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Abstract—In this paper, we propose a convolutive transfer func-
tion generalized sidelobe canceler (CTF-GSC), which is an adap-
tive beamformer designed for multichannel speech enhancement in
reverberant environments. Using a complete system representation
in the short-time Fourier transform (STFT) domain, we formulate
a constrained minimization problem of total output noise power
subject to the constraint that the signal component of the output
is the desired signal, up to some prespecified filter. Then, we em-
ploy the general sidelobe canceler (GSC) structure to transform
the problem into an equivalent unconstrained form by decoupling
the constraint and the minimization. The CTF-GSC is obtained
by applying a convolutive transfer function (CTF) approximation
on the GSC scheme, which is a more accurate and a less restric-
tive than a multiplicative transfer function (MTF) approximation.
Experimental results demonstrate that the proposed beamformer
outperforms the transfer function GSC (TF-GSC) in reverberant
environments and achieves both improved noise reduction and re-
duced speech distortion.

Index Terms—Adaptive signal processing, array signal pro-
cessing, beamforming, generalized sidelobe canceler (GSC),
linearly constrained minimum variance (LCMV), microphone
arrays, minimum variance distortionless response (MVDR), noise
reduction, speech enhancement.

I. INTRODUCTION

T HE problem of speech enhancement and noise reduction
using a sensor array has been an active area of research for

many years. In reverberant environments, the signal acquired by
the microphone array is distorted by the room impulse response
and usually contaminated by noise. Beamforming techniques,
which aim at recovering the desired source signal from the re-
verberant and noisy output of the sensors, have attracted most
of the research efforts. The basic idea of such beamformers is
to incorporate spatial and spectral information in order to form
a beam and point it to a desired direction. As a result, signals
from this look direction are reinforced, while signals from all the
other directions are attenuated. Several criteria can be applied
in the design of a beamformer, among them the most common
are the linearly constrained minimum variance (LCMV), and
the minimum variance distortionless response (MVDR), where
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the latter can be considered as a special case of the former [1]
(MVDR beamformer is an LCMV beamformer with just a single
look direction constraint).

Frost proposed an MVDR adaptive beamformer [2], which
reduces the background noise by applying a constrained mini-
mization on the total output power under a look direction con-
straint. Griffiths and Jim [3] introduced the generalized side-
lobe canceler (GSC), which transforms the MVDR beamformer
into an unconstrained form by decoupling the constraint and the
output minimization. Therefore, the GSC beamformer is equiv-
alent to the MVDR beamformer [4], but it is characterized by
two advantages. First, the unconstrained algorithm is computa-
tionally more efficient than the constrained algorithm. Second,
it can be implemented using a standard normalized least mean
square (NLMS) adaptive scheme [5]. The GSC structure com-
prises of three blocks. The first block is a fixed beamformer,
which is designed to satisfy the constraint. The second block
is a blocking matrix, which blocks the desired signal and pro-
duces noise-only reference signals. The third block is an uncon-
strained adaptive algorithm (e.g., the least mean square (LMS)
algorithm) that aims at canceling the residual noise at the fixed
beamformer output (the first block) given the noise-only refer-
ence signals at the output of the blocking matrix (the second
block).

Both of the above beamformers are designed to steer the beam
towards a single direction of the desired source location, while
minimizing the response in all other directions. The main draw-
back is that a single direction of arrival cannot be determined
in reverberant environments since reflections from different di-
rections are also captured by the sensor array. Thus, in order
to handle reverberant environments, beamformers often require
estimates of the acoustic impulse response (AIR) of the de-
sired source in order to model the propagation of the speech
signal more accurately than simply as delay and attenuation. In
practice, the desired source AIRs are unknown and difficult to
acquire. Thus, suboptimal solutions, aiming at noise reduction
rather than estimation of the desired source signal, were devel-
oped using estimates of the relative transfer functions (RTFs),
which represent the coupling between pairs of sensors with re-
spect to the desired source [6]–[10]. Among these solutions is
the time domain MVDR beamforming technique, recently pro-
posed by Chen et al. [10]. Theoretically, this approach yields
an optimal solution for the problem at hand. In practice, due
to computational complexity considerations, the RTFs are mod-
eled as short filters, while RTFs in typical reverberant rooms are
long. This degrades the noise reduction and increases the speech
distortion.

