The construction of the PHAF in (29) involves calculation of
a DTFT times, each requires multiplications per fre-
quency. The number of frequency rate candidates required to
achieve the best possible approximation is in the order of .
The total number of multiplications required to construct (29) is
therefore . Next, DTFTs, one for each de-chirped
signals are required. The number of frequencies in this step is
in the order of . The complexity of the initial frequencies
estimation is therefore . The last step, the LS, re-
quires multiplications which is negligible. To conclude,
the PHAF method involves multiplications. Since
should be a small number, this is substantially less than the

complexity of the Harmochirp-gram estimator.

VII. THE HARMONIC SEPARATE-ESTIMATE METHOD

The use of the DTFT, as demonstrated in the numerical re-
sults, makes it possible to achieve the CRLB. However, it re-
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Fig. 4. Scheme of the separate step.

quires large number of computations. This complexity can be re-
duced using the discrete Fourier transform (DFT) which is more
attractive due to its efficient implementation, the FFT. However,
the frequency resolution of the DFT is limited proportionally to
the inverse of the number of samples, i.e., . To overcome
this resolution limit but still exploits the low complexity of the
DFT, we suggest a suboptimal estimator, the Harmonic-SEES.
We suggest a two-step method to estimate and of the

harmonic chirps (see Fig. 3). First, separate the signal to its
harmonic components and then jointly estimate the and
from the phases of the signals using a LS approach. The com-
putationally efficient DFT is used in a separate step to obtain
a coarse normalized frequency rate estimate, and this estimate
is further refined within the second step using the LS principle.
We show that asymptotically, that is, given large number of data
samples, the Harmonic-SEES estimator is unbiased, and obtain
a closed-form expression for its theoretical covariance matrix.
The outputs of the separate step are reconstructed har-

monic components of the original signal. We design pro-
cessors where each processor is composed of three blocks (See
Fig. 4): 1) de-chirping; 2) frequency filtering; 3) reconstruction.
The first block eliminates the quadratic term of the phase of
the th harmonic component and retains the linear term of the
phase only. The second block transforms the de-chirped signal
to the frequency domain using DFT, and removes interferences
from other harmonic components using a filter which is tuned to
the frequency of the th complex exponential. In the third block
the de-chirped and filtered signal is back transformed to the time
domain using inverse DFT (IDFT), and is multiplied by a chirp
with a normalized frequency rate equals to the de-chirping fre-
quency rate used in the first block of the th processor. This
processing chain assumes that the de-chirping value is given.
Hence, we first perform a pre-processing step where we select
the suitable de-chirping value. We next describe the separate
step in details.
1) De-Chirping Selection: We define a set of

de-chirping normalized frequency rates de-
noted by . For each , we
define a corresponding harmonic de-chirping set, denoted by

and define the th de-chirped
signal, denoted by , where

as

(40)

(41)

If equals the true normalized frequency rate, we get
an attenuated complex exponential in the presence of
other interfering harmonic components and noise. We
thus compute the DFT at the th frequency bin as

. By
defining the DFT vector
we obtain,

(42)

where is the DFT transformation matrix. If the
de-chirping set equals to the true
set of normalized frequency rates of the harmonic compo-
nents, given by , then is the sam-
pled Dirichlet function where the value of the peak of , is

(neglecting the noise). By summing the values of all
peaks together, we obtain a value equals to ,
which is the energy of the harmonic signal. Any other hypoth-
esized normalized frequency rate will result in a smaller value.
Hence, we need to define a criterion for selecting the suitable
de-chirping value. One possibility is to select the normalized
frequency as,

(43)

where is the maximum value of , and
the location of the maximum is,

(44)

Another possibility is to use a Harmogram-like criterion
that will exploit the relationship between the expected

. The normalized frequency is selected as

(45)

