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Abstract— In our previous work [1] we have introduced
a redundant tree-based wavelet transform (RTBWT), originally
designed to represent functions defined on high dimensional data
clouds and graphs. We have further shown that RTBWT can be
used as a highly effective image-adaptive redundant transform
that operates on an image using orderings of its overlapped
patches. The resulting transform is robust to corruptions in the
image, and thus able to efficiently represent the unknown target
image even when it is calculated from its corrupted version.
In this paper, we utilize this redundant transform as a powerful
sparsity-promoting regularizer in inverse problems in image
processing. We show that the image representation obtained with
this transform is a frame expansion, and derive the analysis and
synthesis operators associated with it. We explore the use of
this frame operators to image denoising and deblurring, and
demonstrate in both these cases state-of-the-art results.

Index Terms— Patch-based processing, redundant wavelet,
frames, denoising, deblurring, ordering, regularization.

I. INTRODUCTION

SPARSE and redundant representations and the processing
of local patches have become two of the most popular

approaches in image processing in recent years. While image
processing algorithms may be based only on patch processing
[2], [3] or sparse representations [4], [5], many current state-
of-the-art algorithms make use of both concepts, usually by
processing the image patches using sparsifying transforms or
learned dictionaries [6]–[11].

In our previous work [1] and [12] we have combined
the two aforementioned approaches in a different manner,
and used image patches to construct both an orthogonal and
a redundant wavelet transforms, which efficiently (sparsely)
represent entire images. These two wavelet transforms were
originally designed to represent scalar functions defined on
high-dimensional data clouds and graphs. However, we have
also shown in [1] and [12] that the very same construction
can be used as an image-adaptive transform that is highly
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effective for sparsifying image content. This is obtained by
converting the given image into a graph by considering all its
overlapped patches as coordinates in high-dimensional space,
and referring to them as features of the graph vertices. These
are accompanied by their mutual Euclidean distance to define
the graph edges, this way tying the vertices to each other.
Due to the reliance on patches, both transforms are robust
to corruptions in the image, such as additive noise, blur,
or missing values, and are able to efficiently represent the
unknown target image even when they are calculated from
its corrupted version. As we shall see hereafter, this work
will utilize this last property, and demonstrate the use of our
redundant transform proposed in [1], (termed redundant tree-
based wavelet transform – RTBWT), as a powerful sparsity-
promoting regularizer in inverse problems.

More specifically, the RTBWT is calculated for an image
by adding data-dependent operators, merged into the classi-
cal redundant wavelet filter-bank implementation [13], [14].
In each decomposition level several operators are used to
reorder the approximation coefficients before the scaling and
wavelet filters are applied to them. The reordering operators
are obtained by organizing feature vectors constructed from
the image patches, such that they are chained in the shortest
possible path, essentially obtaining an approximation to the
solution of the traveling salesman problem (TSP) [15]. These
permutation operators increase the regularity of the approx-
imation coefficient signals, thus causing their representation
with the RTBWT to be more efficient (sparse).

As said above, in this work we utilize the RTBWT as a
powerful sparsity-promoting regularizer in inverse problems
in image processing. We start by introducing a simpler imple-
mentation to the RTBWT, which is based on the widely
known “à trous” algorithm [16], [17]. This algorithm is a
different implementation of the redundant wavelet transform
that applies in each decomposition level upsampled versions
of the scaling and wavelet filters to the whole approximation
coefficient vectors. Thus, our scheme essentially adds to each
decomposition level of this transform a single permutation
operator that reorders the approximation coefficients before
they are filtered, leading to the “à trous” implementation of
our transform. We use this scheme and ideas from [18] to
show that the RTBWT is a valid frame expansion, with the
same bounds as the common redundant wavelet transform.

In our previous works [1], [3], and [12] we observed that
the performance of patch-ordering-based algorithms improve
when a subimage averaging scheme is used. For algorithms
using the RTBWT, this consists of applying the transform
to different subimages of the treated image and then jointly
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Fig. 1. RTBWT decomposition scheme.

operating on the transform coefficients of all the subimages.
We refer to all the transform coefficients of the different
subimages as a single extended representation of the treated
image, and next take a path similar to the one described
in [11] for the BM3D algorithm. We construct matrices which
act as analysis and synthesis operators [19], and are used to
obtain this extended representation and reconstruct the image
from it. We then show that these matrices constitute a frame
and its dual. We explore the use of these operators in image
denoising and deblurring algorithms. Despite the fact that
the resulting transform is image dependent, we treat it as a
fixed linear operator and use it within a sparsity-promoting
regularizer, when handling image-processing tasks posed as
inverse problems. We demonstrate state-of-the-art results in
denoising and deblurring using this approach.

The paper is organized as follows: In Section II, we describe
the image-derived redundant tree-based wavelet transform.
We also introduce the à trous based implementation of the
transform, and use it to analyze its frame properties. Section III
introduces the RTBWT subimage averaging frame, and ana-
lyzes its properties. Sections II and III can be skipped by
readers interested in the image processing applications side
of this work. In Section IV, we explore the use of this frame
to image denoising and deblurring, and present experimental
results that demonstrate their advantages. We summarize the
paper in Section V.

II. REDUNDANT TREE-BASED WAVELET TRANSFORM

This and the next sections are dedicated to a careful
construction and study of the frames that will be later used
for regularizing inverse problems.