Gannot et al. [6] have proposed a transfer function GSC (TF-
GSC), which exploits the RTFs in the time–frequency domain.
The TF-GSC is an efficient solution, with low computational
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requirements, that achieves improved enhancement of multi-
channel noisy speech signals compared to the original GSC. One
of the main challenges in this approach is the RTF representa-
tion and estimation, since the duration of the relative impulse re-
sponse in reverberant environments may reach several thousand
taps, as previously noted. In order to deal with this challenge,
the TF-GSC method is based on a multiplicative transfer func-
tion (MTF) approximation [11], which is a common approach
in time–frequency domain solutions. The MTF approximation
enables to replace the linear convolution in the time domain
with a scalar multiplication in each subband in the short-time
Fourier transform (STFT) domain.1 Clearly, this approximation
becomes more accurate when the length of the time frame in-
creases, relative to the length of the impulse response. How-
ever, long time frames may increase the estimation variance,
increase the computational complexity and latency and restrict
the ability to track temporal changes in the RTF [11]. Hence,
in practice, short frames are used resulting in inaccurate repre-
sentation of the RTF in reverberant environments. The TF-GSC
scheme, which is based on inaccurate RTF representation im-
posed by the MTF approximation, does not meet the MVDR
criterion, since both the power minimization and the constraint
of the TF-GSC are formed inaccurately, resulting in degraded
performance, especially in highly reverberant environments. It
is worthwhile noting that several studies avoid this problem
of RTF representation in signal cancellation methods. For ex-
ample, in [12] the authors proposed a three-block structure sim-
ilar to the GSC, where the blocking matrix is modified to op-
erate adaptively, circumventing an explicit use of the RTF. A
comprehensive comparison between these different methods for
addressing the leakage problem is presented in [13].

Recently, we introduced an RTF identification method that
relies on a convolutive transfer function (CTF) approximation
in the STFT domain [14]. The CTF approximation enables to
independently adjust the length of the analysis window and the
lengths of filters in subbands, yielding advantageous RTF iden-
tification method compared to that which relies on the MTF ap-
proximation [15]. The representation of long responses using
short time frames has major advantages. On the one hand, in
reverberant environments the RTF convey large amount of re-
verberations, thus representing the RTF as a long filter is more
suitable. On the other hand, since the input signal used for the
RTF identification is of finite length to enable tracking of time
variations, using short time frames increases the number of ob-
servation in each subband, which may improve the estimation
[16]. Furthermore, when identifying the RTF [14], [15], power
spectral density (PSD) terms of the speech signal in each time
frame are used. Thus, we implicitly assume that the speech is
stationary in each time frame. Clearly, this assumption becomes
more accurate and the speech signal is better represented as the
time frames become shorter. We also point out that by using
longer time frames or longer subband filters, we pay with higher
latency and computationally less efficient processing. For fur-
ther details regarding system representation and identification
under the MTF and CTF models and for an analysis of the in-

1Zero padding of the STFT analysis window is required in order to avoid
circular convolution resulting from the scalar multiplication, obtaining larger
frequency resolution than the length of each time frame. Alternatively, one can
consider such an analysis window shape with values close to zero at its right
side to create equivalent effect.

fluence of time frame length, we refer the readers to [11] and
[16].

We focus our work on the commonly used STFT represen-
tation of signals and linear convolutions in the time–frequency
domain [17]. This particular choice was encouraged by recent
studies on system representation in the STFT domain [11],
[16]. However, alternative transformations and filter-banks
can be considered for representing a linear convolution in the
time–frequency domain [18], and the presented solution can
easily be adjusted to support them. Among these schemes, the
block partitioned convolution [19] is of particular interest since
it takes similar shape and enables the same desired property
as the CTF approximation: to decouple the length of the time
frame (or the frequency resolution) and the length of the con-
volved filter. The block partitioned convolution implies that the
MTF approximation is employed in some block frequency-do-
main representation, while the CTF model is derived by taking
the band-to-band filter of the complete linear convolution
representation in the STFT domain.

In this paper, we propose a convolutive TF-GSC, which
can be utilized in reverberant environments. Using a com-
plete system representation in the STFT domain without any
approximation [16], [20], [21], we formulate a constrained
minimization problem [22], and employ the TF-GSC structure
to transform the problem into an equivalent unconstrained
form. The minimization and constraint are decoupled into two
parallel processing branches, by uniquely decomposing the
linear space into a speech component subspace and a noise
component subspace in the STFT domain. We present explicit
expressions for building each of the three GSC building blocks,
using only the RTFs between the microphones with respect to
the speech source.

