
2764 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

Image Processing Using Smooth
Ordering of its Patches

Idan Ram, Michael Elad, Fellow, IEEE, and Israel Cohen, Senior Member, IEEE

Abstract— We propose an image processing scheme based on
reordering of its patches. For a given corrupted image, we
extract all patches with overlaps, refer to these as coordinates
in high-dimensional space, and order them such that they
are chained in the “shortest possible path,” essentially solving
the traveling salesman problem. The obtained ordering applied
to the corrupted image implies a permutation of the image
pixels to what should be a regular signal. This enables us to
obtain good recovery of the clean image by applying relatively
simple one-dimensional smoothing operations (such as filtering
or interpolation) to the reordered set of pixels. We explore the
use of the proposed approach to image denoising and inpainting,
and show promising results in both cases.

Index Terms— Patch-based processing, traveling salesman,
pixel permutation, denoising, inpainting.

I. INTRODUCTION

IN RECENT years, image processing using local patches
has become very popular and was shown to be highly

effective – see [1]–[13] for representative work. The core
idea behind these and many other contributions is the same:
given the image to be processed, extract all possible patches
with overlaps; these patches are typically very small com-
pared to the original image size (a typical patch size would
be 8×8 pixels). The processing itself proceeds by operating
on these patches and exploiting interrelations between them.
The manipulated patches (or sometimes only their center
pixels) are then put back into the image canvas to form the
resulting image.

There are various ways in which the relations between
patches can be taken into account: weighted averaging of
pixels with similar surrounding patches, as the NL-Means
algorithm does [1], clustering the patches into disjoint sets and
treating each set differently, as performed in [2]–[7], seeking
a representative dictionary for the patches and using it to
sparsely represent them, as practiced in [8]–[11], gathering
groups of similar patches and applying a sparsifying transform

Manuscript received October 13, 2012; revised February 6, 2013; accepted
March 31, 2013. Date of publication April 12, 2013; date of current version
May 16, 2013. This work was supported by the Japan Technion Society
Research Fund and Robert H. Hillman Foundation for Global Security –
collaboration of Technion and Northeastern University, and the European
Research Council under the ERC Grant Agreement 320649. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Chang-Su Kim.

I. Ram and I. Cohen are with the Department of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa 32000, Israel (e-mail:
idanram@tx.technion.ac.il; icohen@ee.technion.ac.il).

M. Elad is with the Department of Computer Science, Technion – Israel
Institute of Technology, Haifa 32000, Israel (e-mail: elad@cs.technion.ac.il).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2257813

on them [10], [12], [13]. A common theme to many of these
methods is the expectation that every patch taken from the
image may find similar ones extracted elsewhere in the image.
Put more broadly, the image patches are believed to exhibit
a highly-structured geometrical form in the embedding space
they reside in. A joint treatment of these patches supports the
reconstruction process by introducing a non-local force, thus
enabling better recovery.

In our previous work [14] and [15] we proposed yet another
patch-based image processing approach. We constructed an
image-adaptive wavelet transform which is tailored to sparsely
represent the given image. We used a plain 1D wavelet
transform and adapted it to the image by operating on a
permuted order of the image pixels1. The permutation we
proposed is drawn from a shortest path ordering of the image
patches. This way, the patches are leveraged to form a multi-
scale sparsifying global transform for the image in question.

In this paper we embark from our earlier work as reported
in [14] and [15], adopting the core idea of ordering the
patches. However, we discard the globality of the obtained
transform, the multi-scale treatment, and the sparsity-driven
processing that follows. Thus, we propose a very simple
image processing scheme that relies solely on patch reordering.
We start by extracting all the patches of size

√
n × √

n
with maximal overlaps. Once these patches are extracted, we
disregard their spatial relationships altogether, and seek a new
way for organizing them. We propose to refer to these patches
as a cloud of vectors/points in R

n , and we order them such
that they are chained in the “shortest possible path”, essentially
solving the traveling salesman problem [18]. This reordering
is the one we have used in [14] and [15], but as opposed to our
past work, our treatment from this point varies substantially.
A key assumption in this work is that proximity between two
image patches implies proximity between their center pixels.
Therefore if the image mentioned above is of high-quality,
the new ordering of the patches is expected to induce a highly
regular (smooth or at least piece-wise smooth) 1D ordering of
the image pixels, being the center of these patches. When the
image is deteriorated (noisy, containing missing pixels, etc.),
the above ordering is expected to be robust to the distortions,
thereby suggesting a reordering of the corrupted pixels to
“what should be” a regular signal. Thus, applying relatively
simple one-dimensional (1D) smoothing operations (such as
filtering or interpolation) to the reordered set of pixels should
enable good recovery of the clean image.

1Note that the idea of adapting a wavelet transform to the image by
reordering its pixels appears also in [16] and [17], but the schemes proposed
there do not use image patches.

1057-7149/$31.00 © 2013 IEEE

RAM et al.: IMAGE PROCESSING USING SMOOTH ORDERING OF ITS PATCHES 2765

This is the core process we propose in this paper – for a
given corrupted image, we reorder its pixels, operate on the
new 1D signal using simplified algorithms, and reposition the
resulting values to their original location. We show that the
proposed method, applied with several randomly constructed
orderings and combined with a proposed subimage averaging
scheme, is able to lead to state-of-the-art results. We explore
the use of the proposed image reconstruction scheme to image
denoising, and show that it achieves better results than the
ones obtained with the K-SVD algorithm [8] for medium
and high noise levels, and generally performs better than the
BM3D algorithm [12] for high noise levels. We also explore
the use of the proposed image processing scheme to image
inpainting, and show that it leads to better results compared to
the ones obtained with a simple interpolation scheme and the
method proposed in [19] which employs sparse representation
modeling via the redundant DCT dictionary. We also show that
our results are mostly better than the ones of the algorithm
proposed in [13], and slightly inferior to the ones of the state-
of-the-art PLE [4] for two of the three test images. Finally, we
draw some interesting ties between this scheme and BM3D
rationale [12].