A. Decomposition and Reconstruction Schemes

Let Y be an image of size N1 × N2 where N1 N2 = N ,
and let y be the column stacked version of Y. The redun-
dant tree-based wavelet transform (RTBWT), introduced in
[1], is designed to efficiently (sparsely) represent its input
vector, which in our case is y. The transform is constructed
by modifying an implementation of the redundant wavelet
transform proposed by Shensa [13] and Beylkin [14]. Figure 1
describes the decomposition scheme of the RTBWT. The filters
h̄ and ḡ are the scaling and wavelet decomposition filters of an
orthonormal discrete wavelet transform, and they are applied
using cyclic convolution. The 2 : 1 decimators denoted by

Algorithm 1 RTBWT L-Level Decomposition Scheme

↓ 2o and ↓ 2e keep the odd and even samples of their input,
respectively. The signals a� and d� are the approximation and
detail coefficient vectors in the �th scale, respectively, where
a0 = y. We note that for � > 1 these signals do not appear
explicitly in the decomposition scheme, and instead it employs
the signals denoted by as

� and ds
�, which contain subsets of the

samples in a� and d�, respectively. The signal as
� is obtained

from a� by starting from the sth sample, and keeping every
2�th sample. The signal ds

� is obtained from d� by starting
from the sth sample, and keeping every 2�−1th sample. For
example, for signals a2 and d2 of length 16 we get that

a1
2 = [a2[1], a2[5], a2[9], a2[13]]T

a2
2 = [a2[2], a2[6], a2[10], a2[14]]T

a3
2 = [a2[3], a2[7], a2[11], a2[15]]T

a4
2 = [a2[4], a2[8], a2[12], a2[16]]T

d1
2 = [d2[1], d2[3], . . . , d2[15]]T

d2
2 = [d2[2], d2[4], . . . , d2[16]]T . (1)

We notice that a1
0 = a0 and d1

1 = d1.
The operators Ps

� make the difference between our proposed
wavelet decomposition scheme and the common redundant
wavelet transform [13], [14]. Each such operator produces a
permuted version as,p

� of its input vector as
�, and it may be

interpreted as a linear and unitary operator given that vec-
tor. These operators “smooth” the approximation coefficient
signals in the different levels of the decomposition scheme.
In Section II-B we explain how to obtain these operators
from the image patches. Assuming that the operators Ps

� are
known, Algorithm 1 is used to apply an L-level RTBWT
decomposition.

In a similar manner, Figure 2 describes the reconstruction
scheme of the redundant tree-based wavelet transform. If h
and g denote the scaling and wavelet reconstruction filters,
then h̃ = 1

2 h and g̃ = 1
2 g are applied using cyclic convolution.

The upsamplers denoted by ↑ 2o and ↑ 2e place the samples
of their input vector in the odd and even locations of their
output vector, respectively. The operator P̃s

� reorders a vector
so as to cancel the ordering done by Ps

�, i.e. P̃s
� = (Ps

�)
−1 =

(Ps
�)

T . Assuming that the operators P̃s
� are known, Algorithm 2
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Fig. 2. RTBWT reconstruction scheme.

reconstructs y from an L-level RTBWT decomposition.
We next explain how the operators Ps

� are determined in each
level of the RTBWT.

B. Building the Operators Ps
�

We wish to design the operators Ps
� in a manner which

results in an efficient (sparse) representation of the input image
by the proposed transform. The wavelet transform is known
to produce a small number of large coefficients when it is
applied to piecewise regular signals [16]. Thus, we would like
the operator Ps

�, applied to as
�, to produce a signal as,p

� which
is as regular as possible. We start with the finest level, and
try to find the permutation that the operator P1

0 applies to
a0 = y. When the image Y is known, the optimal solution
would be to apply a simple sort operation on y. However, since
we are interested in the case where y may be corrupted (noisy,
blurred, contain missing pixels, etc.), we would try to find a
near-optimal ordering operation using the image patches.

Let yi denote the i th sample in the vector y, and let xi

denote the column stacked version of the
√

n × √
n patch

around the location of yi in Y. A key assumption in our
work is that under some distance measure w(xi , x j ), proximity
between the two patches xi and x j suggests proximity between
their center pixels yi and y j . Thus, we shall try to reorder the
patches xi so that they form a smooth path, hoping that the
corresponding reordered 1D signal a1,p

0 = yp will also be
smooth. The “smoothness” of the reordered signal a1,p

0 can
be measured using its total variation measure

‖a1,p
0 ‖T V =

N∑

j=2

|a1,p
0 [ j ] − a1,p

0 [ j − 1]|. (2)

Let {xp
j }N

j=1 denote the patches {xi}N
i=1 in their new order.

Then by analogy, we evaluate the “smoothness” of the path
through the patches xp

j by the measure

T V (xp
j ) =

N∑

j=2

w(xp
j , xp

j−1). (3)

Minimizing T V (xp
j ) comes down to finding the shortest

path that passes through the set of points xi , visiting each
point only once. This can be regarded as an instance of the
traveling salesman problem (TSP) [15], which can become

Algorithm 2 RTBWT L-Level Reconstruction Scheme

very computationally exhaustive for large sets of points.
We choose a simple and crude approximation to the solution,
which is to start from an arbitrary point (random or pre-
defined), and continue from each point to its nearest neighbor,
not visiting any point twice. Let q j denote a vector containing
the 2D spatial coordinate of the patch x j in the image Y. We
restrict the nearest neighbor search performed for each patch
x j to a square neighborhood of size B × B around q j . When
no unvisited patch remains in that neighborhood, we search for
nearest neighbors among all the unvisited patches in the whole
image. This restriction decreases the overall computational
complexity, and our experiments show that with a proper
choice of B (found empirically so as to optimize the results) it
also leads to improved results, as it forces more relevant neigh-
bors in the ordering. Further work is needed to set this parame-
ter automatically and perhaps even consider a dynamic search
area based on the patch-content. The permutation applied by
the operator P1

0 is defined as the order of the found path.
In order to further increase the sparseness of the image rep-

resentation with RTBWT, we use the aforementioned method
to find operators {Ps

�}2�
s=1 which are applied to the signals

{as
�}2�

s=1 in scales � > 0. To this end, we are required to
associate a set of feature points with these signals. More
specifically, we predict the proximity between the samples
of the signal as

�, by associating a feature point xs
�, j with

each sample as
�( j). Also, in order to measure the spatial

proximity between the feature points, we associate a 2D spatial
coordinate qs

�, j to each feature point xs
�, j . The calculation

of the feature points and their coordinates is carried out in
a recursive manner. We use the set of �-th scale feature
points {xs

�, j }2−�N
j=1 to calculate the two sets of feature points

{xs
�+1, j}2−�−1 N

j=1 and {xs+2�
�+1, j}2−�−1 N

j=1 , used in the �+ 1th scale.

