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Graph-Based Supervised Automatic Target Detection
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Abstract—In this paper, we propose a detection method based
on data-driven target modeling, which implicitly handles varia-
tions in the target appearance. Given a training set of images
of the target, our approach constructs models based on local
neighborhoods within the training set. We present a new metric
using these models and show that, by controlling the notion of
locality within the training set, this metric is invariant to per-
turbations in the appearance of the target. Using this metric in
a supervised graph framework, we construct a low-dimensional
embedding of test images. Then, a detection score based on the
embedding determines the presence of a target in each image.
The method is applied to a data set of side-scan sonar images
and achieves impressive results in the detection of sea mines. The
proposed framework is general and can be applied to different
target detection problems in a broad range of signals.

Index Terms—Automated mine detection, automatic target
detection, nonlinear-dimensionality reduction, side-scan sonar.

I. INTRODUCTION

TARGET detection in images is important in military
applications and various imaging systems such as hy-

perspectral [1], [2], synthetic aperture radar [3], [4], ground-
penetrating radar [5], and side-scan sonar [6], [7]. The goal is
to detect the target, usually man-made structures, vehicles, or
devices, in a cluttered background. Automatic target detection
is important for practical reasons, given the large amount of
images produced in such applications. A supervised approach
is useful in target detection when training images exist or
prior knowledge exists regarding the target (e.g., its size and
appearance). This prior knowledge can be used for modeling
the target, feature selection, training a classifier, rejecting false
alarms (FAs), etc., using various methods [2], [7]–[10].

Automatic detection of sea mines in side-scan sonar imagery
is a challenging task due to the high variability in the ap-
pearance of the target and seabed reverberations (background
clutter). Objects in side-scan sonar appear as a strong bright
region (highlight) aside a dark region (shadow). The shadow
is due to the object blocking the sonar waves from reaching
the seabed. This paired highlight–shadow region is the primary
feature for detection of sea mines [11]. Research in this field
focuses on three aspects of the problem: detection of minelike
objects (MLOs) in the image, classification of these objects
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as mine or nonmine, and identification of the sea-mine type
[12], [13]. In this paper, we propose a new detection method
and demonstrate its application in extracting MLOs from the
cluttered seabed.

Algorithms proposed for MLO detection include the Markov
random field (MRF) models [12], [14], a 2-D multiscale Gauss
Markov random field (GMRF) with matched subspace detec-
tor (MSD) [15], a multidimensional generalized autoregres-
sive conditional heteroscedasticity (GARCH) model with MSD
[10], nonlinear matched filters [6], [8], morphological filters
[16], etc. The detection is sometimes accompanied by extrac-
tion of the shadow, for example, using co-operating statistical
snakes [12], [17] or deformable templates [18]. Following the
detection of MLOs, a classification and identification procedure
is applied to determine whether the objects are a mine or not,
usually focusing on the shape of the shadow region [7], [11],
[13], [17]–[22].

In target detection, the appearance of the target is usually
known in advance, and reference images may also be available
or simulated. In side-scan sonar, for example, augmented reality
simulators have been proposed to embed synthetic target mod-
els on a real image of the seafloor [7], [20]. Many algorithms
for sea-mine classification make use of training data. Reed et al.
use the Hausdorff distance to compare test objects to a synthetic
training set of MLO shadow regions produced by a sonar
simulator [17]. Quidu et al. compare the Fourier descriptors of
the contour of a tested shadow region to the Fourier descriptors
of an initial set of prototype shadows [19]. Myers and Fawcett
propose matching an object’s signature image with a number
of computer-generated templates using a generalized cross-
correlation measure for template matching [21].

MLO detection algorithms, on the other hand, usually
take advantage of prior information by applying a statistical
model that is appropriate for the sonar acquisition scenario
and/or searching for a joint signature of highlight and shadow.
Dobeck et al. designed a nonlinear matched filter for MLO de-
tection, which contains four distinct regions, namely, pretarget,
highlight, dead zone, and shadow, based on the expected size
of the sea mine [8]. Lange and Vincent propose using grayscale
morphological filters to extract bright and dark regions from
the image, expecting these to be highlight and shadow regions.
These filters impose geometric constraints on shape, size, and
area, determined by prior information on the expected size of
the sea mines in the images [16]. Coiras et al. presented a
special set of spatial filters, termed central filters, specifically
designed for detection of MLOs. Their design ensures object
presence and a highlight–shadow dichotomy [7]. Reed et al.
[12] and Mignotte et al. [14] incorporate the prior knowledge on
the spatial dependence between highlight and shadow regions
into an MRF model, each proposing different distributions
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for the seabed-reverberation and shadow regions. Noiboar and
Cohen present an anomaly-detection-based approach, where
the anomaly subspace for the MSD incorporates available
a priori information about the target using a few real sea-mine
images [10].

Most target detection methods require statistical modeling or
heuristic filter design using prior knowledge on the appearance
(size and geometry) of the expected target and the image
formation process. When using a training set, typically, many
images are included in the training set, in order to account for
variability of the target appearance. In this paper, we propose
a data-driven detection method to model the target, which
implicitly handles variations in the target appearance, allowing
for a small-sized training set.

Recently, Talmon et al. presented diffusion-graph-based fil-
ters for supervised speech enhancement [23]. A similar frame-
work was proposed by Haddad et al. for filtering a known
pattern in an image [24]. Both papers propose a principal
component analysis (PCA)-based metric for constructing local
models of the signal, using a training set.

We propose a new local metric for supervised target de-
tection. This metric, as opposed to the PCA-based metric, is
invariant to perturbations in the appearance of the target, as
defined by the training set. Our approach is supervised to the
extent that the user needs to input an appropriate training set
and a notion of similarity between patches within the training
set. No other a priori information is required, i.e., this approach
does not rely on statistical modeling or imposing typical shape
parameters. The paired appearance of the highlight–shadow
region arises implicitly from the calculated metric and does not
need to be imposed as prior information.

Consider that several training images of the target are avail-
able, either real or simulated, that may differ in their appear-
ance, for example, in size, orientation, contrast, etc. Extracting
overlapping patches from these images provides a training set
of image patches containing the target. Our approach constructs
a model for each training patch based on its local neighborhood
within the training set: other training patches which are similar
to the given patch. The main contribution of our approach is
that, by controlling the notion of locality, i.e., how the neigh-
borhood of each training patch is chosen, we effectively con-
struct a metric which emphasizes similarities within the local
neighborhood while allowing for a desired invariance to other
dissimilarities. These similarities and dissimilarities are learned
from the variability of the target in each local neighborhood of
patches. This metric, therefore, enables to compare test patches
containing the target to the training set, while repressing the
differences due to slight changes in the target appearance. On
the other hand, the metric emphasizes differences from the
training set to which we want to be sensitive and penalizes them
heavily. Thus, this metric does not penalize variability in the
appearance of the target in the test image as compared to the
training set, in contrast to other metrics such as the Euclidean
distance.

Assume that there is an intrinsic set of parameters governing
the appearance of the image patches that contain a target,
such as shape parameters, textures, and lighting conditions.
The proposed metric enables to design an invariance to certain

intrinsic parameters, while emphasizing the similarity in other
parameters. We show that this can be done in a data-driven man-
ner, without explicitly modeling and calculating the intrinsic
parameters. Calculating the element-wise empirical mean and
variance of the local neighborhood provides a model for each
training patch, with the desired invariant properties.

The proposed invariant metric is used to define an affinity
kernel between the training set and the test set. In [23] and [24],
an affinity kernel is used in a supervised graph-based algorithm
to construct a filter which extracts the desired pattern from
the input signal. In our approach, we use the supervised graph
framework; however, we do not use the graph filter to detect
the target in the image. Instead, we construct an embedding
of the high-dimensional image patches into a low-dimensional
space, which separates the patches containing the target from
the patches that contain the background. We propose a new
detection score in the embedding space, based on the structure
of the affinity kernel, that determines the presence of a target in
the image. The framework that we present is general and can be
applied to different target detection problems in a broad range
of signals, e.g., audio signals, hyperspectral images, and videos.

This paper is organized as follows. In Section II, we propose
a metric for comparing training and test patches which enables
to implicitly design an invariance to perturbations in the target
model. In Section III, this metric is inserted in a supervised
graph-based framework which provides a low-dimensional em-
bedding of the data. Section IV presents a target detection
score in the low-dimensional embedding. Section V reviews
related work in which a different approach to target modeling is
used, based on a PCA approach, and in Section VI, we analyze
the advantages and disadvantages of both methods. Finally,
Section VII presents experimental results in a 1-D toy problem
and the real-world problem of sea-mine detection in side-scan
sonar images. Using a training set consisting of merely five
images, we demonstrate the success of our method compared
to other supervised methods.