Implementing the proposed GSC scheme under a complete
system representation in the STFT domain is inefficient due to
the high computational complexity requirements of the model.
Thus, we apply approximations in order to obtain practical solu-
tions. We show that by applying the MTF approximation on the
GSC general structure in the STFT domain, the building blocks
terms are reduced exactly to the building blocks of the TF-GSC.
Hence, we get a twofold result. First, we prove that the TF-GSC,
which was developed entirely under the MTF model, is equiva-
lent to the MVDR beamformer represented in the STFT domain
under the MTF approach. Second, the proposed framework pro-
vides tools to evaluate the inaccuracy involved in applying such
an approximation.

We present a practical solution by applying the CTF approxi-
mation on the GSC complete structure. The CTF approximation
enables representation of long impulse responses using short
time frames, and thus, it does not suffer from the MTF model
limitations and becomes especially advantageous in reverberant
environments. By applying the CTF approximation on the ex-
plicit expressions of the GSC building blocks, we obtain an ef-
ficient solution, which merely requires estimates of the RTFs
under the CTF model [14]. Experimental results demonstrate
that the proposed beamformer outperforms the TF-GSC method
in reverberant environments as long as the SNR is sufficiently
high. In particular, we show that in a reverberant environment
the new approach achieves both improved noise reduction and
reduced speech distortion at the beamformer output.
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This paper is organized as follows. In Section II, we formu-
late the problem in the STFT domain. In Section III, we develop
an MVDR beamformer as a constrained optimization problem.
In Section IV, we transform the problem into an unconstrained
form using the GSC structure. In Section V, we introduce ap-
proximate representations and propose a practical beamformer
based on the CTF model. Finally, in Section VI, we present ex-
perimental results that demonstrate the advantage of the pro-
posed beamformer.

II. PROBLEM FORMULATION

The problem considered in this work is an array of micro-
phones in a noisy and reverberant environment, where we have
a single speech source located inside the enclosure. The output
of the th microphone is given by

(1)

where * denotes convolution, represents a (nonstationary)
speech source, represents the acoustic room impulse re-
sponse between the speech source and the th microphone and

and are the speech and noise components re-
ceived at the th microphone. In this paper, it is assumed that
the noise signals are stationary and
uncorrelated with the speech source. Alternative representation
of (1) can be written with respect to the speech component at
the first microphone

(2)

where represents the relative impulse response between
the th microphone and the first microphone with respect to the
speech source location, which satisfies .
It is worthwhile noting that is generally of infinite length
since it represents the impulse response of the ratio between a
couple of room transfer functions. However, the energy of the
relative impulse response decays rapidly and therefore the as-
sumption that the support of is finite is practically not
very restrictive.

The signals can be divided into overlapping time frames and
analyzed using the short time Fourier transform. Let denote
the number of time frames of the observed signals
denote the length of each time frame, and denote the framing
step. According to [16], [20], [21] a filter convolution in the time
domain is transformed into a sum of cross-band filter con-
volutions in the STFT domain. The cross-band filters are used
for canceling the aliasing caused by sampling in each frequency
subband [23]. Hence, we can represent (2) in the STFT domain

(3)

where is the time frame index, and are the frequency sub-
band indices, and is the cross-band filter between
frequency band and of length . Let and

denote column stack vectors of length comprised of
the STFT samples at subband of the signals
and , respectively, and let denote the convolu-
tion matrix of the cross-band filter of size .
Then, (3) can be written in matrix representation

(4)

In this derivation, we assume that is time-invariant
during the entire signal length. Thus, in order to track time vari-
ations the signal may be approximately divided into intervals in
which the filter is assumed to be fixed.

The objective of this work is estimation of given obser-
vations from the microphone array , i.e., we aim at
estimating an undistorted and noisy-free version of the speech
component received at the first microphone.

III. MINIMUM VARIANCE DISTORTIONLESS

RESPONSE BEAMFORMER

An estimator of can be obtained by passing the mea-
surements through finite-impulse response
(FIR) filters

(5)

where denotes complex conjugate.2 Similarly to (3), we can
write (5) in the STFT domain and get

(6)

or in a compact matrix form

(7)

where represents complex conjugate transpose, is a column
stack vector of the STFT samples of the observed signals from
all sensors in all subbands, and represents a concatenation
of convolution matrices of the cross-band filters
(see Appendix A for the derivation and exact notations). Using
(7), we can define the estimation error

(8)

Since the observed signals consist of a speech component and a
noise component we have , where and are defined

2As will be shown later in this paper, it is more convenient for the following
derivations to define the estimator convolution using complex conjugate,
yielding a positive spectrum of the estimated signal.
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similarly to . Thus, we can write the estimation error as a sum
of two terms