The paper is organized as follows: In Section II we intro-
duce the basic image processing scheme. In Section III we
explain how the performance of the basic scheme can be
improved using a subimage averaging scheme, and describe
the connection between the improved scheme and the BM3D
algorithm. In Section IV we explore the use of the proposed
approach to image denoising and inpainting, and present
experimental results that demonstrate the advantages of the
proposed scheme. We summarize the paper in Section IV with
ideas for future work along the path presented here.

II. IMAGE PROCESSING USING PATCH ORDERING

A. Basic Scheme

Let Y be an image of size N1 × N2 where N1 N2 = N ,
and let Z be a corrupted version of Y, which may be noisy
or contain missing pixels. Also, let z and y be the column
stacked versions of Z and Y, respectively. Then we assume
that the corrupted image satisfies

z = My + v (1)

where the N × N matrix M denotes a linear operator which
corrupts the data, and v denotes an additive white Gaussian
noise independent of y with zero mean and variance σ 2. In
this work the matrix M is restricted to represent a point-
wise operator, covering applications such as denoising and
inpainting. The reason for this restriction is the fact that we
will be permuting the pixels in the image, and thus spatial
operations become far more complex to handle.

Our goal is to reconstruct y from z, and for this end we
employ a permutation matrix P of size N × N . We assume
that when P is applied to the target signal y, it produces a
smooth signal yp = Py. We will explain how such a matrix
may be obtained using the image patches in Section II-B.
We start by applying P to z and obtain zp = Pz. Next, we take
advantage of our prior knowledge that yp should be smooth,

1P

KP

z 1
1
−P

1
K
−P

ŷ1/ K×H

H

Fig. 1. The basic image processing scheme.

and apply a “simple” 1D smoothing operator H on zp , such
as 1D interpolation or filtering. Finally, we apply P−1 to the
result, and obtain the reconstructed image

ŷ = P−1 H {Pz}. (2)

In order to better smooth the recovered image, we use an
approach which resembles the “cycle spinning” method [20].
We randomly construct K different permutation matrices Pk ,
utilize each to denoise the image z using the scheme described
above, and average the results. This can be expressed by

ŷ = 1

K

K∑

k=1

P−1
k H {Pkz} . (3)

Figure 1 shows the proposed image processing scheme. We
next describe how we construct the reordering matrix P.

B. Building the Permutation Matrix P

We wish to design a matrix P which produces a smooth
signal when it is applied to the target image y. When the
image Y is known, the optimal solution would be to reorder
it as a vector, and then apply a simple sort operation on the
obtained vector. However, we are interested in the case where
we only have the corrupted image Z (noisy, containing missing
pixels, etc.), and any permutation defined by simply reordering
the corrupted pixels into a regular signal does not necessarily
smooth y. Therefore, as the pixels in the corrupted image are
not helpful to us, we settle for a suboptimal ordering operation,
using patches from the corrupted image.

Let yi and zi denote the i th samples in the vectors y and z,
respectively. We denote by xi the column stacked version of
the

√
n ×√

n patch around the location of zi in Z. We assume
that under a distance measure2 w(xi , x j), proximity between
the two patches xi and x j suggests proximity between the
uncorrupted versions of their center pixels yi and y j . Thus, we
shall try to reorder the points xi so that they form a smooth
path, hoping that the corresponding reordered 1D signal yp

will also become smooth. The “smoothness” of the reordered
signal yp can be measured using its total-variation measure

‖yp‖T V =
N∑

j=2

|y p(j) − y p(j − 1)|. (4)

Let {xp
j }N

j=1 denote the points {xi }N
i=1 in their new order. Then

by analogy, we measure the “smoothness” of the path through

2Throughout this paper we will be using variants of the squared Euclidean
distance.

2766 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

Algorithm 1 The Patch Reordering Algorithm We Use

the points xp
j by the measure

X p
T V =

N∑

j=2

w(xp
j , xp

j−1). (5)

Minimizing X p
T V comes down to finding the shortest path that

passes through the set of points xi , visiting each point only
once. This can be regarded as an instance of the traveling
salesman problem [18], which can become very computation-
ally expensive for large sets of points. We choose a simple and
crude approximate solution, which is to start from a random
point and then continue from each point x j0 to its nearest
neighbor x j1 with a probability p1 = α exp

[−w(x j0, x j1)/ε
]
,

or to its second nearest neighbor x j2 with a probability
p2 = α exp

[−w(x j0, x j2)/ε
]
, where α is determined such that

p1+ p2 = 1, ε is a design parameter, and x j1 and x j2 are taken
from the set of unvisited points.

We restrict the nearest neighbor search performed for each
patch to a surrounding square neighborhood which contains
B × B patches. When only one unvisited patch remains in
that neighborhood, we simply continue to this patch, and in
the case that no unvisited patches remain, we search for the
first and second nearest neighbors among all the unvisited
patches in the image. This restriction decreases the overall
computational complexity, and our experiments show that
with a proper choice of B it also leads to improved results.
The permutation applied by the matrix P is defined as the order
in the found path. The patch reordering scheme is summarized
in Algorithm 1.

(b)

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

Distances

P
ro

ba
bi

lit
y

(d)

(a)

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

Distances

P
ro

ba
bi

lit
y

(c)

Fig. 2. (a) Noisy Barbara (σ = 10). (b) Reordered clean Barbara, folded
back by s zig–zag raster scan. (c) and (d) Normalized histograms of the
spatial distances between adjacent patches after the reordering, obtained with
unrestricted and restricted search areas, respectively. The lengths of the pathes
in the spatial domain obtained with the unrestricted and restricted searches
were 3.63 · 107 and 3.42 · 106, respectively.

We next demonstrate the smoothing effect that a permuta-
tion obtained from a corrupted image has on its clean version.
We apply the patch ordering scheme described above, with the
parameters

√
n = 6, B = 61 and ε = 106, to the patches of the

noisy Barbara image with noise standard deviation σ = 10,
shown in Figure 2(a). We apply the obtained permutation to
the column stacked version y of the clean Barbara image, and
obtain the reordered signal yp. We then calculate the total
variations of y and yp, and obtain that ‖y‖T V = 2.49 · 106

and ‖yp‖T V = 1.76 · 106, i.e. the latter is 29 percent smaller
than the former. In order to visually demonstrate the regularity
of the reordered signal yp, we fold it back by a zig-zag raster
scan into the original image size. The obtained image is shown
in Figure 2(b), and it can be seen that the reordered signal is
indeed piecewise regular for most of its length, but becomes
less and less regular towards its end. In fact, when the last 30%
of the samples of y and yp are discarded, the total variation
of the obtained reordered signal becomes 37 percent smaller
than the total variation of the obtained column stacked signal.
This behaviour of the reordered images might be expected
due to the greedy nature of the patch ordering algorithm,
which leaves for the patches near the end of the path a
very small number of unvisited patches to choose from. The
employed cycle spinning scheme prevents the non-regular
parts of the reordered images from degrading the quality of
the reconstructed images.