II. LOCAL NEIGHBORHOOD MODELING

In this section, we formulate the problem and present a new
metric for comparing image patches based on local neighbor-
hoods of patches in the training set. We show that, by control-
ling how these neighborhoods are defined, we can efficiently
construct a metric that emphasizes similarities within the local
neighborhood, while allowing for a desired invariance to other
dissimilarities. We demonstrate our method in the application
of side-scan sonar images.

A. Problem Formulation

In target detection applications, images of the target can be
acquired or simulated in advance. Given a new test image,
the goal is to determine whether a target exists in the image,
based on prior information available from the training set. High-
dimensional features are commonly used for image representa-
tion. In our approach, we describe the images using overlapping
patches extracted from the training set and test image. Some
approaches model both background and target [2], [9]; however,
in our approach, we model only the target.
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Fig. 1. Training set of sea mines in side-scan sonar images. Three images
were used (a), (c), and (e). The images (b) and (d) are vertical reflections of
(a) and (c), respectively, added to the set to increase variability. The pixels on
the sea-mine highlights were saturated in order to diminish variability of target
intensity in the training set, which is due to noisy acquisition.

Given a test image, typically, most patches belong to the
background. In side-scan sonar, the appearance of background
patches is determined by the backscattered energy from the
seabed, which follows Rayleigh distributions for isotropic re-
gions of the seafloor. In areas with more complex seafloor
topography or backscatter from sand ripples, more complex
models are required [25], [26].

A patch containing the target, an MLO, will typically include
a small bright highlight, accompanied by a shadow region to
the right or left of the highlight, dependent on the acquisition
of the image. The shadow region is due to the MLO effectively
blocking the sonar waves from reaching the region of the seabed
adjacent to the sea mine [12]. The shadow region is usually
larger than the highlight region in the image. Examples of a few
sea mines, composing our training set, are presented in Fig. 1.
Note that the pixels on the highlight of the sea mines in our
training set were saturated to diminish variability in the high-
light intensity due to noisy acquisition and differences in the
reflectivity of the objects. This was done so that perturbations
in the target model would result from differences in orientation
and size and not from intensity.

The appearance of a patch containing a sea mine is deter-
mined by several parameters of the sea mine: the location of
its center in the patch, its orientation in regard to the sensor,
its size (length and width), its reflectivity, and the length of
the shadow (determined by the height of the mine protruding
above the seabed and the grazing angle). One could explicitly
calculate these parameters for a test patch using shape analysis
and compare them to the typical values learned from the patches
in the training set to determine the existence of a target. The
expected geometry of the target could also be imposed as
prior information in a statistical model or heuristic filter. Our
approach, on the other hand, compares the intrinsic parameters
of the sea-mine appearance between patches, using the patches
directly, without performing explicit shape analysis.

Given a set of training patches containing the target, we want
to compare patches extracted from a test image to the training
set. If a test patch is similar to the training set, we determine that
a target has been detected in this patch. Our focus in this work is
to define this notion of similarity between the test and training
sets. We make two observations regarding the comparison of
two patches containing targets. First, a target patch probably
does not contain only pixels belonging to the signal of interest.
The patch will usually also contain pixels belonging to the
background, which are not of interest for determining whether
the patch contains a target. Second, similar patches can be
considered different realizations of the same scene with slight
variations so that many of the pixels containing the target are

identical and some of the pixels are different due to these
variations. If the Euclidean distance is used to compare patches,
all pixels in the patch are weighted evenly. Yet, it is desirable to
ignore differences due to comparing background pixels in both
patches. In addition, we want to put less emphasis on target
pixels who are different due to slight variations in the specific
realization of the given patch.

These goals can be achieved by associating a weight with
each pixel in the patch which determines how important it
is in terms of its signal content. Thus, we ensure that, when
calculating the distance between patches, we are comparing
only the relevant pixels. Obviously, it is tedious and inefficient
to set such a weight vector manually for each and every patch
in the training set. In the next section, we present a method to
calculate the weight vector for each patch based on its local
neighborhood in the training set. The variance of each pixel
in the patch, estimated using a local neighborhood of training
patches, yields an automatic method to obtain weight vectors
with the desired properties.

Myers and Fawcett have addressed a similar problem when
using the cross-correlation measure for template matching [21].
They propose using complementary templates, which are an
inverse binary mask of a template model, to penalize areas
of echoes or shadows that fall outside the ideal templates.
However, their approach does not enable perturbations in the
templates as the mask is binary, whereas we propose a weighted
metric. Thus, to achieve a variation of orientations, they require
a large number of templates of sea mines at varying aspects.

B. Invariant Metric

We denote by Zi ∈ R
N the column stacked version of the√

N ×
√
N patch centered at the pixel i in the image. Let

θ be a vector of intrinsic parameters which determines the
appearance of the sea mine, for example, the location of its
center in the patch, its orientation in regard to the sensor, its size
(length and width), its reflectivity, and the length of the shadow
(which depends on the height of the mine protruding above
the seabed and the grazing angle). The parameters in θ are
unknown and will be inferred by our method from the training
data. We consider each sea-mine patch a sonar measurement of
a sea mine, with the realization of the measurement dependent
on the parameter vector and measurement noise. We assume
that sea-mine patches with similar appearance have similar
parameter vectors and are realizations of the same scene with
slight perturbations.

We assume that the column stack of the patch Zi is a vector
of N nonlinear noisy measurements of the unknown intrinsic
parameters

Zi(x) = f(x;θi) + ηi(x), x ∈ {1, . . . , N} (1)

where f(x;θ) is a smooth nonlinear function mapping the
parameter vector θ to the x pixel in the patch and η is a
zero-mean measurement noise with variance σ2

η independent
of θ and x. The specific pixel within the patch is denoted by
x, which ranges from one to N . Note that this measurement
model neglects explicit interactions between pixels in the patch.
However, all pixels within the patch share the same mapping
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f and the same parameter vector θ, providing an implicit
connection between pixels.

Given a training set {Zi}Mi=1 of M patches, we calculate
the local statistics of each patch, using its k nearest neighbors
within the training set, denoted by Ni. These nearest neighbors,
which are similar in appearance to the given patch, can be seen
as perturbations of the given patch. These perturbation are due
to slight variations of a subset of parameters in θ, depending on
the choice of the local neighborhood. Consider several training
patches belonging to the same neighborhood, which all have the
same center-of-mass location, yet differ in the orientation of the
sea mine. The sense of similarity within this neighborhood is
defined by the location, and we want to place a large weight
on this location. The perturbations within the neighborhood
are defined by changes in orientation, and we want to assign
low weights to such differences in the orientation. In a sim-
ilar manner, we can choose to collect together patches with
similar orientations but different lighting conditions, yielding
a different weight vector. Note that we are addressing slight
perturbations and not the range of all possible values.

As this is a supervised approach, the user has control over
how a local neighborhood is defined: what similarities deter-
mine these nearest neighbors. If all nearest neighbor patches of
a training patch have a consistent value in a certain parameter,
then similarity of that parameter is important when comparing
other patches to the training patch. On the other hand, differ-
ences between the nearest neighbors determine what variations
are allowed in the local model of the training patch. Perturba-
tions of these parameters when comparing other patches to the
training patch should be ignored or repressed in comparison
to the consistent parameters. For a given neighborhood, we
can separate the parameter vector into two sets: θ = (θc,θv)T.
The parameters included in θc are consistent within the neigh-
borhood, while θv contains parameters that have variability
within the neighborhood. Controlling the definition of the local
neighborhood determines to which parameters the model will
be sensitive and to which parameters it will be invariant. Given
a small set of close neighbors, we can model each pixel as

Zi(x) = f (x;θc
i ,θ

v
i ) + ηi(x) (2)

where θc
i and θv

i relate to the local neighborhood of Zi.
Our goal is to empirically infer a model for each training

patch, which will allow an invariance to the inconsistent pa-
rameters. However, we do not want to learn a shape model
for our target and perform shape analysis for every patch to
retrieve its parameter vector. Instead, we propose a data-driven
approach which is based on the patch pixels and presents an
implicit method of achieving this invariance. This is done via
the empirical local variance vector of the pixels, calculated in
the local neighborhood of patches.