This is done in analogy to the way we obtain the signals
as
�+1 and as+2�

�+1 from the signal as
�. We first order the feature

points {xs
�, j}2−�N

j=1 according to the permutation defined by Ps
�,

and place them in the columns of an n × 2−�N matrix Xs,p
� .

We then filter the rows of the result with h̄T , and obtain the
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sets of feature points {xs
�+1, j }2−�−1 N

j=1 and {xs+2�
�+1, j }2−�−1 N

j=1 by
keeping only the odd and even columns of the resulting matrix,
respectively.

A similar process is used to calculate the two sets of spatial
coordinates {qs

�+1, j }2−�−1 N
j=1 and {qs+2�

�+1, j }2−�−1 N
j=1 corresponding

to {xs
�+1, j }2−�−1 N

j=1 and {xs+2�
�+1, j }2−�−1 N

j=1 , respectively. However,
here we filter the rows of the result with a normalized filter
h̄T

a , which satisfies

h̄a[n] = |h̄[n]|/
∑

k

|h̄[k]|, (4)

so as to guarantee no drift in the coordinates.
We note that every time we advance from one scale to

the next, the number of features points used to calculate
a single reordering operator decreases by a factor of two.
Therefore, when we move to the coarser level we increase
both dimensions of the search area by a factor of

√
2, so as

to keep the number of candidate neighbors to consider. Thus,
the size of the search area used in the �th scale is 2

�
2 B ×2

�
2 B .

Having calculated the feature points xs
�+1, j and their coordi-

nates qs
�+1, j , they can be fed to the approximate shortest path

search method described above to obtain each of the operators
Ps
�+1 in the � + 1th scale. The calculation scheme of all the

ordering operators Ps
� that are used in an L-level RTBWT

decomposition is summarized in Algorithm 3. Figure 3 shows
a scheme describing an example for the such calculation for a
2-level decomposition of an image with 8 pixels. We note that
Similarly to the decomposition scheme of the generalized tree-
based wavelet transform (GTBWT) described in [12], the rela-
tion between the feature points in a full decomposition can be
described using tree-like structures. Each such “generalized”
tree contains all the feature points which have participated in
the calculation of a single feature point xs

L , j from the coarsest
scale. Figure 4 shows an example of such a “generalized”
tree, corresponding to length N = 8, using a filter h̄ of length
4 and disregarding boundary issues in the different levels. We
next describe an alternative implementation of the RTBWT,
and use it to show the frame properties of the transform.

C. À Trous Implementation and Frame Properties

The common and widely known “à trous” algorithm [16],
[17] is an alternative implementation for the redundant wavelet
transform. Instead of explicitly applying the filters h̄ and ḡ
to subsets of the signals a�, the à trous algorithm applies
upsampled versions of these filters directly to a�. The upsam-
pled filters are obtained by inserting “holes” (trous in French)
between nonzero filter taps. We next show that the RTBWT
can also be applied using a modification of the à trous
algorithm. We then use this scheme to show that the RTBWT
is a frame expansion, with the same bounds as the common
redundant wavelet transform. We note that the à trous imple-
mentation and the frame properties of the RTBWT are valid in
general, and are not restricted to the image-derived RTBWT.

We first notice that in the aforementioned implementa-
tion of the RTBWT decomposition scheme, the operators
Ps
� operate in the �th scale on disjoint subvectors as

� of a�.
Therefore, these operators can be replaced by a single operator

Algorithm 3 Calculation of All the Reordering Operators
Used in an L-Level RTBWT Decomposition

P� which operates on a�, and produces the reordered signal ap
� .

Let Rs
� be a matrix which extracts the signal as

� from the signal
a�. Then we construct the permuted signal ap

� by extracting
all the signals {as

�}2�
s=1 from a�, applying to each signal as

�
the corresponding operator Ps

�, and returning all the permuted
signals back to their original location. More specifically,

ap
� =

2�∑

s=1

(Rs
�)

T Ps
�R

s
�a� = P�a� (5)

where the matrices (Rs
�)

T return the permuted signals back
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Fig. 3. Calculation of the reordering operators for a 2-level decomposition of an image with 8 pixels.

Fig. 4. An illustration of a “generalized” tree.

to their locations. This way we have defined the permutation
matrix

P� =
2�∑

s=1

(Rs
�)

T Ps
�R

s
�. (6)

We can use the operators P� to modify the à trous algo-
rithm, and obtain the à trous implementation of the RTBWT
decomposition scheme. Let h̄� be a filter obtained from h̄ by
inserting 2� − 1 zeros between each sample, where h̄0 = h̄.
Also, let ḡ� be a filter obtained from ḡ in a similar manner.
Both filters are applied using cyclic convolution. Then assum-
ing that the operators P� are known, we can apply the RTBWT
by repeating for � = 0, . . . , L − 1 the following filter bank
operations, described in Figure 5,

ap
� = P�a� (7)

Fig. 5. RTBWT à trous based decomposition scheme.

Fig. 6. RTBWT à trous based reconstruction scheme.

a�+1[n] = a p
� ∗ h̄�[n] (8)

d�+1[n] = a p
� ∗ ḡ�[n]. (9)

We note that when the operators P� are removed, our scheme
coincides with the common à trous algorithm.

In a similar manner, the operators P̃s
� = (Ps

�)
−1, which

operate on the signals as,p
� can also be replaced by a single

operator P̃� = (P�)−1. We use the operators P̃� to construct the
à trous implementation of the RTBWT reconstruction scheme.
Let h� be a filter obtained from h by inserting 2� − 1 zeros
between each sample, where h0 = h. Also, let g� be a filter
obtained from g in a similar manner. Both filters are applied
using cyclic convolution. Then assuming that the operators P̃�
are known, we can apply the RTBWT reconstruction scheme
by repeating for � = L − 1, . . . , 0 the following filter bank
operations, described in Figure 6,

a p
� [n] = 1

2
(a�+1 ∗ h�[n] + d�+1 ∗ g�[n]) (10)

a� = P̃�a
p
� . (11)
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D. Frame Properties

Let � denote an (L + 1)N × N transform matrix, which
applies an L-level RTBWT decomposition. We recall that
a sequence {φn} is a frame if there exist two constants
β ≥ α > 0 such that for all y

α‖y‖2 ≤
∑

n

|〈φn, y〉|2 ≤ β‖y‖2. (12)

The à trous implementation of the RTBWT will enable us
to show that the rows of � constitute a frame {φn} in R

N,
with the same frame bounds as the common redundant wavelet
transform [18].