It is also interesting to examine the characteristics of the
patch ordering in the spatial domain. To this end we also apply
the patch ordering scheme to the patches of the noisy Barbara
image with the same parameters, but with an unrestricted
search neighborhood. We apply the permutations obtained with
the two types of neighborhoods to the patches, and calculate

RAM et al.: IMAGE PROCESSING USING SMOOTH ORDERING OF ITS PATCHES 2767

two normalized histograms of the spatial distances between
adjacent patches, shown in Figure 2. Figure 2(c) shows that
when the search neighborhood is not restricted, only about
5% of neighboring patches in the path are also immediate
spatial neighbors, and that far away patches are often assigned
as neighbors in the reordering process. The histogram in
Figure 2(d), obtained with restricted search neighborhood, is
limited to show only distances which are smaller or equal
to 43, the maximal possible distance within the search window.
It can be seen that despite the restriction to a smaller search
neighborhood, only about 11% of neighboring patches in the
path are also immediate spatial neighbors, and patches all
over the search neighborhood are assigned as neighbors in
the reordering process.

In order to facilitate the cycle-spinning method mentioned
above, we simply run the proposed ordering solver K times,
and the randomness (both in the initialization and in assigning
the neighbors) leads to different permutation results. We next
describe how the quality of the produced images may be
further improved using a subimage averaging scheme, which
can be seen as another variation of “cycle spinning”.

C. Subimage Averaging

Let Np = (N1 −√
n + 1)(N2 −√

n + 1) denote the number
of overlapped patches in the image Z, and let X be an n × Np

matrix, containing column stacked versions of these patches.
We extract these patches column by column, starting from
the top left-most patch. When we calculated P as described in
the previous section, we assumed that each patch is associated
only with its middle pixel. Therefore P was designed to reorder
the signal composed of the middle points in the patches, which
reside in the middle row of X. However, we can alternatively
choose to associate all the patches with a pixel located in
a different position, e.g., the top left pixel in each patch.
This means that the matrix P can be used to reorder any one
of the signals located in the rows of X. These signals are
the column stacked versions of all the n subimages of size
(N1 −√

n +1)× (N2 −√
n +1) contained in the image Z. We

denote these subimages by Z̃ j , j = 1, 2, . . . , n. An example
for two of them, Z̃1 and Z̃n , contained in a noisy version of
the image Barbara with noise standard deviation σ = 25, is
shown Fig. 3(a).

We already observed in [14] and [15] that improved denois-
ing results are obtained when all the n subimages of a noisy
image are employed in its denoising process. Here we use
a similar scheme in order to improve the quality of the
recovered image. In order to avoid cumbersome notations
we first describe a scheme which utilizes a single ordering
matrix P. Let the vector z̃ j = R j z of length Np be the column
stacked version of Z̃ j , where the Np × N matrix R j extracts
the j th subimage from the image z. We first calculate the
Np × Np matrix P using the patches in X and apply it to each
subimage z̃ j . Then we apply the operator H to each of the
reordered subimages z̃p

j = Pz̃ j , apply the inverse permutation
P−1 on the result, and obtain the reconstructed subimages

ˆ̃y j = P−1 H {Pz̃ j} = P−1 H {PR jz}. (6)

1Z
nZ

(a) (b)

Fig. 3. (a) Two subimages Z̃1 and Z̃n contained in a noisy version of
the image Barbara (σ = 25). (b) Classification of the pixels in a noisy
version of the image Barbara to centers of smooth (white) and non-smooth
(black) patches.

We next reconstruct the image from all the reconstructed
subimages ˆ̃y j by plugging each subimage into its original place
in the image canvas and averaging the different values obtained
for each pixel. More formally, we obtain the reconstructed
image ŷ as follows:

ŷ = D−1
n∑

j=1

RT
j
ˆ̃y j = D−1

n∑

j=1

RT
j P−1 H {PR jz} (7)

where the matrix RT
j plugs the estimated j th subimage into

its original place in the canvas, and

D =
n∑

j=1

RT
j R j (8)

is an N × N diagonal weight matrix that simply averages
the overlapping contributions per each pixel. When K random
matrices Pk are employed, we obtain the final estimate by
averaging the images obtained with the different permutations

ŷ = 1

K

K∑

k=1

⎛

⎝D−1
n∑

j=1

RT
j P−1

k H {PkR j z}
⎞

⎠. (9)

This formula reveals two important properties of our
scheme: 1) the two summations that correspond to the two
cycle-spinning versions lead to an averaging of nK candidate
solutions, a fact that boosts the overall performance of the
recovery algorithm; and 2) if H is chosen as linear, then the
overall processing is linear as well, provided that we disregard
the highly non-linear dependency of P on z.

D. Connection to BM3D and Clustering-Based Methods

The above processing scheme can be described a little
differently. We start by calculating the permutation matrix P
from the image patches xi . We then gather the patches by
arranging them as the columns of a matrix Xp in the order
defined by P. This matrix contains in its rows the reordered
subimages z̃p

j , therefore we next apply the operator H to its
rows, and shuffle the columns of the resulting matrix according
to the permutation defined by P−1. We obtain a matrix X̄,
which contains in its rows the reconstructed subimages ˆ̃y j ,
and in its columns reconstructed versions x̄i of the image
patches xi . We obtain the reconstructed image ŷ from the
patches x̄i by plugging them into their original places in the

2768 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

image canvas, and averaging the different values obtained for
each pixel. When K random matrices Pk are employed, we
apply the aforementioned scheme with each of these matrices,
and average the obtained images.