Other possible selection criteria can be based on computing the
sparsity of , e.g., its Kurtosis [57].
2) Separating the Harmonic Components: Given , We

filter in the frequency domain with a bandpass filter of
length (a pre-defined frequency interval that ensures the
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harmonic components are well separated) expressed by the
matrix,

(46)

where is the vector with all elements equal to one.
As mentioned above, when , then is a complex

exponential whose DFT, , is a Dirichlet function. How-
ever, this is not the case in general. The th component in

should be an LFM with a very small bandwidth. Assume
that the search grid is uniformly spaced such that

. Then the bandwidth of the LFM should be no
more than . Therefore, in order to avoid filtering the desired
signal, the length of the filter should satisfy . However,
increasing the filter length introduces more noise into the fil-
tered signal which can cause poor estimation.
The filtered signal in the frequency domain is,

(47)

Ideally, this process retains an attenuated complex exponential
with a frequency equals to the normalized initial frequency of
the th harmonic component. To obtain the original harmonic
component of the chirp, we perform an IDFT followed by a
chirp multiplication, i.e.,

(48)

where by substituting (47) into (48) we define

(49)

We thus obtain a set of reconstructed harmonic components,
, of the observed signal.

Assume that are filtered without interference from
other harmonic components. We therefore get that,

(50)

where and are the absolute value and
phase of , respectively, is the th element of

. Assuming that small errors are present, i.e.,
, it can be shown using a first

order Taylor series that the magnitude and phase in (50) are
approximately,

(51)

(52)

We assume the magnitude of the filtered signal is ap-
proximately . The information on the normalized initial
frequency and frequency rate is hidden in the wrapped phases

. However, to estimate the normalized ini-
tial frequency and frequency rate, we need to consider the
unwrapped phase.

A. Phase Unwrapping

First, we present parameters estimation given the unwrapped
phases of , denoted by . In case of
LFM signals, the unwrapped phase can be found by integrating
the second derivative of the phase of the signal [38] given by

(53)

for . The motivation is that the second derivative
of the phase of an LFM is constant and as such, can be extracted
from the signal. By integrating we obtain

(54)

where we define . And the un-
wrapped phase is given by

(55)

(56)

We further assume that the noises are small enough such that
they do not cause any jumps in the unwrapping procedure.
The unwrapped phase at the end of this step is

(57)

where we define the error term
. Define the vector of

phase measurements obtained from the th reconstructed
harmonic component, , by .
Collecting all the measurements in (57) we obtain an
approximate linear model for and given , i.e.,

(58)

where with , and
.

Also,
where is the Hadamard (dot) product. The unknown parame-
ters and the unknown vector are estimated using a
LS method as follows,

(59)
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Taking the derivative of (59) w.r.t. and equating the result to
zero yields that . Substi-
tuting into (59), taking the derivative w.r.t. and equating
the result to zero yields that the estimate of is,

(60)

where
.

B. Joint Phase Unwrapping and Least Squares

The phase unwrapping process as described above assumes
that the unwrapped phase does not change by more then
between two consecutive samples. That is, we assume that

. If is close to , the processes be-
comes very sensitive to noise [39].
To overcome that problem, a joint phase unwrapping and pa-

rameters estimation method was proposed in [39] using a re-
cursive processing. This eliminates the need to perform phase
unwrapping prior to the estimation process. Rather, the unwrap-
ping is performed sample at a time given the current estimation
of the parameters yielding a more robust process.

Let , where
, be the estimated parameters at

the th step of the filter. Then, the phase is given by

(61)

where

...
... (62)

and .
The phase error of the th harmonic component is defined as

.
The algorithm is initialized with an estimate given

samples of the unwrapped phased using a conventional unwrap-
ping algorithm, as suggested above,

(63)

where and

. Following the initialization
process, the algorithm iterates through three steps for

.
1) Predict:
2) Unwrap:

3) Update:
where . Note that

is not data dependent and can be computed off-line.
The estimated parameters are obtained from the final step,

. The recursive processing used for the
parameters estimation is equivalent to a batch LS estimation
given the unwrapped phase [58]. That is,

(64)

Fig. 5. RMSE for the exact MLE, approximated MLE and Harmonic-SEES
including the CRLB vs. the number of samples.

where and .