Proposition 1: Let c = �y = [aT
L ,dT

L , . . . ,dT
1 ]T denote

an L-level RTBWT decomposition of a signal y. Then c is a
frame expansion with frame bounds α = 2 and β = 2L , and
these bounds are the tightest possible.

The proof is presented in Appendix A.
Also, let � denote an N × (L +1)N matrix that applies the

L-level RTBWT reconstruction. � and � apply the RTBWT
analysis and synthesis operations, respectively, and �� = I
where I is the identity matrix. Thus � is the pseudo inverse
of �, and the columns of � constitute a frame {ψn} which is
dual to {φn}, i.e. it satisfies

1

2L
‖y‖2 ≤

∑

n

|〈ψn, y〉|2 ≤ 1

2
‖y‖2. (13)

III. RTBWT SUBIMAGE AVERAGING FRAMES

Once the RTBWT is calculated for an image, we can
apply this transform to that image, and then process it in
the transform domain. However, we observed in [1] that
improved results are obtained when a subimage averaging
scheme is used instead. This scheme consists of applying
the RTBWT to different subimages of the treated image
and processing each subimage in the transform domain.
Then the reconstructed image is obtained by plugging each
processed subimage into its original place in the image canvas,
and averaging the different values obtained for each pixel.
As we show next, we can describe the transform coefficients
of the different subimages as a single extended representation
of the image. We construct matrices that act as analysis and
synthesis operators, which are used to obtain this extended
representation and reconstruct the image from it. We also
show that the rows and columns of the analysis and synthesis
matrices, respectively, constitute a frame and its dual.

Let Np = (N1 −√
n + 1)(N2 −√

n + 1) denote the number
of overlapped patches in the image Y, and let X be an n × Np

matrix, containing column stacked versions of these patches.
We extract these patches column by column, starting from
the top left-most patch. When the RTBWT was constructed
in the previous section, it was assumed that each patch is
associated only with its middle pixel. Therefore the transform
was designed to efficiently represent the signal composed of
the middle points in the patches, that reside in the middle row
of X. However, we can alternatively choose to associate all the
patches with a pixel located in a different position, e.g., the top
left pixel in each patch. This means that the transform can be
used to represent any one of the signals located in the rows of

X. These signals are the column stacked versions of all the n
subimages of size (N1−√

n+1)×(N2−√
n+1) contained in the

image Y. We denote these subimages by Ỹ j , j = 1, 2, . . . , n.
Let � denote the RTBWT transform matrix, here it is of

size (L + 1)Np × Np , applying an L-level decomposition.
Also, let the vector ỹ j = R j y of length Np be the col-
umn stacked version of Ỹ j , where the Np × N matrix R j

extracts the j th subimage from the image y. We first apply
the RTBWT to each of the n subimages ỹ j and obtain the
n vectors

c j = �ỹ j = �R j y. (14)

We obtain the extended representation vector cS A by concate-
nating all these vectors into a single column

cS A = [
cT

1 , ..., cT
n

]T =
⎡

⎢⎣
�R1
...

�Rn

⎤

⎥⎦ y = �S Ay (15)

where we defined the matrix

�S A =
⎡

⎢⎣
�R1
...

�Rn

⎤

⎥⎦ . (16)

This matrix applies the analysis operator used to obtain the
representation cS A.

The image y is reconstructed from the representation cS A

in the following manner. Let � denote the (L + 1)Np × Np

matrix that applies the L-level RTBWT reconstruction. We
apply the matrix � to each of the vectors c j , plug each of
the obtained subimages into its original place in the image,
and average the different values obtained for each pixel. More
formally,

y = D−1
n∑

j=1

RT
j �c j

= D−1
[
RT

1 �, . . . ,RT
n �

]
c = �S Ac, (17)

where the matrix RT
j returns the j th subimage into its original

place in the image, and D = ∑n
j=1 RT

j R j is a diagonal weight
matrix. The matrix

�S A = D−1
[
RT

1 �, . . . ,RT
n �

]
(18)

applies the synthesis operator used to reconstruct y from the
representation cS A. As we see next, the rows of �S A constitute
a frame {φS A

n } and the columns of �S A constitute its dual
{ψ S A

n }.
Proposition 2: The extended representation cS A is a frame

expansion with frame bounds α = 2 and β = 2Ln.
The proof is presented in Appendix B.

Here we also see that �S A and �S A apply analysis and
synthesis operations, and �S A�S A = I. Therefore, �S A is the
pseudo-inverse of �S A, and the columns of �S A constitute a
frame {ψ S A

n } which is dual to {φS A
n }, i.e. it satisfies

1

2Ln
‖y‖2 ≤

∑

n

|〈ψn, y〉|2 ≤ 1

2
‖y‖2. (19)
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Before concluding this section, we add a remark regarding
the frame bounds calculated above. Let us assume that the
RTBWT and corresponding frame have been calculated from
an image y0. Then the transform is adaptive to the content
in this image, since it is designed by ordering of its patches
or their descendants (i.e. filtered patches), and so does the
corresponding frame. Therefore, the frame bounds obtained
above are in fact misleading, since inequalities such as (19)
are true for a general image y, but the frame was designed
to handle the image y0. Thus, perhaps a better definition of
the frame bounds would be one that has to hold true for all
the images y in a small sphere ‖y − y0‖2 ≤ ε, for which the
transform (and the resulting frame) retain its topology. In such
a case, it is quite likely that the actual frame obtained is nearly
tight. We leave this matter open at this stage, as our next part
of the paper does not rely directly on these frame properties.