Now, looking at the image processing scheme described
above, we can see some similarities to the first stage of the
BM3D algorithm. Both algorithms stack the image patches
into groups, apply 1D processing across the patches, return the
patches into their place in the image, and average the results.
We note that the BM3D algorithm also applies a 2D transform
to the patches before performing 1D processing across them.
This feature can be easily added to our scheme if needed,
and we regard this as a preprocessing part of the operator H .
On the other hand, there are some key differences between
the two schemes. First, while the BM3D algorithm constructs
a group of neighbors for each patch, here we order all the
patches to one chain, which defines local neighbors. Further-
more, this process is repeated K times, implying that our
approach consider K different neighbors assignments. Also,
while in the BM3D the patch order in each group is not
restricted, ours is carefully determined as it plays a major
role in our scheme. Finally, the 1D processing applied by
the BM3D consists of the use of a 1D transform, followed
by thresholding and the inverse transform, implying a specific
denoising. Here we do not restrict ourselves to any specific
1D processing scheme, and allow the operator H to be chosen
based on the application at hand.

We conclude this discussion with the following comment.
When observing clustering-based restoration methods in gen-
eral, such as [5], [6], [10], [12], there is a clear similarity to our
approach, as near-by patches find themselves supporting each
other’s processing. However, as opposed to these methods,
our technique also orders the near-by patches into a smooth
path, and as such, our approach enables a better treatment of
the patches even within the clustered groups. For example, if
the corresponding center pixel forms a smooth linear slope
of values, the clustering approaches would approximate this
line by the average value, while our approach would regress
to a smooth line. We next demonstrate the application of our
proposed scheme to image denoising and inpainting.

III. APPLICATIONS AND RESULTS

A. Image Denoising

The problem of image denoising consists of the recovery of
an image from its noisy version. In that case M = I and the
corrupted image satisfies z = y + v. The patches xi contain
noise, and we choose the distance measure between xi and x j

to be the squared Euclidean distance divided by n, i.e

w(xi , x j) = 1

n
‖xi − x j‖2. (10)

In our previous works [14] and [15] we applied a complex
multi-scale processing on the ordered patches. Here we wish
to employ a far simpler scheme; we choose a 1D linear shift-
invariant filter, and as we show next, we learn this filter from
training images. Furthermore, we suggest to switch between
two such filters, based on the patch content.

We desire to treat smooth areas in the image differently than
areas with edges or texture, as our experiments show that this
approach leads to better results. More specifically, we employ
different permutation matrices and filters in the smooth and
non smooth areas of the image. We first divide the patches into
two sets: Ss - which contains smooth patches, and Se - which
contains patches with edges or texture. Let std(xi) denote the
standard deviation of the patch xi and let C be a scalar design
parameter. Then we use the following classification rule: if
std(xi) < Cσ then xi ∈ Ss , otherwise xi ∈ Se. Fig 3(b)
demonstrates the application of this classification rule to the
noisy Barbara image shown in Figure 3(a), where we use the
parameters

√
n = 8 and C = 1.2 which we will later use

in the denoising process of this image. White pixels are the
centers of smooth patches and black pixels are the centers of
patches containing texture or edges. It can be seen that the
obtained image indeed contains a rough classification of the
patches into smooth and non smooth sets.

We next divide each subimage z̃ j into two signals: z̃ j,s - a
vector of length |Ss | which contains the pixels corresponding
to the smooth patches, and z̃ j,e - a vector of length |Se| which
contains the pixels corresponding to the patches with edges
and texture. We construct an |Ss | × Np matrix Ps , which
extracts z̃ j,s from z̃ j , and applies to it a permutation obtained
from the patches in the set Ss using the nearest neighbors
search method described above. We similarly construct an
|Se| × Np matrix Pe, which extracts z̃ j,e from z̃ j , and applies
to it a permutation obtained from the patches in the set Se,
using the same set of parameters. We apply Ps and Pe to z̃ j

and obtain z̃p
j,s and z̃p

j,e, respectively, which are the signals to
which we apply the filters. We define the reordered subimage
z̃p

j and the Np × Np permutation matrix P which satisfy

z̃p
j =

[
z̃p

j,s
z̃p

j,e

]
, P =

[
Ps

Pe

]
(11)

and obtain that z̃p
j = Pz̃ j .

We next wish to find the filters hs and he, each of length
Nh , applied to z̃p

j,s and z̃p
j,e, respectively. We denote by Mp

j,s
the |Ss |× Nh convolution matrix corresponding to z̃p

j,s , and by
Mp

j,e the |Se| × Nh convolution matrix corresponding to z̃p
j,e,

and obtain the filtered subimages

ˆ̃y j = P−1

[
Mp

j,shs

Mp
j,ehe

]
= P−1

[
Mp

j,s 0
0 Mp

j,e

][
hs

he

]

= P−1Mp
j h (12)

where we defined the Np × Np matrix Mp
j , and the filters

vector h of length 2Nh , which satisfy

Mp
j =

[
Mp

j,s 0
0 Mp

j,e

]
, h =

[
hs

he

]
. (13)

The vector h stores the filter taps to be designed. We substitute
(12) in (7), and obtain the reconstructed image

ŷ = D−1
n∑

j=1

RT
j P−1Mp

j h. (14)

RAM et al.: IMAGE PROCESSING USING SMOOTH ORDERING OF ITS PATCHES 2769

When K random matrices Pk are employed, we obtain the final
estimate by averaging the images obtained with the different
matrices

ŷ = 1

K

K∑

k=1

⎛

⎝D−1
n∑

j=1

RT
j P−1

k Mp
j h

⎞

⎠

= 1

K

K∑

k=1

D−1[RT
1 , . . . , RT

n]

⎡
⎢⎣

P−1
k Mp

1
...

P−1
k Mp

n

⎤
⎥⎦ h = Qh (15)

where we defined the N × 2Nh matrix

Q = 1

K

K∑

k=1

D−1[RT
1 , . . . , RT

n]

⎡

⎢⎣
P−1

k Mp
1

...