Again, once is estimated, the number of harmonics
can be selected by substituting the estimate into (8) instead of

the for each possible value of .

C. Accuracy Analysis

We evaluate the bias and covariance of the estimate given
in (64) when it is estimated in the presence of noise. Since both
estimation method are equivalent, the analysis should hold to
the estimate in (60). Substituting (58) into (64) yields that the
estimate of is given by

(65)

where . Note that
,

where we substitute instead of . This means that
and therefore is approximately unbiased.

The covariance of , is given by

(66)

The covariance of the noise, , is a block
matrix composed of blocks of matrices of the form

. Using the facts that is a zero
matrix, while ,
it can be shown that

(67)

Substituting (67) in (66) yields the covariance matrix of . In
the simulation results we show that the asymptotic covariance in
(66) coincides with the CRLB. However, this covariance result
only holds for large and small noise.

D. Computational Load

The first step in the Harmonic-SEES method is to create the
vector in (42). This is done by multiplying the input with a
diagonal matrix , which requires multiplications, and per-
forming DFT (using FFT), which involves multi-
plications. This is done times for each possible value. The
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TABLE I
COMPARISON OF THE FOUR ESTIMATION METHODS. THRESHOLD SNR AND

EFFICIENCY FROM FIG. 6

total number of real multiplications required for the de-chirping
selection is . Since the de-chirping process
and the DFT block in the frequency filtering part is already
performed in the de-chirping selection, no more multiplications
are required. Next, the vectors are created in (47) by multi-
plying each harmonic component with a diagonal matrix ,
which requires multiplications. The reconstruction of each
harmonic component is multiplications, similarly
to the de-chirping selection. Therefore, the complexity of the
separate step in total is . Finally, the
estimation of both parameters is done by the recursive process.
Since the gain is not data dependent, it can be computed off-line.
Therefore each iteration requires multiplications. since
there are iterations, the total complexity of the estimation
process is . Combining both steps and assuming
results in a total of multiplications. The

de-chirping selection is only a rough estimate of , therefore
there is no need to search with resolution that corresponds to
the CRLB and can be in the order of . In that case, the total
number of real multiplications for the Harmonic-SEES method
is therefore which is substantially less than that
of the Harmochirp-gram. A comparison between computational
complexity of each method is presented in Table I.
The low computational complexity of the proposed algorithm

makes it more suitable for real-time applications. Furthermore,
due to the recursive implementation of the estimation step, the
estimated parameters can be updated on-line.

VIII. NUMERICAL RESULTS

We present numerical examples that compare the perfor-
mance of the MLE, Harmochirp-gram, PHAF and the proposed
Harmonic-SEES methods. We start with synthetic simulations
and then present real data results.

A. Simulations

In each simulation we consider harmonics.
The amplitudes of the harmonic components are given
as , where is
a uniformly distributed phase. The noise power is
adjusted to give the desired SNR defined as

[dB]. In each simulation we
evaluated the root mean squared error (RMSE) defined as

where

and are the estimate of and at the th trial,
respectively and is the number of Monte-Carlo
independent trials. The phases of the amplitudes are generated

once for all trials. For comparison, in each simulation we
compared the results with the associated CRLB.
First, we wish to examine the orthogonality assumption, pre-