IV. IMAGE RECONSTRUCTION USING

RTBWT SA FRAMES

A. Image Reconstruction Scheme

Let Y be an image of size N1 × N2 where N1 N2 = N , and
let Z be its corrupted version. Also, let z and y be the column
stacked versions of Z and Y, respectively. Then we assume
that the corrupted image is obtained via

z = Hy + v, (20)

where the N × N matrix H denotes a linear operator that
corrupts the data, and v denotes an additive white Gaussian
noise independent of y with zero mean and variance σ 2. This
setting can be used to describe several of the classic image
inverse problems such as image denoising, deblurring, and
inpainting. Our goal is to reconstruct y from z by optimizing
an objective function that uses the analysis and synthesis
operators1 �S A and �S A as sparsity promoting regularizers.

A common approach for image reconstruction is to solve an
inverse problem which uses either analysis-based or synthesis-
based image priors [19]. Here we take a different approach,
follow the footsteps of [11], and consider the following
combination of an analysis and a synthesis problem

{ŷ, ĉ} = argmin
y,c

‖z − Hy‖2
2 + η‖y −�c‖2

2

+λ‖c‖0 + μ‖c −�y‖2
2. (21)

Indeed, it can be seen that the problem (21) reduces to a
synthesis problem when η → ∞ and μ = 0, and to an analysis
when η = 0 and μ → ∞. The authors of [11] brilliantly
handle the problem (21) as a generalized Nash equilibrium
(GNE) process, and split it into two subproblems, a denoising
task:

ĉ = argmin
c

λ

μ
‖c‖0 + ‖c −�y‖2

2, (22)

and an inversion task:

ŷ = argmin
y

‖z − Hy‖2
2 + η‖y −�c‖2

2 (23)

1As of this point in the paper, we will simplify our notations and use
�, � and c, referring to the full adaptive frames �S A and �S A and the
representation cS A .

Algorithm 4 Image Reconstruction Scheme

which are solved sequentially. We note that � and � are
calculated in the beginning of this iterative process, and
one approach is to keep them fixed throughout the itera-
tive process. Alternatively, one might update these operators
based on the updated image. Unless said otherwise, our
scheme takes the first path of fixing these frames during the
iterations.

The solution of the inversion stage is simply

ŷ = [
HT H + ηI

]−1 × [
HT z + η�c

]
. (24)

The solution of the denoising problem is also quite simple,
given by

ĉ = Shard {�y} (25)

where the operator Shard applies hard thresholding with the
threshold

√
λ/μ. We choose to replace Shard with an operator

Sτ that sets to zero coefficients in c in such a manner that
the thresholded versions of the coefficient vectors c j (see
Equation (14)) share a common support. This way, the set of
thresholded subimage coefficients form a joint sparsity pattern
in the transform domain, and our experiments show that when
such patterns are used, the quality of the reconstructed images
improves. Let c j [k] be the kth sample in the coefficient
vector c j . Then the operator Sτ goes over the indices k =
1, . . . , (L + 1)Np , and for each index sets the coefficients
{c1[k], . . . , cn[k]} to zero if

√√√√1

n

n∑

j=1

c2
j [k] < τσ (26)

where τ is a design parameter. This corresponds to a simple
modification in the original inverse problem formulation in
Equation (21), replacing the term ‖c‖0 by a mixed norm
applied on the different pieces of this representation, namely,
‖c‖2,0.

The obtained image reconstruction scheme is described in
Algorithm 4. It can be seen that this algorithm is similar to the
IDD-BM3D algorithm proposed in [11], to which we will later
compare our image deblurring results. We next demonstrate
the use of the scheme in Algorithm 4 for image denoising and
deblurring. In all the experiments described next we choose
the distance function w to be the Euclidean distance, and use
a 9-level RTBWT decomposition with the Symmlet 8 wavelet
filter.
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B. Image Denoising

In the case of image denoising z = y + v and therefore
H = I. We perform denoising using a simplified version of
the scheme in Algorithm 4, which uses the initial estimate
yinit = z, and applies only one iteration. Also, we notice
that since H = I, the solution to the inversion problem (23)
becomes:

ŷ = 1

1 + η
z + η

1 + η
�c. (27)

which is a weighted average between a denoised image and
the original noisy image. We further simplify our scheme and
cancel the addition of the noisy data to the clean image by
setting η → ∞. All these simplifications were done since we
found experimentally that the resulting simplified algorithm
is already producing near state-of-the-art results. Thus, the
obtained denoising scheme consists of calculating c = �z,
applying to it the thresholding operator Sτ , and reconstructing
the image using � , i.e.

ŷ = �Sτ {c} = �Sτ {�z}. (28)

We note that aside from the use of the operator Sτ , this
scheme is similar to the common thresholding based denoising
procedure for signal and image processing using wavelet
frames.

We explore two different methods to further improve
the results obtained with the denoising algorithm described
above. Both these methods apply the above scheme, and
then use the patches from the “cleaned” result ŷ1 to con-
struct a “better version” of the RTBWT, and use this
transform to calculate new analysis and synthesis operators
�1 and �1. The first method obtains the denoised image
ŷ2 by applying Equation (28) again with these modified
operators, i.e.

ŷ2 = �1Sτ {�1z}. (29)

The second method applies a different scheme in its second
stage. Let Cdiag be a diagonal matrix that contains the squares
of the elements of the vector �1ŷ1 in its main diagonal. Then
we replace � with �1 and the �0-norm term ‖c‖0 with a
different sparsity promoting term cT C−1

diagc in the denoising
problem (22). We obtain the new problem

ĉ = argmin
c

λ
μcT C−1

diagc + ‖c −�1y‖2
2. (30)

We differentiate (30) with respect to c, equate the derivative
the zero, and obtain

ĉ =
[
λ

μ
C−1

diag + I
]−1

�1y

=
[
λ

μ
C−1

diag + C−1
diagCdiag

]−1

�1y

=
[

Cdiag + λ

μ
I
]−1

Cdiag�
1y = W�1y, (31)

where we have defined the diagonal matrix

W =
[

Cdiag + λ

μ
I
]−1

Cdiag . (32)

Fig. 7. (a) PSNR gain versus the number of scales in which permutations are
applied. (b) PSNR values obtained for different sizes of B for noisy versions
of the images Lena and Barbara (Barb) with noise standard deviations of 10,
25 and 50 (in brackets).