P−1
k Mp

n

⎤

⎥⎦ . (16)

Now let yg , g = 1, . . . , G be a training set which contains
the column stack versions of G clean images. For each such
image we create a noisy version zg by adding noise with the
same statistics as the noise in z. Then we calculate for each
image zg a matrix Qg using (16), and learn the filters vector
h by minimizing

ĥ = argmin
h

G∑

g=1

‖yg − Qgh‖2

=
⎡

⎣
G∑

g=1

(Qg)T Qg

⎤

⎦
−1

G∑

k=1

(Qg)T yg. (17)

Once we have the filters vector ĥ we can employ it to denoise
z by building Q using (16) and then calculating

ŷ = Qĥ. (18)

We can further improve our results by applying a second
iteration of our proposed scheme, in which all the processing
stages remain the same, but the permutation matrices are built
using patches extracted from the first iteration clean result.

In the following experiments we assess the performance
of the proposed image denoising scheme by applying it to
a test set containing noisy versions of 6 images, with 8
different noise standard deviations. We use a training set
containing the images Man, Couple, and Hill to learn the
filters vector h. We start by demonstrating the performance
gain obtained by combining the patch classification and filter
learning into the proposed denoising scheme. We compare the
results obtained with our scheme, for noisy images with noise
standard deviation σ = 25, in three settings: 1) without patch
classification and using a Gaussian smoothing filter; 2) without
patch classification and using a learned filter; 3) with patch
classification and using two learned filters. In all 3 cases we
use the parameters shown in Table II, which correspond to
σ = 25 and 1 iteration. The results are shown in Table I, and
it can be seen that using a learned filter instead of a simple
smoothing filter improves the results for all images, with an
average increase in PSNR of 2.32 dB. Also, performing patch
classification further improves the results for all images, with
an average increase in PSNR of 0.54 dB.

TABLE I

DENOISING RESULTS (PSNR IN dB) OF NOISY VERSIONS OF 6 IMAGES

(σ = 25), OBTAINED WITH THE PROPOSED SCHEME IN THREE

SETTINGS. 1) WITHOUT PATCH CLASSIFICATION AND USING

GAUSSIAN SMOOTHING FILTER (GAUSSIAN). 2) WITHOUT

PATCH CLASSIFICATION AND USING A LEARNED FILTER

(1 LEARNED). 3) WITH PATCH CLASSIFICATION AND

USING TWO LEARNED FILTERS (2 LEARNED). FOR

EACH IMAGE AND SETTING, THE BEST

RESULT IS HIGHLIGHTED

Image Gaussian 1 Learned 2 Learned
Lena 29.14 30.90 31.54

Barbara 27.42 30.14 30.36
Boats 26.66 28.91 29.5

Fingerprint 24.24 26.99 27.24
House 29.75 31.61 32.34

Peppers 26.38 28.99 29.78

0 10 20 30 40 50
24

25

26

27

28

29

30

31

Permutation matrices

P
S

N
R

 [d
B

]

without SA
with SA

Fig. 4. Average of the PSNR values obtained for the noisy test images
(σ = 25), with and without subimage averaging, as a function of the number
of permutations.

We also demonstrate the improvement in the performance
obtained with cycle spinning and subimage averaging. Figure 4
shows the average of the PSNR values obtained for the noisy
test images with our scheme, including patch classification
and filter learning, with and without subimage averaging, as
a function of the number of employed permutation matrices.
First it can be seen that the results in both cases improve
as the number of employed permutations K increases, and
that the subimage averaging improves the performance by
between 1.5 dB for large values of K to 5 dB when K = 1.
It can also be seen that when the subimage averaging scheme
is used, most of the performance gain is obtained using
the first 10 permutations. In fact, employing 40 more per-
mutations increases the results by less than 0.07 dB. Thus,
as a compromise between the quality of performance and
computational cost, in the following experiments we utilize
K = 10 permutation matrices when we apply our image
denoising scheme.

We next apply our overall scheme, to all the noisy images
in the test set. The parameters employed by the proposed
denoising scheme for the different noise levels are shown
in Table II. We note that the reason we chose a uniform
filter length of Nh = 25 samples for all noise levels can be
justified using Figure 5. Figure 5. shows the average of the
PSNR values obtained in the first and second iterations for

2770 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

TABLE II

PARAMETERS USED IN THE DENOISING EXPERIMENTS

σ Iteration K
√

n C B ε Nh

5
1 10 5 2.2 61 106 25
2 10 4 1.2 361 103 25

10
1 10 6 1.6 61 106 25
2 10 4 0.8 361 103 25

15
1 10 7 1.4 61 106 25
2 10 4 0.6 361 103 25

20
1 10 8 1.3 61 106 25
2 10 4 0.5 361 103 25

25
1 10 8 1.2 61 106 25
2 10 4 0.4 361 103 25

50
1 10 14 1.1 61 106 25
2 10 5 0.3 361 103 25

75
1 10 16 1.1 61 106 25
2 10 6 0.2 361 103 25

100
1 10 16 1.1 61 106 25
2 10 8 0.1 361 103 25

0 10 20 30 40 50
22

24

26

28

30

32

34

36

Filter Length [samples]

P
S

N
R

 [d
B

]

σ=10
σ=25
σ=50

0 10 20 30 40 50
22

24

26

28

30

32

34

36

Filter Length [samples]

P
S

N
R

 [d
B

]

σ=10
σ=25
σ=50

Fig. 5. Average of the PSNR values obtained for the test images, as a
function of the filter length, for three different noise levels. (a) First iteration.
(b) Second Iteration.

all the test images, as a function of the filter length, for three
different noise levels. It can be seen that in both iterations the
performance gain obtained using filters longer than 25 samples
is negligible. The trained filters obtained in each iteration for
the three different noise levels are shown in Figure 6. First, it
can be seen that filters hs and he indeed look different. It can
also be seen that in the first iteration the shape of the filter
hs does not change much as the noise level increases, and in
the second iteration the filters obtained for the higher noise
levels are similar, but very different from the filter obtained
for σ = 10. On the other hand, in both iterations the shape of
the filter he changes greatly as the noise level increases.