(9)

where

(10)

represents the speech distortion, and

(11)

represents the residual noise.
Now, from (11), the MSE of each subband in the STFT do-

main associated with the residual noise is

(12)

where is a matrix trace and

Thus, we can state the noise reduction problem subject to zero
speech distortion as follows:

(13)

By using the relative impulse responses, which represent the
coupling between the speech components at each microphone,
the zero speech distortion constraint can be written explicitly
(see Appendix B), and we can rewrite the optimization problem
as

(14)

where is defined as is a ma-
trix consisting of the convolution matrices , and

is a constant matrix given by

where is a vector of zeros and is a unit matrix.
Solving the above optimization problem requires estimates

of the RTFs of all sensors in the STFT domain and estimates
of the noise signals PSDs . A geometric illustration of the
optimal beamformer is shown in Fig. 1.

The constraint in (14), posed on the matrix , can be
broken into constraints on each of its columns

Fig. 1. Geometric interpretation of the optimal beamformer.

, where is a unit vector of length .3 Thus, each
constraint takes the following form

(15)

where is the th column of the matrix , i.e., it is a
vector of length and equals

. Now, (14) can be solved using Lagrange multi-
pliers.

IV. GENERALIZED SIDELOBE CANCELER

Based on the generalized sidelobe canceler (GSC) structure
[6], we transform the constrained optimization problem into an
unconstrained form. The minimization and the constraint are
decoupled into two parallel processing branches, yielding an
MVDR-equivalent beamformer carried out in the STFT domain.

Consider the null space of , defined by4

(16)

and the constraints hyperplanes, defined as

(17)

Thus, we get hyperplanes, parallel to the null space . It is
worthwhile noting that such a null space exists due to dimen-
sions. Let denote the range of , i.e.,

(18)

Using the fundamental theorem of Linear Algebra [24], we
have . Thus, each vector in the linear space can be
uniquely split into a sum of two vectors in mutually orthogonal
subspaces, as follows:

(19)

3In the following, we neglect the unit vector length notation for simplicity.
4This derivation is in higher dimensions than the null space definition pre-

sented in [6] since our presentation involves dependency between time frames
in each subband.
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Fig. 2. GSC structure in the STFT domain.

where and . Consequently, a beam-
former filter in the STFT domain can be written as

(20)

where columns satisfy and columns
satisfy . According to the definition of , we can
write as

(21)

where is designated as a noise canceler matrix of size
and is designated as a blocking matrix

of size , whose columns are in the null
space . Hence, satisfies

(22)

where is a matrix of zeros.
Thus, using (20), the estimator defined in (7) can be written

as

(23)

where

(24)

(25)

In (23), we obtain the generalized sidelobe canceler structure,
illustrated in Fig. 2. Thus, the solution comprises three blocks.
The first is a fixed beamformer , which satisfies the con-
straints and hence steers the beam towards the desired direction,
i.e., the speech component at the first microphone is kept undis-
torted. The second is a blocking matrix , that blocks the de-
sired signal and produces noise-only reference signals. The third
is a noise canceler adjustable filter , that is designed to
cancel the coherent noise in the fixed beamformer output, and
is built using an unconstrained adaptive LMS algorithm.

Fig. 3. Geometric interpretation of the fixed beamformer.

A. Fixed Beamformer

By setting the fixed beamformer to be

(26)

it satifies

(27)

According to (17) and (18), we obtain that each column of
is in both the constraint hyperplane and

the range . Since is parallel to and is
orthogonal to , each column of is the perpendicular
from the origin to the corresponding constraint hyperplane.
Fig. 3 shows an illustration of the fixed beamformer.

Now, substituting (26) into (24), yields

(28)

Using the coupling between the microphone signals, we have

(29)

Substituting (29) into (28), yields

(30)

Thus, the output of the proposed fixed beamformer com-
prises of the desired undistorted signal, i.e., the speech compo-
nent at the first microphone, and an additive noise, which is a
mixture of the noise components received at the microphones.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 28, 2009 at 11:20 from IEEE Xplore.  Restrictions apply. 



TALMON et al.: CONVOLUTIVE TRANSFER FUNCTION GENERALIZED SIDELOBE CANCELER 1425

B. Blocking Matrix

Define the blocking matrix as

...
...

. . .
. . .

(31)

Using simple arithmetic, we obtain that satisfies .
From (25), using and (29), the noise canceler output
is

(32)

and by using the proposed blocking matrix from (31), we obtain

(33)

Hence, the desired signal is blocked and the noise canceler
output is comprised of reference noise-only signals.