The empirical local variance for each pixel in the training
patch is estimated using

σ̂2
i (x) =

1

k

∑
Zj∈Ni

(
Zj(x)− μ̂i(x)

)2
(3)

where μ̂i(x) is the empirical local mean of pixel x and k =
|Ni| is the number of nearest neighbors used in the empirical

estimations. Note that this variance is local in the sense that it is
calculated for a given pixel x based on the values Zj(x), Zj ∈
Ni and is not a spatial variance within the patch Zi. Following
our assumption, the set of nearest neighbors is such that some
of the parameters are identical, i.e., the empirical local variance
of these parameters among the neighbors is zero, whereas other
parameters have high empirical variance.

Within the local neighborhood of a given patch, the intrinsic
parameters defining the appearance of the patches are close.
The differences between a given patch Zi and one of its nearest
neighbors Zj ∈ Ni can be seen as a perturbation of the given
patch due to slight variations in the parameter vector. Assuming
a locally linear model in the parameter space, a nearest neighbor
patch Zj can be written as

Zj(x) = f(x;θj) + ηj(x)

= f(x;θi) +∇θf
T(x;θi)(θj − θi) + ηj(x) (4)

where we have neglected higher order terms, θi is the cor-
responding parameter vector of Zi, and ∇θf

T(x;θi) is the
gradient of f(x;θi). Denoting the entries of the parameter
vector as θ = (θ(1),θ(2), . . .)T, the gradient is given by the
partial derivatives

∇θf
T(x;θi) =

(
∂f(x;θ)

∂θ(1)
,
∂f(x;θ)

∂θ(2)
, . . .

)∣∣∣∣
θ=θi

(5)

computed at θ = θi.
We now present the results of using this linear model in the

empirical estimation of the mean and variance of Zi(x). The
full derivation is provided in Appendix I.

The empirical local mean is given by

μ̂i(x) =
1

k

∑
Zj∈Ni

f(x;θj) ≈ f(x; m̂θi
) (6)

where we used the assumption that the noise has zero mean and
m̂θi

is the empirical mean of the parameter vector in Ni.
In a similar manner, plugging the linear model given in (4)

and the empirical local mean (6) into (3) yields

σ̂2
i (x;θi) =

1

k

∑
Zj∈Ni

(f(x;θj) + ηj(x)− f(x; m̂θi
))2

=∇θf
T(x;θi)Cov(θi)∇θf(x;θi) + σ2

η (7)

where we used the assumption that the noise is independent of
the signal and Cov(θi) depends on the empirical covariance of
the parameter vector θ within the local neighborhood of Zi.
Assuming that the parameters in θ are independent of each
other, the estimated covariance matrix Cov(θi) is diagonal with
the empirical variance of each parameter as an element on the
diagonal. We denote the diagonal as the vector σ2

θ, i.e., a vector
containing the empirical variances of each parameter θ ∈ θ, and
the diagonal matrix with σ2

θ as its diagonal by Ω. Therefore, the
left term in the right-hand side of (7) can be rewritten as

∇θf
T(x;θi)Ωi∇θf(x;θi) = ∇θcfT(x;θi)Ω

c
i∇θcf(x;θi)

+ ∇θvfT(x;θi)Ω
v
i∇θvf(x;θi) (8)
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where Ωc
i and Ωv

i are diagonal matrices with the empirical
variance vectors of the parameter sets θc

i and θv
i as their

diagonals, respectively. Since we defined θc
i as the parameters

which are consistent within the neighborhood, the empirical
variances σ2

θc
i
→ 0. Finally, the empirical local variance of Zi

at pixel x is given by

σ̂2
i (x) = σ̂2

v(x) + σ2
η(x) (9)

where σ̂2
v(x) = ∇θvfT(x;θi)Ω

v
i∇θvf(x;θi). We have ob-

tained that the local empirical variance of the pixel depends on
perturbations in the parameter vector within the local neigh-
borhood of the training patch. Since the measure of similar-
ity used to define the neighborhood essentially defines how
the parameters are divided between θc and θv , it effectively
controls the variance. Note that, although we are calculating
empirical estimations of the statistics for each pixel in the patch
independently, there is an implicit dependence between pixels,
as the neighborhood used to calculate these statistics depends
on the appearance of the entire patch and not just the pixel.

If we set the weight associated with each pixel to be the in-
verse local variance, we obtain a weight vector with the desired
properties. If a pixel x has consistent values among the patches
belonging to the local neighborhood, then σ̂v(x) → 0, and the
pixel Z(x) is associated with weight 1/σ2

η . If a pixel x has
inconsistent values among the patches belonging to the local
neighborhood, then σ̂2

v(x) > 0, and the pixel Z(x) is associated
with weight 1/(σ2

η + σ̂2
v(x)) < 1/σ2

η . Such a pixel has high
local variance either due to variability in the model, if it is
a pixel belonging to the target, or due to differences in the
background, if it belongs to the background. Thus, pixels which
can be consistently associated with the signal have a larger
weight than pixels which account for perturbations in the signal,
or background pixels which are not part of the desired signal,
yet belong to the patch. For example, the pixels which contain
the central body of the target are assigned high values in the
corresponding elements of the weight vector, which is desirable
as we want to penalize patches which differ in the values of
these pixels.

This property is demonstrated for the case of sea mines in
Fig. 2. Fig. 2(a)–(c) displays two patches, each containing a sea
mine. The sea mine is composed of a bright highlight and a dark
shadow to its right. Fig. 2(b)–(d) displays the inverse variance
vector calculated for each patch, reshaped as

√
N ×

√
N patch.

The pixels of the central parts of the highlight and shadow are
heavily weighted, whereas there is a low weight surrounding the
outline of the sea mine. These weights force a small distance
between pixels in the highlight and shadow while enabling
small variations in the appearance of the sea mine in regard
to its orientation and position. In addition, the pixels which are
background pixels have a lower weight than those belonging to
the sea mine. This demonstrates that the inverse local variance
vector realizes the desired properties. Fig. 2(e) displays three
patches from the local neighborhood of the patch shown in
(c). These patches have similar center-of-mass positions and
length, yet differ, for example, in orientation and background.
These similarities and perturbations account for the low and
high weights in the inverse local variance vector.

Fig. 2. (a) and (c) Two training patches containing sea mines with a bright
highlight and a dark shadow to the right. (b) and (d) Inverse local variance
vector of each patch, reshaped as

√
N ×

√
N patch. White corresponds to a

high weight, and black corresponds to a low weight. The elements correspond-
ing to the pixels in the central parts of the highlight and shadow are heavily
weighted, whereas there is a low weight surrounding the outline of the sea mine
and the background. (e) Three patches from the local neighborhood of patch (c).
These patches have similar center-of-mass positions and length, yet differ, for
example, in orientation and background. These perturbations are accounted for
in the weight vector (d).

We associate each training patch with the estimated local sta-
tistical model composed of its local empirical mean μ̂i(x), x ∈
1, . . . , N and the local empirical variances of each pixel in
the patch σ̂2

i (x). The mean is used to represent the patch, and
the variances are used to weight each pixel by its importance.
To facilitate the desired weighting, we propose the following
squared weighted distance between pairs of patches

d2(Zi, Zj) =

N∑
x=1

(μ̂i(x)− μ̂j(x))
2

σ̂2
i (x) + σ̂2

j (x)
(10)

where μ̂k and σ̂k are the empirical local mean vector and local
variance vectors of the patch Zk, k ∈ {1, . . . ,M}, respectively.
Thus, the patches are compared via their local model, and the
pixels are weighted according to their combined importance in
both patches. Pixels with high local variance in either patch are
assigned a low weight whereas low variance in both patches
corresponds to a high weight.

Note that the number of neighbors used in defining the local
neighborhood should be limited or restricted by computing
an error threshold between the given patch and a neighbor
candidate to ensure that patches are similar enough to be
used in the empirical calculations. This threshold should be
application dependent and determined empirically, based on the
size of the patches used, the typical intensities of the target,
and the variability within the training set. In addition, in the
specific case of sea mines, since the spatial support of the
highlight is small, averaging too many possible perturbations
of the orientation and position of the sea mine will attenuate
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the highlight in the empirical mean. In our experiments, using
k = 16 neighbors for each training patch yielded good results.
However, increasing the number to k = 32 resulted in a blurred
target model.

C. Controlling the Invariants via the Training Set

The proposed distance defined in (10) provides a metric
with “soft” invariance to certain properties of the signal. This
invariance can be controlled and provides the user with a
method to define characteristics of the target to which they
want to be invariant. This is done by the choice of the training
set and definition of the similarities which determine the local
neighborhoods within the training set. In Section VII-A, we
provide a numerical example for 1-D signals on creating shift
and scale-invariant metrics, by controlling the parameters of the
training set.