For comparison, we also apply the K-SVD [8] and
BM3D [12] algorithms. The PSNR values of the results
obtained with these algorithms, and two iterations of our
denoising scheme are shown in Table III. The noisy and
recovered images obtained with our scheme for σ = 25 are
shown in Figure 7. First, it can be seen that the second iteration
improves the results of our proposed scheme in all the cases. It
can also be seen that the results obtained with two iterations of
our scheme are inferior to the those of the K-SVD for σ < 15,
but are better almost everywhere for σ ≥ 15. Further, our two
iterations results are generally better than those of the state-
of-the-art BM3D algorithm for σ ≥ 50, but are inferior for
higher SNRs.

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

A
m

pl
itu

de

σ=10
σ=25
σ=50

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

A
m

pl
itu

de

σ=10
σ=25
σ=50

0 5 10 15 20 25
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Samples

A
m

pl
itu

de

σ=10
σ=25
σ=50

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Samples

A
m

pl
itu

de

σ=10
σ=25
σ=50

Fig. 6. Trained filters learned from the noisy images for σ = 10, 25, 50:
Left column - the filters hs obtained in the first (top) and second (bottom)
iterations. Right column - the filters he obtained in the first (top) and second
(bottom) iterations.

B. Image Inpainting

The problem of image inpainting consists of the recovery
of missing pixels in the given image. Here we handle the
case where there is no additive noise, therefore v = 0, and
M is a diagonal matrix of size N × N which contains ones
and zeroes in its main diagonal corresponding to existing
and missing pixels, correspondingly. Each patch may contain
missing pixels, and we denote by Si the set of indices of
non-missing pixels in the patch xi . We choose the distance
measure between patches xi and x j to be the average of
squared differences between existing pixels that share the same
location in both patches, i.e.

w(xi , x j) =
∑

k∈Si∩S j
(xi [k] − x j [k])2

|Si ∩ Sj | . (19)

We start by calculating the matrix P according to the
scheme described in Section II-B, with a minor difference:
when a patch does not share pixels with any of the unvisited
patches, the next patch in the path is chosen to be its nearest
spatial neighbor. We next apply the obtained matrix to the
subimages z̃ j , and observe that the permuted vectors z̃p

j = Pz̃ j

contain missing values. We bear in mind that the target signals
ỹp

j = Pỹ j should be smooth, and therefore apply on the
subimages z̃p

j an operator H which recovers the missing values
using cubic spline interpolation. We apply the matrix P−1 on
the resulting vectors and obtain the estimated subimages ˆ̃y j .
The final estimate is obtained from these subimages using (7).
We improve our results by applying two additional iterations
of a modified version of this inpainting scheme, where the
only difference is that we rebuild P using reconstructed (and
thus full) patches.

We demonstrate the performance of our proposed scheme
on corrupted versions of the images Lena, Barbara and House,
obtained by zeroing 80% of their pixels, which are selected
at random. The parameters employed in each of the three

RAM et al.: IMAGE PROCESSING USING SMOOTH ORDERING OF ITS PATCHES 2771

TABLE III

DENOISING RESULTS (PSNR IN dB) OF NOISY VERSIONS OF 6 IMAGES, OBTAINED WITH THE K-SVD AND BM3D ALGORITHMS AND TWO

ITERATIONS OF THE PROPOSED SCHEME. FOR EACH IMAGE AND NOISE LEVEL, THE BEST RESULT IS HIGHLIGHTED

Image Method
σ /PSNR

5/34.16 10/28.14 15/24.61 20/22.11 25/20.18 50/14.16 75/10.63 100/8.14

Lena

K-SVD 38.63 35.52 33.76 32.40 31.35 27.85 25.81 24.47

BM3D 38.72 35.93 34.28 33.04 32.05 28.96 27.16 25.80

proposed (1 iter.) 38.22 35.26 33.64 32.48 31.54 28.66 26.8 25.45

proposed (2 iter.) 38.31 35.39 33.84 32.72 31.80 28.96 27.22 26.01

Barbara

K-SVD 38.08 34.40 32.33 30.79 29.54 25.43 23.02 21.89

BM3D 38.29 34.93 33.05 31.69 30.61 27.16 25.11 23.61

proposed (1 iter.) 37.63 34.29 32.54 31.32 30.36 27.19 25.14 23.56

proposed (2 iter.) 37.74 34.39 32.65 31.43 30.47 27.35 25.42 24.07

Boats

K-SVD 37.25 33.65 31.74 30.35 29.30 25.94 24.04 22.85

BM3D 37.29 33.94 32.15 30.87 29.89 26.71 25.01 23.88

proposed (1 iter.) 37.09 33.64 31.79 30.49 29.50 26.35 24.58 23.34

proposed (2 iter.) 37.10 33.70 31.91 30.67 29.70 26.69 24.99 23.90

Fingerprint

K-SVD 36.66 32.42 30.09 28.46 27.26 23.23 19.97 18.29

BM3D 36.52 32.47 30.30 28.83 27.72 24.54 22.82 21.57

proposed (1 iter.) 36.00 31.88 29.72 28.27 27.24 24.02 22.25 21.11

proposed (2 iter.) 36.19 32.01 29.84 28.38 27.34 24.13 22.47 21.44

House

K-SVD 39.33 35.90 34.19 32.97 31.97 28.01 25.27 23.59

BM3D 39.84 36.63 34.87 33.72 32.79 29.54 27.42 25.78

proposed (1 iter.) 38.54 35.61 34.08 33.06 32.34 29.28 27.26 25.51

proposed (2 iter.) 38.76 35.80 34.35 33.32 32.54 29.64 27.79 26.30

Peppers

K-SVD 37.80 34.27 32.23 30.88 29.81 26.24 23.54 21.68

BM3D 38.09 34.70 32.77 31.37 30.26 26.69 24.71 23.20

proposed (1 iter.) 37.59 34.13 32.21 30.86 29.78 26.28 24.21 22.53

proposed (2 iter.) 37.63 34.26 32.40 31.09 30.01 26.75 24.72 23.21

TABLE IV

PARAMETERS USED IN THE INPAINTING EXPERIMENTS

Iteration K
√

n B ε

1 10 16 9 102

2 10 8 43 104

3 10 5 55 108

iterations are shown in Table IV. In order to demonstrate the
advantages of our method over simpler interpolation schemes
we compare our results to the ones obtained by the matlab
function “griddata” which performs cubic interpolation of the
missing pixels based on Delaunay triangulation [21], [22]. We
also compare the performance of our algorithm to those of
three other patch-based algorithms. The first is the algorithm
described in chapter 15 of [19], which employs a patch-based
sparse representation reconstruction algorithm with a DCT
overcomplete dictionary to recover the image patches. We use
a patch size of 16 × 16 pixels in order to improve the results
this method produces. We note that we do not employ the
K-SVD based algorithm which was also described in this chap-
ter, as our experiments showed that it produces comparable or
only slightly better results than the redundant DCT dictionary,
at a higher computational cost. The other two algorithms to
which we compare our results are the algorithm proposed in
[13], which is based on transforming groups of patches, and
the state-of-the-art PLE algorithm proposed in [4], which is