TABLE I

PARAMETERS USED IN THE DENOISING EXPERIMENTS

Thus, the second method obtains the denoised image ŷ2
w by

calculating in its second stage the coefficient vector c = �1z,
multiplying it with the matrix W, and reconstructing the image
using �1, i.e.

ŷ2
w = �1W�1z. (33)

We note that by choosing λ/μ = (τσ )2, where τ is a design
parameter, multiplication by the matrix W is equivalent to
applying some sort of a Wiener filter to the noisy image,
similarly to what is done in the second stage of the algorithms
in [9] and [20].

We now proceed to assess the performance of our image
denoising scheme. We note that in all our experiments
the noise levels are assumed to be known. We start by
demonstrating the performance gain obtained by applying
the permutations in all the scales of the RTBWT. We apply
the following procedure to the noisy versions of the images
Lena and Barabra with noise standard deviation σ = 25, that
are shown in the first column of Figure 8. For each image
we calculate 10 different variants of the RTBWT with the
parameters

√
n = 12 and B = 21: one with no permutations at
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Fig. 8. Denoising results (PSNR) for the images Lena and Barbara (σ = 25, input PSNR = 20.18 dB): First column: noisy images, Second column - BM3D
results, Third column - 2 stages results of the RTBWT denoising scheme, Fourth column - results of the RTBWT scheme followed by Wiener filtering.

TABLE II

DENOISING RESULTS (PSNR IN dB) OF NOISY VERSIONS OF 6 IMAGES, OBTAINED WITH THE BM3D ALGORITHM, TWO STAGES OF THE RTBWT

DENOISING SCHEME, AND THE RTBWT SCHEME FOLLOWED BY WIENER FILTERING. FOR EACH IMAGE AND NOISE LEVEL THE BEST

RESULT AND RESULTS WITHIN A DISTANCE OF 0.05 dB FROM IT, ARE HIGHLIGHTED

all and the rest with all the permutations in the first F scales,
1 ≤ F ≤ 9. We then apply to each image one stage of the
aforementioned denoising scheme with each of the 10 different
variants of the RTBWT and with the parameter τ = 1.5.
Figure 7(a) shows the PSNR values obtained for each image
versus the number of scales in which permutations are
applied. It can be seen that most of the performance gain is
obtained by the permutation in the first scale (� = 0), but
the PSNR increases as more permutations are used in coarser
scales as well.

We next demonstrate the robustness of our denoising per-
formance with respect to the size of the parameter B . We
apply to noisy versions of the images Lena and Barbara,
with noise standard deviations of 10, 25 and 50, one stage
of our denoising scheme with

√
n sizes of 9,12 and 14,

respectively, and varying values of B. Figure 7(b) shows
6 curves, one for each combination of image and noise level,
describing the PSNR values obtained for different sizes of the
parameter B . First it can be seen that all the curves obtain their
maximum values for sizes of B between 10 to 50, and that the
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change in the PSNR in that range is relatively moderate. Thus
high quality denoising results may be obtained by choosing a
single value of B in that range, and applying our denoising
scheme with it to all the noisy images with the different noise
levels. It can also be seen that after the curves pass their
maxima, their PSNR values decrease as the size of B increases.
However, even in the case where B equals the size of the whole
image our denoising scheme manages to obtain a high quality
denoising result.

Now, in order to assess the performance of the proposed
image denoising scheme we apply it to noisy versions of
6 images, with 8 different noise standard deviations. The para-
meters employed by the proposed denoising scheme for the
different noise levels are shown in Table I. Table II shows the
PSNR values of the results obtained with the BM3D algorithm,
two stages of the RTBWT denoising scheme, and the RTBWT
followed by Wiener filtering. The noisy and recovered images
obtained for σ = 25 with the BM3D algorithm, and our results
are shown in Figure 8. First, it can be seen that both the
second stage of the RTBWT scheme and the Wiener filter
improve the first iteration results of the RTBWT scheme in
many (70% − 85%) of the cases. The Wiener filter results are
generally better or comparable to the results of both the first
and second stages of the RTBWT scheme. Finally it can be
seen that for σ ≥ 25, the RTBWT denoising scheme followed
by Wiener filtering achieves in most of the cases either the
best results or results that are nearly as good. As the noise
decreases in strength, the performance of the RTBWT based
denoising schemes deteriorates compared to the BM3D.

In terms of visual quality both the BM3D and the RTBWT-
based algorithms produce high quality results, however the two
approaches also suffer from different types of artifacts: the
BM3D results suffer from smudges (for example in Lena’s
face) while the RTBWT-based algorithms suffer from false
contours (for example around Lena’s hat).

C. Image Deblurring

In the case of image deblurring, H is a blur matrix, and
we perform deblurring by simply applying Algorithm 4 as is.
We demonstrate the image deblurring performance obtained
with this algorithm on the images Lena, Barbara, House,
and Cameraman, for the 6 scenarios described in Table III.
We compare the results obtained with this algorithm to the
ones obtained with the BM3DDEB [10] and the IDD-BM3D
algorithms. As the IDD-BM3D algorithm is initialized with
the BM3DDEB results, for a fair comparison we examine the
results obtained with our scheme using the same initialization.
We also examine the results obtained with our scheme by
initializing it with the blurry image, and try to improve them by
applying two more stages of our scheme, where we initialize
each stage with result of the previous ones. The parameters
employed in the different stages of the proposed deblurring
scheme, with the different initializations and for the different
scenarios, are shown in Table IV. We note that similarly to
what was done in [11], we optimized the parameters η and
τ separately for each stage and each deblurring scenario to
provide best reconstruction quality.