In the case of sea mines, it is desirable to enable an in-
variance to slight differences in the rotation and position of
the sea mine and the intensity and size of the highlight and
shadow, in comparison to the sea mines in the training set. For
example, this metric allows one to consider sea mines for a
small range of orientations as similar to a given patch, without
having to explicitly define this range or calculate it. If the local
neighborhoods are determined such that they include patches
at slightly varying orientations as in Fig. 2(e), this creates an
invariance to slight variation in the rotation parameter. The
invariance is achieved implicitly via the weight vector since
low values are assigned to the pixels which correspond to slight
rotations of the sea mine in the training patch. In terms of the
implicit parameter vector θ, the local variability in the rotation
parameter effectively sets it in θv . This enables one to limit the
size of the training set and not require a training example for
every configuration of the parameter vector.

In addition, the proposed weighted distance can be used
to enhance the target while repressing the background. If all
sea mines in the training set will have similar background
values thus that the empirical value of the background pixels
in the patch is on the same order of that of the highlight or
shadow, then the weighted distance will not be invariant to the
background. This should be taken into consideration so that the
training set will have varying backgrounds. For example, if the
training set is created using synthetic sea mines placed on real
or simulated seabed backgrounds, then a different background
should be used for each sea mine. If real sea-mine examples are
used for the training set, then it is preferable to use sea mines
on different types of backgrounds. Thus, the calculated distance
will reduce the affinity between a training patch and a test patch
due to their having similar background values, providing an
invariance to the background.

In related work in the field of sea-mine detection, the authors
in [17], [20], and [26] propose the use of simulators to create
images of synthetic sea mines on real or simulated seabed
backgrounds for use as training data. In [26], Coiras et al.
introduce a multiresolution statistical approach to seabed re-
construction from side-scan sonar. In the paper, they present
an application of this procedure in which synthetic objects
are artificially embedded into a side-scan image. This can be

used to produce a training set of a realistic environment. Such
simulators enable one to directly control the parameters of sea
mines and the seabed appearance in a training set. Therefore,
they can be used to determine local neighborhoods based on
similarity or dissimilarity of given model parameters. This
enables one to create a training set with local neighborhoods
capturing the desired perturbations and thus determining the
desired invariance: to the background, orientation, or highlight
intensity, for example.

III. GRAPH-BASED INTRINSIC EMBEDDING

Given a test image, all its overlapping patches are extracted,
providing a test set of M image patches {Zi}Mi=1 ∈ R

N . A
graph-based algorithm is used to embed the high-dimensional
image patches in a low-dimensional space R

d, d < N . As
proposed in [23], [24], and [27], we define a nonsymmetric
weighted square distance between a training patch Zj and a
test patch Zi, using the new metric, as

a2(Zi, Zj) =

N∑
x=1

(Zi(x)− μ̂j(x))
2 /σ̂2

j (x). (11)

An affinity matrix, based on this distance, is defined between
the data set of all image patches {Zi}Mi=1 and the training set

{Zj}Mj=1

A[i, j] = exp
{
−a2(Zi, Zj)/ε

2
}

(12)

where ε is a scale factor. The Gaussian function further en-
hances the notion of locality as defined by the proposed metric,
as patches with a distance larger than ε have a negligible affinity.
The scale ε is set to be on the order of the median distance
within the training set {Zj}j , as is common practice. This
parameter can be fine tuned to obtain optimal results. Note that
setting ε to be too large will result in all test patches being
similar to the training set and the target detection will fail. On
the other hand, setting ε to be too small will result in none of
the test patches, including those containing targets, to be similar
to the training set, and the target detection will also fail. Also,
although ε is a global scale, the proposed metric is adaptive to
each training patch Zj via the local empirical variance of each
patch σ̂2

j (x), x ∈ {1, . . . , N}.
The matrix A is an M ×M affinity matrix, and we assume

that M > M . We define the symmetric kernel W = ATA,
which is an M ×M matrix

W[i, j] =

M∑
l=1

A[l, i]A[l, j]. (13)

This kernel can be interpreted as an affinity metric between any
two training patches via all patches in the data set [23], [24].
Following [27], this kernel can be rewritten as the convolution
of two Gaussians, and using the convolution theorem, the result
is proportional to a symmetric affinity matrix given by

Wsym[i, j]

= exp

{
−

N∑
x=1

(
μi(x)−μj(x)

)2
/
(
σ2
i (x)+σ2

j (x)
)
ε2

}
. (14)
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The proof is provided in Appendix II. The matrix is a symmetric
affinity matrix based on the distance defined in (10). Thus,
the symmetric kernel on the training set, defined via the data
set, approximates the direct affinity between the training set
patches.

The eigendecomposition of the matrix W (13) yields a set
of decreasing eigenvalues {λl} and eigenvectors {φl} ∈ R

M .
The spectrum of affinity matrices such as W exhibits a spectral
gap, with only a few eigenvalues close to one and all of the
rest quickly tending to zero. Thus, the leading d eigenvectors
{φl}dl=1, corresponding to the d largest eigenvalues {λl}dl=1,
provide a lower dimensional embedding of the training set
{Zj}Mj=1, as seen via the data set {Zi}Mi=1. The dimension d
can be determined by retaining only the eigenvalues for which
λl > δλ1, where a typical value for δ is 0.1. Note that d is an
estimate of the intrinsic dimensionality of the data and does not
depend on the dimension of the representation, i.e., the patch
size N . These eigenvectors are also the singular right vectors
of A and can be used to calculate the singular left eigenvectors
{ψl} ∈ R

M of A by [27]

ψl =
1√
λl

Aφl. (15)

Thus, an eigendecomposition of W provides an efficient man-
ner in which to calculate the singular left eigenvectors of A,
which are used for low-dimensional embedding of the data set
{Zi}Mi=1. This embedding is expected to reveal which patches
in the image are similar to the reference set.

Following [24], instead of calculating the eigenvectors of
the Markov operator, we calculate the eigenvectors of the
normalized graph Laplacian, which converges to the continuous
Laplace–Beltrami operator on the manifold [27], [28]. This nor-
malization handles nonuniform sampling of the measurements
so that the embedding does not depend on the density of the
data points [29], [30]. First, the kernel W is normalized by its
density

W̃ = Q−1WQ−1 (16)

where the elements of the diagonal matrix Q are the sum of the
rows of W: Q[i, i] =

∑
j W[i, j].

The normalized graph Laplacian is then constructed for this
kernel, yielding an anisotropic kernel

P̃ = D̃−1W̃ (17)

where D̃ is a diagonal matrix whose elements are D̃[i, i] =∑
j W̃[i, j]. The spectral decomposition of P̃ yields the set

of eigenvalues {λ̃l} and eigenvectors {φ̃l}, which we assume
to be of unit norm. The eigenvalues of P̃ are all nonnegative
and bounded by one, sorted in decreasing order with λ̃0 =

1. The first eigenvector φ̃0 is a uniform column vector. The
eigenvectors {φ̃l} are discrete approximations of the eigenfunc-
tions of the Laplace–Beltrami operator on the manifold of the
training set.

Now, we can calculate the eigenvectors {ψ̃l} ∈ R
M for the

data set, as an out-of-sample extension of the eigenvectors
{φ̃l} ∈ R

M , M < M

ψ̃l =
1√
λ̃l

Ãφ̃l. (18)

The matrix Ã is given by

Ã = D−1AQ−1 (19)

where D is a diagonal matrix whose elements are

D[i, i] =
∑
j

(AQ−1)[i, j]. (20)

The matrix Ã provides an efficient out-of-sample extension
from the embedding of the training set to the embedding of the
data set, by a weighted mean of the eigenvectors {φ̃l}.

The supervised graph yields a lower dimensional representa-
tion of the image, using the eigenvector entries as new coordi-
nates for each pixel in the image. Using the first d eigenvectors,
excluding the first trivial eigenvector, we embed the M pixels
onto the eigenvectors ψ̃l

Ψ̃d : Zi →
(
ψ̃1(i), ψ̃2(i), . . . , ψ̃d(i)

)
. (21)

IV. TARGET DETECTION

The low-dimensional representation is expected to separate
the target from the background clutter. A construction of the
embedding also provides a detection score. Calculation of the
eigenvector ψ̃l via the affinity matrix Ã shows that each ele-
ment in ψ̃l is proportional to a weighted mean of the elements
of φ̃l, which are the embedding of the training set. Consider a
background patch Zi which is equally distant from all training
patches. The elements of the corresponding row vector Ã[i, :]

are uniform, all equaling 1/M , so that this vector equals φ̃T
0 .