sented in Section IV-B. The parameters of the fundamental chirp
are given by and and the SNR is set to
15 dB. The requirement of the number of samples in (16) in
this case is . The filter’s width for
the harmonic components separation was 6 samples. We ex-
amine the performance of the exact and approximated MLE for
number of samples ranging from up to .
The RMSE for both parameters versus the number of samples
is presented in Fig. 5. It can be seen that when the number of
samples satisfies (16), the Harmochirp-gram performs similarly
to the MLE. The Harmonic-SEES method requires more sam-
ples and performs well in this case for . This is because
for smaller number of samples the harmonic components are
not well separated and cannot be properly filtered. The peaks of
the PHAF becomes wider as the number of samples decreases.
For the specified number of samples the peaks were not sepa-
rable and the PHAF method was unable to detect the three com-
ponents. Therefore the results are not presented for this case.
Next, we compare the RMSE of the estimated normalized ini-
tial frequency and frequency rate versus the SNR for the MLE,
Harmochirp-gram, PHAF and Harmonic-SEES methods. The
parameters of the fundamental chirp are given by and

. The number of samples is , far more than
the requirement in (16). For the PHAF method, lags are
used with samples. We consider SNR
values from [dB] to 21 [dB] in steps of 2 [dB]. Those
settings are used in the simulations hereafter unless otherwise
stated. The RMSE results are presented in Fig. 6. The CRLB
and the theoretical lower bound of the PHAFmethod, according
to (38), are also plotted for both parameters. The MLE and Har-
mochirp-gram perform similarly and achieve the CRLB for both
parameters. For SNR above 5 [dB] the Harmonic-SEES method
also achieves the CRLB. The PHAF estimator does not reach its
lower bound. This is expected as it is not a tight bound. The error
seems to converge to around 1.5 times the lower bound for SNR
of 13 [dB] or more.
Fig. 7 present the scattering of the estimate errors, i.e.,

, of theMLE and Harmonic-SEESmethods
along with a theoretical and actual 50% confidence level ellipses
for SNR values of [dB] and 7 [dB]. For the lower SNR value,
the Harmonic-SEES method does not achieve the CRLB and
thus the actual confidence level ellipse is larger than the theoret-
ical one. For the higher SNR the ellipse of the Harmonic-SEES
coincides with that of the CRLB.
We now compare the performance of the model order

selection using the MDL and AIC criteria for the MLE,
PHAF and Harmonic-SEES methods. We evaluate the prob-
ability of detecting the correct model order, defined as

where is the indicator function.
The versus SNR results are presented in Fig. 8. For both
MDL and AIC criteria, the model order estimator that uses the
Harmonic-SEES always estimates correctly for SNR values
of 5 [dB] or more. Not surprisingly, this is the threshold SNR
for which the CRLB is achieved. The AIC performs slightly
better then the MLE for both MLE and the Harmonic-SEES
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Fig. 6. RMSE for each estimator including the CRLB vs. SNR. (a) , Nor-
malized initial frequency, (b) , Normalized frequency rate.

estimator. The PHAF method achieves perfect selection at
around 11 [dB] with both criteria perform equally.
Finally, we evaluate the sensitivity of the Harmonic-SEES

method and the MLE to vibrations in the frequency. The th
harmonic component is simulated with an instantaneous fre-
quency given by .
The SNR is fixed to 10 [dB] and we examine different values of
both parameters, and . The RMSE versus is presented in
Fig. 9 for both estimated parameters, where each plot shows the
error for different values of . The PHAF performed poorly in
this case and the results are not presented. Clearly, the estimator
is very sensitive to changes in the assumed frequency model.
The performance of the estimator is better for higher values of
. For the highest value of , the proposed method performs

similarly to the MLE for , which is 30% from the ini-
tial frequency.

B. Real Data

We demonstrate the model order selection and the parameter
estimation of a recording of an echolocation call produced by an
E. nilssonii bat [59]. The signal is sampled at 125 kHz and di-
vided into segments of samples. In each segment, the
parameter and model order were estimated using the AIC cri-
terion. A spectrogram of the signal is presented in Fig. 10. The
signal seems to have four harmonic components but the last one

Fig. 7. The estimates and confidence ellipses of the fundamental frequency and
frequency rate for (a) Harmonic-SEES, [dB], (b) Harmonic-SEES,

[dB], (c) MLE, [dB], (d) MLE, [dB].