TABLE III

BLUR POINT SPREAD FUNCTIONS (PSF) AND NOISE VARIANCES USED IN

THE DIFFERENT DEBLURRING SCENARIOS

TABLE IV

PARAMETERS USED IN THE DEBLURRING EXPERIMENTS FOR THE

PROPOSED SCHEME INITIALIZED WITH THE BM3DDEB RESULTS

(BM3DDEB INIT.) AND FOR 3 STAGES OF THE PROPOSED

SCHEME INITIALIZED WITH THE BLURRY IMAGE (BI)

Table V shows the ISNR results obtained with the different
algorithms. The blurred and recovered Lena and Cameraman
images obtained with the BM3DDEB and IDD-BM3D algo-
rithms, our proposed scheme initialized with the BM3DDEB
results, and three stages of the proposed scheme initialized
with the blurry images, are shown in Figure 9. It can be seen
that for all the scenarios except for scenario 3, the proposed
scheme initialized with BM3DDEB results achieves the best
performance for every image. Our scheme obtains inferior
results when the blurry image is used to initialize it, however
its performance improve when two more rounds are applied.
In fact, in some cases three rounds of our scheme initialized
with the blurry image obtain the best or second best results.

In terms of visual quality, again both the BM3D-based and
the RTBWT-based algorithms produce high quality results,
accompanied by modest and different types of artifacts: here
the results of the BM3D-based algorithms suffer from false
contouring (for example near the Cameraman’s chin) while
those of the RTBWT-based algorithms suffer from a more
significant noise residual.



RAM et al.: PATCH-ORDERING-BASED WAVELET FRAME 2789

Fig. 9. Deblurring results (ISNR) for the images Lena and Cameraman (Scenario 2): First column: blurry images, Second column: BM3DDEB results, Third
column: IDD-BM3D results, Fourth column: results of the proposed scheme initialized with the BM3DDEB results, Fifth column: results of the three rounds
of the proposed scheme initialized with the blurry images.

TABLE V

DEBLURRING RESULTS (ISNR IN dB) OF BLURRY VERSIONS OF 4 IMAGES, OBTAINED WITH THE BM3DDEB AND IDD-BM3D

ALGORITHMS, THE PROPOSED SCHEME INITIALIZED WITH THE BM3DDEB RESULTS, AND 3 STAGES OF THE PROPOSED

SCHEME INITIALIZED WITH THE BLURRY IMAGE (BI). FOR EACH IMAGE AND SCENARIO THE BEST RESULT AND

RESULTS WITHIN A DISTANCE OF 0.05 dB FROM IT, ARE HIGHLIGHTED

D. Computational Complexity

We next evaluate the computational complexity of the image
denoising and deblurring algorithms described above. We start
by calculating the complexity of a single iteration of the
denoising algorithm. First, extracting all the overlapped image
patches requires O(nN) operations. Next, we assume that
for the calculation of each one of the 2� operators Ps

� in
the �th scale of the RTBWT, each patch requires approxi-
mately B2 distance calculations. As calculating the Euclidean
distance between two patches requires O(n) operations, the
number of operations required to calculate a single reordering

operator Ps
� from Ñ� = N2−� patches is approximately

O(Ñ�B2n). Reordering these patches and applying them the
scaling and wavelet filters requires O(nÑ�) operations. There-
fore the number of operations required in order to calculate
from an image all the operators Ps

� used in an L-level
RTBWT is

O(nN)+
L−1∑

�=0

2�
[
O(Ñ�B2n)+O(nÑ�)

]= O(L N B2n). (34)

Now, reordering each signal as
� and applying on it the scal-

ing and wavelet filters requires O(Ñ�) operations, therefore
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applying either of the analysis and synthesis operators � and
� , corresponding to the RTBWT calculated above, requires∑L−1
�=0 2�O(Ñ�) = O(L N) operations.
Next, each of the following actions require O(nL N) oper-

ations: applying the operator � to the n subimages z̃ j ,
applying the threshold operator Sτ or the Wiener filter to
the transform coefficients, and applying � to the result,
Constructing an estimate image by averaging the pixel values
obtained with the different subimages requires O(nN) oper-
ations, therefore the total complexity of a single denoising
iteration is

O(L N B2n)+ O(nL N) + O(nN) = O(L N B2n) (35)

operations, which means that, as might be expected, the overall
complexity is dominated by the calculation of the RTBWT
permutation operators. For a typical case in our experiments,
N = 5122, L = 9, n = 121 and B = 21, the above amounts
to 1.26 · 1011 operations.

We proceed to calculate the complexity of the proposed
image deblurring algorithm. As we saw above, the calcu-
lation of all the RTBWT operators requires O(L N B2n)
operations, and each denoising step requires O(nL N) +
O(nN) = O(nL N) operations. The deblurring step is
performed in the Fourier domain and therefore requires
O(N log N) operations. Thus, the overall complexity of the
algorithm is

O(L N B2n)+ G[O(nL N) + O(N log N)]
= O(L N B2n + GnL N + G N log N) (36)

and since the parameter we use satisfy nL B2 > G(nL +
log N), the complexity of the algorithm is again dominated
by the calculation of the RTBWT permutation operators. For
a typical case in our experiments, N = 5122, L = 9,
n = 9, B = 51 and G = 50, the above amounts to 5.64 · 1010

operations.
In order to better illustrate these numbers, we also provide

run-times: applying two iterations of our denoising scheme
to a 512 × 512 image with noise level σ = 25 using a
non optimized and non parallel matlab implementation, on an
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, takes about
45 minutes. However, applying a single iteration followed
by Wiener filtering takes only about 20 minutes. Applying
a single round of our deblurring scheme, initialized with the
BM3DDEB result, to a 512 × 512 image corrupted according
to scenario 1 takes about 4 minutes. We should note that while
in our experiments we employed exact exhaustive search,
approximate nearest neighbor algorithms may be used to
alleviate the computational burden.