Since the eigenvectors are orthonormal, the embedding of an
ideal background patch is given by

ψ̃l(i) =
1√
λ̃l

Ã[i, :] φ̃l =
1√
λ̃l

φ̃T
0 φ̃l = 0. (22)

Thus, an ideal background patch is embedded at the origin. To
measure how close a patch is to being an ideal background
patch, calculating the distance in the embedding space between
the image patches and the ideal background patch is essentially
calculating the norm of the embedding. Therefore, calculation
of the eigenvectors {ψ̃l}dl=1 via the affinity matrix results in
all background patches being clustered in a d-dimensional ball
around the origin. On the other hand, the patches which contain
a target have high affinity to the patches in the training set to
which they are similar, under the weighted distance. Therefore,
their embedding is meaningful and removed from the origin.

This is demonstrated in Fig. 3. In Fig. 3(b), the first three
coordinates of the embedding are displayed for all patches
extracted from the side-scan sonar image in Fig. 3(a). The
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Fig. 3. (a) Side-scan sonar image containing a sea mine indicated by the red arrow. (b) First three coordinates of the embedding Ψ̃, calculated for the image,
using the training set in Fig. 1. Each data point i is colored according to the embedding norm ‖Ψ̃d(i)‖2. (c) Image in (a) with each pixel colored according to the
embedding norm.

points are colored according to the embedding norm ‖Ψ̃d(i)‖2.
Fig. 3(c) displays the image in Fig. 3(a) with each pixel
colored according to the embedding norm. The target is easily
distinguishable from the background according to this score.
This demonstrates the property that the embedding coordinates
of most of the patches are scattered in a ball around the
origin while the few patches corresponding to the sea mine are
embedded distantly from the origin.

Therefore, calculating the norm of the embedding

∥∥∥Ψ̃d(i)
∥∥∥2 =

d∑
l=1

ψ̃2
l (i) (23)

for every pixel i can be used as a target detection score. The
background patches will have a norm close to zero, whereas
the target will have a meaningful norm. Depending on the
application, the score can be thresholded to produce a binary
map of detection, or the patches with top-ranking scores can be
outputted to be inspected by the user.

It should be noted that, in simple images, the row sum of

the affinity matrix (11), given by S(i) =
∑M

j=1 A[i, j], is a
reasonable indicator of whether a target is present in the image.
Summing the proposed affinity between a given patch and all
training patches could be used for detection. This can be seen
in Fig. 4. The first column displays the original side-scan sonar
images, the second column displays the affinity sum S for each
pixel in the image, and the third column displays the embedding
norm ‖Ψ̃d(i)‖2 for each pixel in the image. For the simple case
of the sea mine in Fig. 4(a), it is easily seen that thresholding S
results in a detection of the sea mine.

However, for more complex images, such as Fig. 4(d), the
affinity in itself does not give a good enough indication of
whether a patch contains a sea mine. In Fig. 4(e), it is difficult
to determine whether a patch containing a sea mine exists,
and if so, which patches contain a sea mine as the S values
have a high variance and, in addition, many patches scattered
throughout the image have a high affinity sum. However, in
Fig. 4(f), the norm of the embedding clearly separates the sea
mine from the background. This demonstrates that the proposed
affinity in itself is insufficient to determine the existence of a sea
mine and the embedding is required to provide a meaningful

representation of the data. In the next section, we show that,
for the embedding to provide a meaningful representation, the
metric used in the graph construction needs to be appropriate to
the application.

V. AFFINITY MEASURE USING PCA-BASED

LOCAL MODEL

We compare the affinity defined using the proposed weighted
distance to the affinity proposed in [23] and [24]. There, the
affinity kernel is defined by means of a linear projection opera-
tor onto local models of the training set. This local data-driven
model for the training set is used to enhance the connection
between nodes that correspond to the same training model.

First, an affinity measure is defined to measure the similarity
between two data points, for example, using a Gaussian kernel

A[i, j] = exp
{
−‖Zi − Zj‖2/ε2euc

}
(24)

where εeuc > 0 is a scale parameter.
As in the affinity proposed in Section II, the local neigh-

borhoods of each training patch are used to define a local
model. Each training patch is represented by its mean (6) and its
tangent space, calculated using PCA. Using the local covariance
matrix for each patch Cj , which characterizes the tangent space
at μj , the first few principal components define a model for each
patch. The local covariance matrix is estimated using the local
neighborhood by

Ĉj =
1

k

∑
Zi∈Nj

(Zi − μ̂j)
T(Zi − μ̂j). (25)

Let {vj,l}Ll=1 be the set of L normalized principal components
of the training patch Zj . A linear projection operator onto the
local PCA model of the Zj is defined by

Pj(Zi) = μ̂j +
L∑

l=1

〈Zi − μ̂j , vj,l〉vj,l. (26)

This projection is used in the graph construction by defining
a pairwise metric between the image patches and the training
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Fig. 4. (a) and (d) Side-scan-sonar image containing a sea mine indicated by the red arrow. (b) and (e) Each pixel associated with the sum of the affinity between
its patch and the training patches Si. (c) and (f) Each pixel associated with the norm of the low-dimensional embedding ‖Ψ̃d(i)‖2. For (top row) a simple image,
both measures are suitable for separating the target from the background. For (bottom row) a more complex image, the affinity in itself is insufficient to separate
the target from the background, yet the low-dimensional embedding provides meaningful representation.

patches, based on the linear projection onto the local models.
The metric is given by

a2Pj
(Zi, Zj)=‖Pj(Zi)−μ̂j‖2=

L∑
l=1

(〈Zi−μ̂j , vj,l〉)2 (27)

where we used the fact that the principal components are
orthonormal.

Following [23] and [24], a nonsymmetric kernel is defined
between the training set and all patches of a test image as

A[i, j] = exp

{
−‖Zi − Zj‖2

ε2euc
− ‖Pj(Zi)− μ̂j‖2

ε2PCA

}
(28)

where εeuc and εPCA are scale parameters, which we set based
on the training set. The scale εeuc was set as the mean of
the Euclidean distances between each patch and its 32 closest
neighbors. Similarly, εPCA was set as the mean of the projection
distances between each patch and its 32 closest neighbors.
This enabled an automatic method to set the scale parameters.
Given the PCA-based affinity, the graph-based embedding and
detection are carried out as explained in Sections III and IV,
respectively. In the following section, we discuss the advantages
and disadvantages of both this approach and our approach. In
Section VII-B, both methods are applied to the real-world task
of sea-mine detection in side-scan sonar images.

VI. DISCUSSION

In related work, two metrics have been proposed in con-
structing the affinity between data points in supervised graph-

based frameworks. The first, reviewed in the previous section,
proposes constructing a projection-based metric between the
training and test sets [23], [24]. In this approach, the princi-
pal components are calculated in local neighborhoods of the
training sets. The metric consists of projecting the difference
between the test patch and the empirical mean of the training
patch onto the principal components. Effectively, this means
weighting the pixel differences Z(x)− μ̂(x) by the values of
the entries of the principal components {vl}Ll=1. Yet, in the
application of target detection, the principal components of a
given local neighborhood in the training set correspond to the
factors which vary the most in the neighborhood. These tend
to be the outline of the target or areas in the background, both
of which are less important in terms of signal content than the
main body of the target. Thus, instead of penalizing differences
due to dissimilarity in the central regions of the target, this
metric penalizes for differences due to perturbations between
the model and the test patch.

This is shown in Fig. 5, which displays the first two principal
components v1 and v2 of the training patch in Fig. 2(c). Both
principal components correspond to perturbations in the orien-
tation and shape of the target. On the other hand, the entries of
the principal components corresponding to pixels on the central
parts of the highlight and shadow equal zero. Thus, differences
in the important part of the signal, the central regions of the
target, will be weighted by zero, whereas differences on the
outlines will be enhanced.

The use of the projection operator is appropriate for com-
paring distances within the same model. It is also useful in
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Fig. 5. First two principal components calculated for the patch shown in
Fig. 2(c) based on its local neighborhood. The dominant values in the principal
components correspond to the perturbations in the orientation and shape of the
target. The pixels corresponding to the central parts of the target equal zero.

canceling the orthogonal component to a training patch when
comparing between patches, as in the problem of intersecting
textures described in [24]. However, for the purpose of target
detection, we want to determine whether a given patch belongs
to the training model. Yet, this projection enhances the dif-
ference between a test patch and a training patch due to the
variability of the appearance of the model. Consider a test patch
which belongs to the model described by the jth training patch,
for example, Zi = μ̂j + vj,1. Then, a2Pj

(Zi) = 1, which results
in lowering the affinity between this patch and the training
patch, and that is the opposite of our purpose. For patches which
do not belong to the model, such as background patches, the
result of the projection is arbitrary, so that different background
patches will receive a range of values in the projection distance,
regardless of their true association with the model. Thus, this
operator is also not useful in separating the background from
the target. On the other hand, our proposed affinity represses
the difference between the patches, arising from the variability
in the appearance of the test patch as compared to μ̂j . This is
demonstrated in our results in Section VII-B.