based on patch clustering. We present here the results reported
for these algorithms in [4], for the case of 80% missing pixels.
The PSNR values of the results obtained with the different
algorithms are shown in Table V. Figure 8 shows the corrupted
and the reconstructed images, with the corresponding PSNR
values, obtained using Delaunay triangulation, overcomplete
DCT dictionary, and 1 and 3 iterations of the proposed scheme.
First, it can be seen that the second and third iterations greatly
improve the results of our proposed algorithm. It can also
be seen that the results obtained with three iterations of our
proposed scheme are much better than those obtained with
Delaunay triangulation and the overcomplete DCT dictionary.
Further, it can be seen that our three iterations results are
better than the results obtained with the patch grouping
algorithm [13] for the images Lena and Barbara, but slightly
inferior to its results for the image House. Finally, it can be
seen that the stat-of-the-art PLE algorithm [4] outperforms our
three iterations results by only 0.3 dB for the images Lena and
House, but by more than 1.2 dB for the image Barbara.

C. Computational Complexity

We next evaluate the computational complexity of a single
iteration of the two image processing algorithms described
above. We note that for the image denoising scheme, we
assume that the filters training has been done beforehand, and
exclude it from our calculations. First, building the matrix X

2772 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

Fig. 7. Denoising results (PSNR) for the images Lena, Barbara, Boat, and House (σ = 25, input PSNR = 20.18 dB): top row - noisy images, center row -
1 iteration results, and bottom row - 2 iterations results.

Fig. 8. Inpainting results (PSNR) of corrupted versions of the images Lena, Barbara, and House with 80% of their pixels missing, obtained with different
reconstruction methods: First column - corrupted images, Second column - Delaunay triangulation, Third column - overcomplete DCT dictionary, Fourth
column - 1 iteration of the proposed scheme, Fifth column - 3 iterations of the proposed scheme.

which contains the image patches requires O(nN) operations.
We assume that when the nearest-neighbor search described
above is used with a search window of size B × B , most of
the patches do not require to calculate distances outside this
neighborhood. Therefore, as calculating each of the distance

measures (10) and (19) requires O(n) operations, the number
of operations required to calculate a single reordering matrix
Pk can be bounded by O(N B2n). Next, applying the matrices
Pk and P−1

k to the n subimages z̃ j require O(nN) operations,
and so does applying either one of the operators H described

RAM et al.: IMAGE PROCESSING USING SMOOTH ORDERING OF ITS PATCHES 2773

TABLE V

INPAINTING RESULTS (PSNR IN dB) OF CORRUPTED VERSIONS OF THE

IMAGES LENA, BARBARA, AND HOUSE WITH 80% OF THEIR PIXELS

MISSING, OBTAINED USING DELAUNAY TRIANGULATION (DT),

OVERCOMPLETE DCT DICTIONARY, THE ALGORITHM IN [13],

PLE [4], AND 1 (P1), 2 (P2), AND 3 (P3) ITERATIONS OF

THE PROPOSED SCHEME. FOR EACH IMAGE,

THE BEST RESULT IS HIGHLIGHTED

Image DT DCT [13] [4] P1 P2 P3

Lena 30.25 29.97 31.62 32.22 30.25 31.80 31.96

Barb 22.88 27.15 25.40 30.94 27.56 29.34 29.71

House 29.21 29.69 32.87 33.05 29.03 32.10 32.71

above to the n subimages z̃p
j . Finally , constructing an estimate

image by averaging the pixel values obtained with the different
subimages also requires O(nN) operations, and averaging
the estimates obtained with the different matrices Pk requires
O(K N) operations. Therefore when K permutation matrices
are employed, the total complexity is

O((n + K)N) + K
[

O(N B2n) + O(nN)
]

= O(N K B2n)

(20)
operations, which means that, as might be expected, the overall
complexity is dominated by the creation of the permutation
matrices. For a typical case in our experiments, N = 5122,
K = 10, n = 64 and B = 61, the above amounts to 6.24 ·1011

operations. In order to better illustrate these numbers, we also
provide run-times: applying two iterations of our denoising
scheme to a 512 × 512 image with noise level σ = 25 using
a non optimized and non parallel matlab implementation, on
an Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, takes about
45 min. Applying three iterations of our inpainting scheme to
a 512 × 512 image with 80% missing pixels take only about
14 minutes. We should note that while in our experiments
we employed an exact exhaustive search, approximate nearest
neighbor algorithms may be used to alleviate the computa-
tional burden.

IV. CONCLUSION

We have proposed a new image processing scheme which is
based on smooth 1D ordering of the pixels in the given image.
We have shown that using a carefully designed permutation
matrices and simple and intuitive 1D operations such as linear
filtering and interpolation, the proposed scheme can be used
for image denoising and inpainting, where it achieves high
quality results.

There are several research directions to extend this work
that we are currently considering. The first is to make use
of the distances between the patches not only to find the
ordering matrices, but also in the reconstruction process of
the subimages. These distances carry additional information
which might improve the obtained results. Improvements can
also be made to the patch ordering scheme itself. We have
seen in Section II.B that this scheme performs poorly near
the end of the found path, when only a small number of
unvisited patches remain. A possible solution could be to
develop a scheme which allows patches to be revisited more

than once. A different direction is to develop new image
processing algorithms which involve optimization problems in
which the 1D image reorderings act as regularizers. These may
both improve the image denoising and inpainting results, and
allow to tackle other applications such as image deblurring,
where the operator M is no longer restricted to be point-wise
local. Additionally, the proposed image denoising scheme may
be improved by dividing the patches to more than two types,
and treating each type differently. Finally, we note that in our
work we have not exhausted the potential of the proposed
algorithms, and the choice of different parameters (e.g., B, ε)
for each set of patches may also improve the produced results.