V. CONCLUSIONS

We have revisited the redundant tree-based wavelet trans-
form proposed in [1], described it in greater details and
analyzed its properties. We have introduced an alternative
implementation for this transform which is based on the à trous
algorithm, and used it to show that the RTBWT is a frame.
We have also shown that the image representation obtained
with the RTBWT combined with the subimage averaging

scheme also constitutes a frame, and calculated the synthesis
and analysis operators associated with it. We have proposed
image denoising and deblurring algorithms which make use
of these operators as sparsity promoting regularizers, and
demonstrated state-of-the-art results.

There are several research directions to extend this work
that we are currently considering. The first is to explore
the use of a weighted average in the subimage averaging
scheme. Intuitively it seems that the RTBWT would better
represent subimages which reside closer to the center of
the image, and therefore their pixels should receive higher
weights when the final estimate is calculated. A different
direction is to replace the thresholding operator Sτ used in
the proposed image processing schemes with an operator
that takes into consideration the change in the noise levels
in the different wavelet scales. Further, the operators �
and � may be used to solve different image processing
problems such as image inpainting, superresolution, tomo-
graphic reconstruction, and more. Finally, it might be inter-
esting to assess the performance gain (if any), obtained by
a non-simplified version of our image denoising scheme,
that uses finite values of η and more than one iteration in
each stage.

APPENDIX

A. Proof of Proposition 1

Our proof is similar in spirit to the one given in [18] for
the common redundant wavelet transform. By the definition
of a frame, it is sufficient to show that the frame bounds exist
in order to show that the RTBWT is a frame. We notice that
‖c‖2 = ∑

n |〈φn, y〉|2, and we next show that the coefficient
vector c satisfies

2‖y‖2 ≤ ‖c‖2 ≤ 2L‖y‖2. (A.1)

We first recall that the orthogonal scaling and wavelet filters
satisfy [16]

h̄[n] = h[−n] and ḡ[n] = g[−n] (A.2)∑

n

h[n] = √
2 and

∑

n

g[n] = 0 (A.3)

and that the filters h and g are power complementary, i.e. their
Fourier transforms satisfy

|ĥ(2�ω)|2 + |ĝ(2�ω)|2 = 2. (A.4)

We apply the Fourier transform to (8) and (9), and using (A.2)
we obtain that

â�+1(ω) = â p
� (ω)ĥ

∗(2�ω) (A.5)

d̂�+1(ω) = â p
� (ω)ĝ

∗(2�ω). (A.6)

Next we use (A.4) and the fact that ‖ap
� ‖2 = ‖a�‖2 and obtain

that

‖d�+1‖2 + ‖a�+1‖2

= 1

2π

∫ π

−π
|a p
� (ω)|2

(
|ĥ(2�ω)|2 + |ĝ(2�ω)|2

)
dω

= 2‖a�‖2. (A.7)
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We notice that

‖c‖2 = ‖aL‖2 + ‖dL‖2 +
L−1∑

�=1

‖d�‖2

= 2‖aL−1‖2 + ‖dL−1‖2 +
L−2∑

�=1

‖d�‖2 (A.8)

where we used (A.7) in the transition from the first to the
second line. Finally from (A.7) and (A.8) and the fact that
a0 = y we get that

‖c‖2 ≤ 2‖aL−1‖2 + 2‖dL−1‖2 +
L−2∑

�=1

‖d�‖2 (A.9)

≤ 22‖aL−2‖2 + 22‖dL−2‖2 +
L−3∑

�=1

‖d�‖2 ≤ . . . ≤ 2L‖y‖2

(A.10)

and that

‖c‖2 ≥ ‖aL−1‖2 + ‖dL−1‖2 +
L−2∑

�=1

‖d�‖2 (A.11)

≥ ‖aL−2‖2 + ‖dL−2‖2 +
L−3∑

�=1

‖d�‖2 ≥ . . . ≥ 2‖y‖2.

(A.12)

We now show that the bounds α = 2 and β = 2L are the
tightest possible frame bounds since we can find vectors that
meet them. We first show that the vector yN , which satisfies
yN [k] = 1√

N
, k = 1 . . . , N meets the upper bound. Since

a0 = yN is a constant signal, we get that a1,p
0 = a0 = yN .

Using (A.2) and (A.3) we get that

h̄ j ∗ yN [n] = 1√
N

∑

n

h̄[n] = 1√
N

∑

n

h[n]

= √
2yN [n] (A.13)

and

ḡ j ∗ yN [n] = 1√
N

∑

n

ḡ[n] = 1√
N

∑

n

g[n] = 0. (A.14)

From (A.13) and (A.14) we get that a1 = √
2a0 = √

2yN

and d1 = 0, where 0 denotes a vector of all zeros. Using
similar calculations it can be shown that a� = (

√
2)�yN and

d� = 0, therefore ‖c‖2 = 2L‖yN ‖2. Now, let be ỹN a vector
which satisfies ỹN [k] = 1√

N
(−1)k , k = 1 . . . , N . Then using a

similar procedure it can be shown that the vector P̃0ỹN meets
the lower bound.

B. Proof of Proposition 2

We show that the representation cS A is a frame by noticing
that ‖cS A‖2 = ∑

n |〈φS A
n , y〉|2, and showing that

2‖y‖2 ≤ ‖cS A‖2 ≤ 2Ln‖y‖2. (A.15)

We first use (15) and see that

‖cS A‖2 = yT
(
�S A

)T
�S Ay =

n∑

j=1

yT RT
j �

T�R j y

=
n∑

j=1

‖�R j y‖2 (A.16)

From Proposition 1 we have that

2‖R j y‖2 ≤ ‖�R j y‖2 ≤ 2L‖R j y‖2. (A.17)

We notice that

n∑

j=1

‖R j y‖2 = yT

⎛

⎝
n∑

j=1

RT
j R j

⎞

⎠ y = yT Dy (A.18)

and therefore

2yT Dy ≤ ‖cS A‖2 ≤ 2LyT Dy. (A.19)

As the minimum value of the diagonal matrix D equals 1, and
the maximum value equals n, we obtain that

2‖y‖2 ≤ ‖cS A‖2 ≤ 2Ln‖y‖2. (A.20)
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