A second metric used in graph-based processing is a
Mahalanobis-based metric [27], [28], [31]

a2Cj
(Z,Zj) = (Z − μ̂j)

TC−1
j (Z − μ̂j) (29)

where the covariance matrix Cj is calculated using the local
neighborhood of the training point Zj as in (25). The covari-
ance matrix has low rank, and therefore, the inverse is typically
calculated via the principal components

C−1
j =

L∑
l=1

γ−1
j,l vj,lv

T
j,l (30)

where γj,l denotes the eigenvalues of the covariance matrix.
Thus, in this metric, as opposed to the PCA-based metric,
the principal components are weighted inversely so that the
dominant principal components have the lowest weight. This
counteracts the disadvantage of PCA as the components that
account for the most variability in the covariance matrix are as-
signed low weights, essentially repressing them. This is similar
to our method, where the pixels with the highest variance are
assigned the lowest weights. However, our main requirement
was to assign high weights to the pixels that have low variance
or do not vary at all. The disadvantage of using the Mahalanobis

metric is that the factors representing very low variability in
the data are not evident in the principal components. There
is essentially no way to distinguish these components which
are meaningful from the components which are due to the
covariance matrix having low rank. This was the motivation
for the metric that we proposed, which was inspired by the
Mahalanobis metric.

To summarize, when applying manifold learning in a super-
vised framework, the choice of metric should be appropriate
to the application and expected measurements. One needs to
decide, for example, whether it is important to repress the
tangent space of the training points or to allow for perturbations
in the data in comparison to the training set.

In this paper, we have focused on local models for metric
learning, whose common property is to construct a metric
which is invariant to certain properties of the target in the
training set. We remark that there are other transform-based
methods that construct invariants, such as the scale-invariant
feature transform [32] and histogram of oriented gradients [33].
The recently introduced scattering transform, computed with a
deep convolutional network [34], provides a stable translation-
invariant representation and has achieved state-of-the-art results
in texture classification [35], [36]. These transforms provide
predefined invariance to certain properties such as dilation,
orientation, changes in illumination, and translations. Our ap-
proach, on the other hand, builds a data-adaptive invariant
metric, where the invariance implicitly arises by the notion of
similarity within the training set. Regarding target detection,
this enables one to suppress the background pixels when com-
paring patches and compare only the relevant signal content.
On the other hand, a general predefined invariant transform
will incorporate the background pixels into its feature vector
and not weight them differently than the target pixels. In the
specific case of sea mines in side-scan sonar, it should be noted
that orientation-invariant features are problematic. Only the
highlight appears at different orientations, whereas due to the
acquisition process, the accompanying shadow is always along
the range direction, regardless of the orientation angle of the sea
mine. In light of the results of our research, an interesting future
direction is to explore the scattering transform and features
learned by convolutional networks for the purpose of sea-mine
detection.

VII. EXPERIMENTAL RESULTS

A. Toy Problem

We demonstrate our method on the following toy prob-
lem. Consider a family of exponential 1-D signals: f(x) =
exp{−(x− b)2/2a2}. Two parameters control the signal, the
location of its center of mass b and its scale a; thus, θ =
(a b)T. The signal is measured by 20 sensors located at x =
{1, 2, . . . , 20}, and each sensor has an independent noise with a
standard deviation that is equal to 0.001. Such a model is similar
to the one presented in [37] for a biological target acquired by a
1-D sensor array. We design two invariant distances by control-
ling the local neighborhood of the training measurements. An
analysis of these distances is provided in Appendix III.
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Fig. 6. Comparison of (left) the scale-invariant distance, (center) the shift-invariant distance, and (right) the Euclidean distance for perturbations in (green
squares) scale and (blue circles) shift. The figure plots the distance between the training measurement and test measurements, where (green squares) we set the
shift and vary the scale (Δb = 0, Δa = Δ > 0) or (blue circles) set the scale and vary the shifts (Δa = 0, Δb = Δ > 0).

We examine a training measurement with b = 10 and a =
1.2, and we design two invariant distances for this training
measurement. The first is a scale-invariant distance. We set
b = 10 and take ten other measurements with various scale
parameters a ∈ [0.58, 2.45]. Calculating the model following
(3) and (6) and plugging them into (12) yield a scale-invariant
distance. The second distance that we design is a shift-invariant
distance. We set a = 1.2 and take ten other measurements with
various scale parameters b ∈ [9.3, 10.8]. This yields a shift-
invariant distance.

Fig. 6 displays the distances calculated from the training
measurement to two sets of test measurements. In the first
set, we set the shift parameter Δb = 0 and vary the scale
Δa = Δ > 0 (green squares). In the second set, we set the
scale parameter Δa = 0 and vary the shift parameter Δb =
Δ > 0 (blue circles). In Fig. 6 (left), the distances are cal-
culated using the scale-invariant metric. Measurements corre-
sponding to differences in the shift parameter have a greater
distance from the training measurement than measurements
corresponding to differences in the scale parameter. Thus, this
distance is indeed scale invariant, penalizing differences in
shifts while repressing differences in scale. In Fig. 6 (center),
the distances are calculated using the shift-invariant metric.
Here, we see the inverse trend: Measurements corresponding to
differences in the scale parameter have a greater distance from
the training measurement than measurements corresponding
to differences in the shift parameter. Thus, we have indeed
obtained a shift-invariant distance, as intended. In Fig. 6 (right),
the distances are calculated using the Euclidean distance be-
tween measurements. Here, the sensitivity to differences in
the parameters is similar, with differences in scale having a
slightly larger impact on the distance. This follows the result
that we obtained in our analytical derivation in Appendix III:
The Euclidean distance is more similar to the shift-invariant
distance.

B. Side-Scan Sonar

We demonstrate the proposed method for sea-mine detection
in real side-scan sonar images, achieving a high detection rate.
The sea mines in the images are the required targets, and the

reflections from the seabed are considered normal background
clutter.

We evaluated our method on a set of 44 side-scan sonar
images with sea mines, where we cropped the image to size
200 (range) × 200 (cross-range) cells with a region containing
a sea mine. The ratio of a cell’s range dimension to cross-range
dimension is 15:15 (cm), and the images were encoded in 8-b
gray scale. Typical dimensions of a sea mine in these images
are approximately 15 pixels by 3 pixels for the highlight, and
the length of the shadow in the range direction is roughly
about 15 pixels. These images were collected by the Naval
Surface Warfare Center Coastal System Station (Panama City,
FL, USA) and exhibit drastic changes in background clutter.

The size of the patch N in the algorithm should be de-
termined by prior knowledge on the expected typical size of
the target and the sonar resolution. The patch size should be
such that it covers a significant portion of the target but does
not necessarily have to contain the entire target. Based on
the expected size of the target in our experiments, we used
patches of size 10 × 10. Using small patches of size 5 × 5
did not properly capture the joint “signature” of the highlight
and shadow, resulting in a high FA rate. Using a larger patch
size results in longer running time.

The images that we used for our training set are shown in
Fig. 1. Three images were used, and two of the images were
flipped vertically and also added to the set, to gain more vari-
ation in the possible orientations of the sea mine in the image.
More variation could be achieved by adding more images, if
available. The training examples mostly differ in orientation
and size of the shadow. Note that the size of the training set
should be application dependent, as it depends on the expected
variability of the appearance of the target and the parameters
one wants to be invariant to. The size of the sea-mine images
was roughly 25 × 25 pixels. All overlapping patches were
extracted from these images; however, not all patches contain
a significant portion of the sea mine. The patches extracted
from the borders of the images, for example, contain mostly
background pixels. Thus, the relevant signal content in such
patches is low. After discarding the irrelevant patches, we
obtained a training set {Zi} of M = 277 patches of size
10 × 10 pixels.
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Fig. 7. TP percentage versus FA rate. (Blue, “circle”) Proposed method.
(Green, “diamond”) Local PCA. (Red, “square”) Euclidean-distance-based
affinity. (Purple, “x”) Anomaly detection.

The number of overlapping patches for each test image is
M = 36 481. A great advantage of the supervised graph is that
the eigenfunctions for the test image {ψ̃j} can be efficiently
calculated using the eigenfunctions {φ̃j} obtained using the
affinity between the training and test sets, averting the need
to perform an eigendecomposition of an M ×M matrix. The
dimension for the low-dimensional embedding was set to d =
9. We set this value empirically based on typical values of the
spectral gap in the given images.