ACKNOWLEDGMENT

The authors thank the authors of [4] for the fruitful discus-
sions and advices, which helped in developing the presented
work. The authors also thank the anonymous reviewers for
their helpful comments.

REFERENCES

[1] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2,
pp. 490–530, 2006.

[2] P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally
learned dictionaries,” IEEE Trans. Image Process., vol. 18, no. 7,
pp. 1438–1451, Jul. 2009.

[3] G. Yu, G. Sapiro, and S. Mallat, “Image modeling and enhancement via
structured sparse model selection,” in Proc. 17th IEEE Int. Conf. Image
Process., Sep. 2010, pp. 1641–1644.

[4] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with
piecewise linear estimators: From Gaussian mixture models to structured
sparsity,” IEEE Trans. Image Process., vol. 21, no. 5, pp. 2481–2499,
May 2012.

[5] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising
via dictionary learning and structural clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2011, pp. 457–464.

[6] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-
resolution by adaptive sparse domain selection and adaptive regular-
ization,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857,
Jul. 2011.

[7] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 479–486.

[8] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[9] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69,
Jan. 2008.

[10] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep.–Oct. 2009, pp. 2272–2279.

[11] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in Proc. 7th Int. Conf. Curves Surf., 2012,
pp. 711–730.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[13] X. Li, “Patch-based image interpolation: Algorithms and applications,”
in Proc. Int. Workshop Local Non-Local Approx. Image Process., 2008,
pp. 1–6.

[14] I. Ram, M. Elad, and I. Cohen, “Generalized tree-based wavelet trans-
form,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4199–4209,
Sep. 2011.

[15] I. Ram, M. Elad, and I. Cohen, “Redundant wavelets on graphs and
high dimensional data clouds,” IEEE Signal Processing Letters, vol. 19,
no. 5, pp. 291–294, May 2012.

2774 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

[16] G. Plonka, “The easy path wavelet transform: A new adaptive wavelet
transform for sparse representation of two-dimensional data,” Multiscale
Model. Simul., vol. 7, no. 3, pp. 1474–1496, 2009.

[17] D. Heinen and G. Plonka, “Wavelet shrinkage on paths for denoising of
scattered data,” Results Math., vol. 62, nos. 3–4, pp. 337–354, 2012.

[18] T. H. Cormen, Introduction to Algorithms. Cambridge, MA, USA: MIT
Press, 2001.

[19] M. Elad, Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. New York, NY, USA:
Springer-Verlag, 2010.

[20] R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,”
Wavelets and Statistics. New York, NY, USA: Springer-Verlag, 1995,
pp. 125–150.

[21] T. Yang, Finite Element Structural Analysis, vol. 2. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1986.

[22] D. Watson, Contouring: A Guide to the Analysis and Display of Spatial
Data (With Programs on Diskette). New York, NY, USA: Pergamon,
1992.

Idan Ram received the B.Sc. (cum laude) and M.Sc.
degrees in electrical engineering from the Technion –
Israel Institute of Technology, Haifa, Israel, in 2004
and 2009, respectively. He is currently pursuing
the Ph.D. degree in electrical engineering with the
Technion.

He recieved the Ollendorff Award for research
in image processing and analysis in 2013. His
current research interests include image processing
using sparse signal representations and smooth patch
ordering.

Michael Elad (F’12) received the B.Sc., M.Sc.,
and D.Sc. degrees from the Department of Elec-
trical Engineering, Technion – Israel Institute of
Technology, Haifa, Israel, in 1986, 1988, and 1997,
respectively. Since 2003, he has been a Faculty
member with the Computer Science Department,
Technion, and since 2010, he has held a Full Pro-
fessor position.

He works in the field of signal and image process-
ing, specializing in particular on inverse prob-
lems, sparse representations and superresolution. He

received the Technion’s Best Lecturer Award six times, and he was the
recipient of the 2007 Solomon Simon Mani Award for Excellence in Teaching,
the 2008 Henri Taub Prize for Academic Excellence, and the 2010 Hershel-
Rich Prize for Innovation. He is serving as an Associate Editor for SIAM
SIIMS, IEEE-TIT, and ACHA. He is serving as a Senior Editor for IEEE
SPL.

Israel Cohen (M’01–SM’03) is a Professor of elec-
trical engineering with the Technion – Israel Institute
of Technology, Haifa, Israel. He received the B.Sc.
(summa cum laude), M.Sc., and Ph.D. degrees in
electrical engineering from the Technion, in 1990,
1993 and 1998, respectively.

From 1990 to 1998, he was a Research Scientist
with RAFAEL Research Laboratories, Haifa, Min-
istry of Defense. From 1998 to 2001, he was a Post-
Doctoral Research Associate with the Computer
Science Department, Yale University, New Haven,

CT, USA. In 2001, he joined the Electrical Engineering Department, Technion.
His current research interests include statistical signal processing, analysis
and modeling of acoustic signals, speech enhancement, noise estimation,
microphone arrays, source localization, blind source separation, system iden-
tification, and adaptive filtering. He is a co-editor of the Multichannel Speech
Processing section of the Springer Handbook of Speech Processing (Springer,
2008), a co-author of Noise Reduction in Speech Processing (Springer, 2009),
a co-editor of Speech Processing in Modern Communication: Challenges and
Perspectives (Springer, 2010), and a general co-chair of the 2010 International
Workshop on Acoustic Echo and Noise Control.

He is a recipient of the Alexander Goldberg Prize for Excellence in
Research, and the Muriel and David Jacknow Award for Excellence in
Teaching. He serves as a member of the IEEE Audio and Acoustic Sig-
nal Processing Technical Committee and the IEEE Speech and Language
Processing Technical Committee. He served as an Associate Editor of the
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

and the IEEE SIGNAL PROCESSING LETTERS, and as a Guest Editor of a
special issue of the EURASIP Journal on Advances in Signal Processing on
Advances in Multimicrophone Speech Processing and a special issue of the
Elsevier Speech Communication Journal on Speech Enhancement.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