Fig. 8. Probability of correct model order selection for each estimator.

is very weak and is hardly detected. The estimated frequencies
are plotted in dashes line on top of the spectrogram and the se-
lected model order, using the AIC criterion, is plotted above.
The results for the MDL were very similar and thus not pre-
sented. The markers on the spectrogram corresponds to a peak
detection at each time frame. Clearly, the fundamental chirp is
less dominant, yet it is detected the entire time.
Next, we demonstrate the model order selection and the pa-

rameter estimation of a recording of an echolocation call pro-
duced by a G. melas whale [60]. The signal is sampled to 44.1
kHz. Again, the signal is divided into segments of
samples and the results are presented in Fig. 11 in the same
format as the previous example. Once again, the AIC and MDL
performed similarly and the latter is not presented. The funda-
mental frequency line is always detected. The higher harmonics,
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Fig. 9. RMSE of the Harmonic-SEES estimator and the MLE versus vibra-
tions in the instantaneous frequency. (a) , Normalized initial frequency, (b)
, Normalized frequency rate.

Fig. 10. Model order selection and parameter estimation of an echolocation
call produced by an E. Nilssonii bat. The diamonds mark peaks detection in the
spectrogram.

starting from the 5th, are very weak and not detected most of the
time. The first part of the signal contains an interference which
is not detected. The interference is relatively strong, comparing
to each harmonic component, but not strong enough when com-
bining all the harmonic components together.

Fig. 11. Model order selection and parameter estimation of an echolocation
call produced by a G. melas whale. The diamonds mark peaks detection in the
spectrogram.

IX. CONCLUSION

We have considered the problem of estimating the funda-
mental initial frequency and frequency rate of harmonic linear
chirps when the number of harmonic components is unknown.
In order to estimate the number of harmonics, we presented a
model order selection criteria based on maximum likelihood.
The exact and approximated MLE have large computation load
due to a two-dimensional exhaustive search in the parameter
space. We suggested a two-step estimation method that first
separates the signal to its harmonic components, and then
estimates the two parameters of interest using a joint least
squares method given the phases of the harmonic components.
The computational complexity of the proposed estimator is
much smaller than that of the maximum likelihood estimators.
We also presented the PHAF method and compared it to the
proposed method. Simulations show that the proposed two-step
estimator achieves the CRLB at moderate or high signal to noise
ratio and that the suboptimal estimators can be used instead of
the MLE in order to estimate the number of harmonics. Real
data examples demonstrate the performance of the proposed
method on echolocation calls.

APPENDIX

In this Appendix we present a detailed derivation of the sub-
matrices of the FIM in (17) following [54]. The (1, 1)th element
of is the FIM where

. By substituting we
get that , where .
Substituting in results in
, where and is the Hadamard (dot)
product. Using yields,

(68)

where in the second transition we used the result
, and in the second transition we used the

identity for two vectors with identical
dimensions, and .



DOWECK et al.: JOINT MODEL ORDER SELECTION 1777

The (2, 2)th element of is the FIM
where

. By substituting
we get that , where

. Substituting in
yields . Using yields,

(69)

where in the second transition we used a similar result to the
identity expressed in (68) where the vector is replaced by the
vector .
The (1, 2)th element of is the FIM

. Using and yields,

(70)

We next derive the sub-matrices of the FIM . We use the
identity for a complex scalar .
The upper-left sub-matrix of is

. Similarly, we define the
other sub-matrices of . The upper-left sub-matrix of

is where
we used the expression of . Similarly, the upper-right
sub-matrix of the FIM is . In a similar way we
derive . The lower-left sub-matrix of the FIM is

where
we used again . In a similar way we derive . This
concludes the derivation of the FIM.
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