We compared the performance of the proposed method with
those of three competing approaches:

1) the local PCA-based method described in Section V;
2) a graph-based approach in which the affinity kernel

between patches is based on the Euclidean distance as
in (24);

3) an anomaly detection algorithm presented in a previous
work [38], [39].

We calculate a receiver operating characteristic (ROC) curve
for each method to analyze their performances. Detections
are found by assigning each pixel the norm of its embedding
coordinates (23) and spatially smoothing the detection score
image to repress small detections which are due to noise, using
a Gaussian filter of size 3 × 3 and standard deviation of 0.5.
The detection score is then thresholded, resulting in a binary
image. A detection on the sea mine is considered to be a true
positive (TP) for a given image, and any other detections are
FAs. Thus, there may be more than one FA per image, but only
one TP. Each threshold gives us a (TP, FA) pair plotted in the
ROC curve. For each method, we plot the percentage of TPs per
number of FAs.

Results are shown in the graph in Fig. 7. The graph shows
that the proposed approach (blue-circle plot) is superior to
calculating the affinity using the Euclidean distance between
patches (red-square plot). This demonstrates that the affinity
defined by our weighted distance is better at comparing the test
and training sets and separating the target from the background.
In addition, our method is superior to the local PCA method
(green-diamond plot) described in Section V, particularly for

a low FA rate. Comparing the Euclidean distance affinity to
the local PCA method, it is shown that adding the projection
operator to the affinity actually hinders the performance of the
algorithm when applied to target detection. This result affirms
our analysis in Section V that the projection operator used in
the PCA method enhances the difference between a test patch
and a training patch due to the variability of the appearance of
the model, effectively lowering the affinity between them.

In comparison to the anomaly detection algorithm (purple-
x plot), it shows better results for the number of FAs greater
than three, and then, it gives slightly poorer results. For zero
FAs, the difference is 2% in favor of the anomaly detection
algorithm. Overall, the algorithms are very similar in their
performances, with a difference of at most 7%. Note that the
results of a supervised method can be improved by extending
the training set, as the set that we used was rather limited (based
on five images). In addition, the advantage of a supervised
approach is that the detections found by the algorithm will
necessarily be similar to the required target. On the other hand,
the anomaly detection approach, which is unsupervised, will
output anomalous objects which may have no resemblance to
the required target.

The computational complexity of the detection process is as
follows. Calculation of the matrix Ã (19) requires O(MMN +

M
2
M) operations. The complexity of the eigendecomposition

of the matrix P̃ (13) is O(M
3
) but, in practice, depends on

the algorithm used and the structure of the matrix and its
sparsity. The complexity of the out-of-sample extension used
to calculate the embedding Ψ̃d (21) is O(MMd) operations.
Calculation of the detection score requires O(Md) operations.
Thus, the overall computational complexity of the detection
process is O(MM(N +M + d) +M

3
).

We compared the average running times of the four al-
gorithms: our metric—13.93 s/image, Euclidean affinity—
7.77 s/image, PCA-based affinity—15.50 s/image, and anomaly
detection—33.88 s/image. The four algorithms have been im-
plemented in Matlab, and the numerical experiments have been
carried out on a Lenovo ThinkCentre M series desktop, with
an Intel Core i5-3570 QuadCore CPU 3.40 GHz and 4.0-GB
RAM. It should be noted that these are Matlab implemen-
tations and have not been optimized for running time. The
target detection approach is computationally more efficient than
the anomaly detection approach for several reasons. First, the
anomaly detection algorithm is a multiscale algorithm which
performs an embedding and detection process for several scales
of the image. The supervised approach presented here uses a
single scale. Second, the calculation of the embedding is faster
in the supervised approach. The anomaly detection algorithm
employs an out-of-sample extension method [40] to calculate
the embedding for the entire image. This method is compu-
tationally more intensive than the extension from the training
set to the image in the proposed approach, which is based on
a simple matrix multiplication (18). Third, calculation of the
anomaly detection score requires finding nearest neighbors in
the embedding coordinates for each pixel, whereas the target
detection score is a norm calculation, which is a much simpler
operation.
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Fig. 8. Results of target detection applied to eight side-scan sonar images containing sea mines. Thresholding the target detection score by 0.76 gives the
detections indicated by the circles. All sea mines were detected successfully, indicated by the white circles, and two FAs are indicated by red circles.

Fig. 9. Detection score corresponding to the images displayed in Fig. 8. Each pixel is colored according to the embedding norm.

Note that, typically in the detection stage of sea-mine hunt-
ing, a TP is any MLO, whether it is a mine or not, and FAs
are noise or seabed scattering [13]. Here, we treat only the
sea mines as TPs, and all other detections are FAs, as the
purpose of this experiment is to evaluate the performance of
the three supervised metrics and the unsupervised method in
their ability to extract the target from the cluttered background.
We intend to examine the potential of our approach to produce a
smaller number of MLOs for classification than other detection
methods, which are not data adaptive. Since the application of
our method should be complemented by an appropriate classi-
fication algorithm, we note that the new embedding provides
a data-driven invariant set of features based on the intrinsic
parameters of the data, which may prove to be useful in the
classification procedure.

Fig. 8 shows eight side-scan sonar images with sea mines.
Each image contains one sea mine on a highly cluttered sea-

bottom background. The background patterns are diverse. Some
appear as noise [Fig. 8(c)–(e)], whereas others contain rel-
atively slow changing backgrounds [Fig. 8(a)]. Images with
a rapidly changing background [Fig. 8(b), (d), (h), and (j)]
or images that contain many shadows from seabed reflections
[Fig. 8(f), (g), and (i)] are particularly difficult. Also, the size of
the sea mine and its shadow differ from one image to another.
For example, in Fig. 8(a), the sea mine is quite large, whereas
in Fig. 8(e) and (f), the sea mine is small. The orientation of the
sea mine is also subject to variation [Fig. 8(b)–(d)].

Fig. 9 displays the detection score of each of the eight
side-scan sonar images given in Fig. 8. The sea mines in all
images receive a high detection score. There are areas in the
background which have a nonnegligible score and can therefore
be detected if the threshold is too low.

The detection results indicated by a white circle in Fig. 8 are
achieved by applying a threshold of 0.76 to the detection score
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in Fig. 9. This threshold corresponds to 93% percent TP with a
total of three FAs. In Fig. 9(i) and (j), two FAs are indicated by a
red circle. Although using a limited training set of five images,
a positive detection of the sea mines is achieved in all displayed
images. The algorithm was able to detect the sea mine even
when there was a large difference in the size and orientation
of the target compared to the training set and under variable
background clutter.

VIII. CONCLUSION

We have introduced a new metric for constructing local
models for supervised target detection. The proposed method
enables the user to design a local metric between a training
set of target patches and patches from a test image. We show
that this metric has an intuitive meaning in the patch space:
Determining a weight vector for the pixels in the patch enables
one to emphasize certain similarities to the constructed model
while also allowing for perturbations in its appearance. We
also show that, by controlling the notion of locality within
the training set, this procedure creates invariant metrics to
certain implicit factors in the parameter space, such as the
orientation of the target and its background. Thus, this metric
enables correct target detection despite variations in the target
appearance.

The metric is used to define an affinity kernel between the
given training set and the test set. A graph-based framework
based on this kernel is used for dimensionality reduction. We
have also proposed a detection score in the reduced dimen-
sionality based on the properties of the affinity kernel. We
demonstrate that both the newly proposed metric and the graph-
based embedding are required for successful target detection.
Experimental results for MLO detection in a set of real side-
scan sonar images demonstrated the successful performance
of the algorithm, in comparison to competing methods. The
results show the capability of the proposed model and algo-
rithm to cope with a variety of targets and background clutter
patterns.

APPENDIX I
LOCAL STATISTICS IN THE PARAMETER SPACE

The measurement Z at a sensor x is a scalar function of the
parameter vector θ. Ignoring the measurement noise η

Z(x) = f(x;θ). (31)

Writing a neighboring point using the Taylor expansion

Z ′(x) = f(x;θ′)

= f(x;θ)+∇θf
T(x;θ)(θ′−θ)+O

(
‖θ′−θ‖2

)
(32)

yields that the Euclidean distance between the two measure-
ments, calculated over all sensors, is

(Z ′ − Z)2 =
∑
x

(θ′ − θ)T∇θf(x;θ)

× ∇θf
T(x;θ)(θ′ − θ) +O(‖θ′ − θ‖3). (33)

The empirical mean of Z(x) in (6) can be written in terms of
m̂θ, the empirical mean of θ

μ̂Z(x)=
1

k

∑
Z′∈NZ

Z ′(x)

= f(x;θ)+
1

k

∑(
∇θf

T(x;θ)(θ′−θ)+O(‖θ′−θ‖2)
)

= f(x;θ) +∇θf
T(x;θ)(m̂θ − θ) +O(‖θ′ − θ‖2)

≈ f(x; m̂θ). (34)

The empirical variance of Z(x) in (3) can be written in terms
of the empirical covariance of θ

σ̂Z(x)
2 =

1

k

∑
Z′∈NZ

(Z ′(x)− μ̂Z(x))
2

=∇θf
T(x;θ)

1

k

∑
(θ′ − m̂θ)(θ

′ − m̂θ)
T∇θf(x;θ)

=∇θf
T(x;θ)Cov(θ)∇θf(x;θ) (35)

where Cov(θ) is the empirical covariance of θ in the neigh-
borhood of Z. Assuming that the parameters are independent,
this matrix is diagonal with the empirical variances on the
diagonal. We denote the diagonal as the vector σ2

θ, i.e., a vector
containing the variances of each parameter θ. Therefore, (35)
can be rewritten as

σ̂2
Z(x) = ∇θf

T(x;θ)diag(σ2
θ)∇θf(x;θ). (36)

Finally, the distance in (11) can be written in terms of the
parameter vector

a2(Z ′, Z) =
∑
x

(
∇θf

T(x;θ)(Δθ)
)2

∇θfT(x;θ)diag(σ2
θ)∇θf(x;θ)

(37)

where Δθ = θ′ − m̂θ . Note that controlling the local neigh-
borhood of a training point effectively controls the empirical
variance of the parameter vector, which, in turn, enables us to
create invariants to certain perturbations of these parameters.
To create an invariance to a certain parameter, the neighbor-
hood should be determined such that the variance of all other
parameters approaches zero, and the only variability is in the
required parameter. We demonstrate this for 1-D functions in
Appendix III.

APPENDIX II
PROOF OF (14)

In (13), we have a discrete sum over all points in the test set

W[i, j] =
M∑
l=1

exp
{
−a2(Zl, Zi)

}
exp

{
−a2(Zl, Zj)

}
(38)

where we omit the parameter ε for compactness sake. For a
large enough test set, summing over all points is equivalent to
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summing over all possible values of Z. Therefore, this sum can
be replaced by an integral over all possible values of Z ∈ R

N

W (Zi,Zj)

=

∫
RN

exp

{
−

N∑
x=1

(Z(x)− μi(x))
2

σ2
i (x)

+

(
Z(x)− μj(x)

)2
σ2
j (x)

}
dZ.

(39)

Using the separability of the integral and the exponential func-
tions, this can be rewritten as a product of 1-D integrals

W (Zi,Zj)

=

N∏
x=1

∫
R

exp

{
− (Z(x)− μi(x))

2

σ2
i (x)

−
(
Z(x)− μj(x)

)2
σ2
j (x)

}
dZ.

(40)

For compactness sake, we neglect the notation of pixel x in the
calculation of the 1-D integral.

The integral can be rewritten as a convolution of Gaussians
using the change of variables Ẑ = Z − μi

(g(σi) ∗ g(σj)) (μi − μj)

=

∫
R

exp

{
− Ẑ2

σ2
i

}
exp

⎧⎪⎨⎪⎩−

(
Ẑ − (μj − μi)

)2
σ2
j

⎫⎪⎬⎪⎭ dZ (41)

where g(σ) = exp{−x2/σ2}. Using the convolution theorem
and the Fourier transform of the Gaussian function

F {g(σi) ∗ g(σj)} = πσiσj exp
{
−π2k2

(
σ2
i + σ2

j

)}
. (42)

Applying the inverse transform yields

(g(σi) ∗ g(σj)) (μi − μj)

=

√
πσ2

iσ
2
j

σ2
i + σ2

j

exp
{
−(μi − μj)

2/
(
σ2
i + σ2

j

)}
. (43)

Plugging this back into (40) yields

W (Zi,Zj) ∝ exp

{
−

N∑
x=1

(
μi(x)− μj(x)

)2(
σ2
i (x) + σ2

j (x)
) } (44)

which is the symmetric matrix given in (14).

APPENDIX III
DESIGNING SHIFT- AND SCALE-INVARIANT DISTANCES

Consider a family of 1-D functions that are given by dilations
and shifts of one another

Z(x) = f(x;θ) = f

(
x− b

a

)
(45)

so the parameter vector is θ = (a b)T. A first-order Taylor
expansion of a neighbor point as in (32), using the chain rule,
yields

Z ′(x) = f(x;θ) +
df

du

∣∣∣∣
u= x−b

a

∇θu
TΔθ

= f(x; a, b)− df

du

∣∣∣∣
u= x−b

a

(
x− b

a2
Δa+

1

a
Δb

)
. (46)

Plugging this into (37) yields

a2(Z ′, Z) =

b+L∫
b−L

(
df
du

∣∣∣
u= x−b

a

(
x−b
a2 Δa+ 1

aΔb
))2

(
df
du

∣∣∣
u= x−b

a

)2 ((
x−b
a2

)2
σ2
a +

(
1
a

)2
σ2
b

)dx

=

L∫
−L

(xΔa+ aΔb)2

x2σ2
a + a2σ2

b

dx. (47)

We replace the discrete sum with an integral in the continuous
domain and integrate over a symmetric interval of length 2L
surrounding the shift parameter b. We compare this distance to
the Euclidean distance in (33)

‖Z ′ − Z‖2 =

L∫
−L

(
df

du

∣∣∣∣
u= x

a

)2(
x

a2
Δa+

1

a
Δb

)2

dx (48)

where, again, we used a change of variables x = x− b in
evaluating the integral. Note that the proposed distance (47)
calculated for two close measurement points does not depend
on the mapping f between the parameter vector and the mea-
surements Z and Z ′. Thus, calculating the distance between
two measurements is essentially a calculation in the parameter
space, i.e., this distance depends only on the unknown parame-
ters. This holds for any family of 1-D functions which represent
a change of variables. The Euclidean distance, on the other
hand, does depend on the mapping f .

To obtain a scale-invariant distance a, we set σb = 0

a2(Z ′, Z) =
1

σ2
a

L∫
−L

(
(Δa)2 +

(aΔb)2

x2

)
dx

=
2L

σ2
a

(Δa)2 +
aΔb2

σ2
a

L∫
−L

1

x2
dx. (49)

The second term is an integral which approaches infinity.
Therefore, for Δb = 0, |Δa| > 0, we have finite distances,
whereas a slight perturbation in Δb yields infinite distances.
Thus, we have achieved an invariance to dilations Δa in com-
parison to shifts Δb.
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To obtain a shift-invariant distance, we set σa = 0

a2(Z ′, Z) =
1

σ2
b

L∫
−L

(
x
Δa

a
+Δb

)2

dx

=
1

σ2
b

(
2L3

3a2
(Δa)2 + 2L(Δb)2

)
=

2L3

σ2
b

(
(Δa)2

3a2
+

(Δb)2

L2

)
(50)

where the cross-terms are canceled out due to the symmetry of
the integral interval. This result shows that, if the interval of
the integral 2L follows 2L >

√
(12)a, then a perturbation in

dilations Δa = Δ causes a larger increase in distance than an
identical perturbation in shifts Δb = Δ providing a certain shift
invariance

a2(Z ′, Z)

∣∣∣∣
Δa=Δ>0

Δb=0

∝ L2

a2
a2(Z ′, Z)

∣∣∣∣
Δa=0

Δb=Δ>0

. (51)

If the variance of the shift parameter in the local neighborhood
of the measurement Z, σb → ∞, then a2(Z ′, Z) → 0. This
means that this distance is meaningful for a reasonable limited
variance, which depends on the integral interval. Comparing
this result to the scale-invariant distance, the shift invari-
ance achieved via this metric is less efficient than the scale
invariance.

Compared to the Euclidean distance, we can see that, if f(u)
is a polynomial in u, the ratio between distances due to a
perturbation in dilations to distances due to a perturbation in
shifts is proportional to L2/a2, as in the shift-invariant case.
In such cases, the distances are similar in terms of their shift
invariance, and other methods, specifically designed for shift
invariance, might achieve better performance. In the toy exam-
ple presented in Section VII-A, f(u) is an exponential function,
and the designed shift-invariant distance has meaningful shift
invariance compared to the Euclidean distance.
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