C. Noise Canceler

Our goal is to minimize the power of the output signal, i.e.,

(34)

which is obtained by adjusting the noise canceler filter .
From (33), we know that the noise canceler receives noise-only
signals (the output of the blocking matrix), and that it is de-
signed to cancel out the coherent noise at the output of the
fixed beamformer (30). This adjustment problem is the classical
multichannel noise cancellation problem, that can be solved by
using the Wiener filter. In this paper, we implement the noise
canceler adaptively using the NLMS algorithm. Subsequently,
we take advantage of the fact that speech signals are better repre-
sented in the STFT domain than in the time domain. The condi-
tion number of the autocorrelation matrix of the STFT samples
of the speech signal is closer to 1, yielding an improved conver-
gence rate of adaptive algorithms in the STFT domain than in
the time domain [18], [23], [25].

V. PROPOSED BEAMFORMER

Implementing the GSC scheme as described above is insuffi-
cient due to large dimensionality of the system when perfectly
represented in the STFT domain. Thus, we propose approximate
representations that reduce the model complexity, while main-
taining satisfactory performance.

We focus our work on convolution approximations in the
STFT domain. These approximations can be applied on the
matrix , which represents the convolution with the RTF
and describes the coupling between the speech components.
Applying such an approximation on the GSC framework in-
fluence both processing branches and has a major impact on
the beamformer output. At the upper branch, the approximated
fixed beamformer does not meet the constraint, thus, speech
distortion is introduced into the system. At the lower branch, the

approximated blocking matrix does not belong to the null space,
and as a result does not block the speech signal completely.
Clearly, the amount of leakage has a major influence on the
quality of the beamformer output. In case of significant leakage
from the blocking matrix, speech traces are left at the output of
the noise canceler and subtracted from the fixed beamformer
output, causing distortion at the beamformer output.

A. MTF Approximation

Now we apply the MTF approximation on the GSC scheme
in the STFT domain. Under this approximation, a convolution
in the time domain becomes a scalar multiplication in the STFT
domain (as previously mentioned, with a proper zero padding of
the STFT analysis window). Thus, the cross-band filters are ne-
glected and the band-to-band filter is approximated as a single
coefficient. Accordingly, the convolution matrix of the cross-
band filters of the RTF between the speech component at the

th microphone and the speech component at the first micro-
phone are neglected and the convolu-
tion matrix of the band-to-band filter is approximated by

(35)

Thus, the matrix under the MTF model is reduced to a di-
agonal matrix

. . .
...

...
. . .

. . .
(36)

By substituting (36) into (26), we obtain the approximated
fixed beamformer

(37)

where and

. . .
...

...
. . .

. . .

where

Substituting (37) into (24), reduces the fixed beamformer output
based on the MTF approximation to

(38)

which is the output of the fixed beamformer using the TF-GSC
method [6].

Let denote the th output channel of
the blocking matrix. Thus, it can be written as

(39)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 28, 2009 at 11:20 from IEEE Xplore.  Restrictions apply. 



1426 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

where . Using the proposed blocking matrix
from (31), we obtain

(40)

Now, substituting the MTF approximation of the RTF from (36)
into (40), yields at each subband

(41)

which is the output of the blocking matrix using the TF-GSC
method (written in matrix form for all time frames).

Building the noise canceler under the MTF approximation
requires a single multiplicative coefficient for each frequency
subband, and it is built adaptively using the NLMS algorithm.

By applying the MTF approximation to the general GSC
scheme in the STFT domain, we obtain the same algorithm
(the TF-GSC) which was derived under the MTF model (used
for representing the signals in the STFT domain and for the
decoupling of the problem into two orthogonal subspaces).
This is an important result, which explains the good results
achieved by the TF-GSC method. However, since in practice
short time frames are used, the MTF approximation becomes
inaccurate when a long response representation is required,
e.g., in reverberant environments.

B. CTF Approximation

In order to obtain a better implementable representation of a
convolution in the STFT domain, we apply the CTF approxi-
mation on the suggested GSC scheme. Under this approxima-
tion a convolution in the time domain becomes a convolution in
the STFT domain with the band-to-band filter at each frequency
subband. Accordingly, the cross-band filters are neglected, i.e.,
the convolution matrices satisfy , and
hence the matrix becomes sparser relative to the complete
representation and is reduced to a block-diagonal matrix

. . .
...

...
. . .

. . .

(42)

As noted before, the form of the CTF model resembles the struc-
ture of the block partitioned convolution [19], which can be ob-
tained by employing the MTF approximation in some block fre-
quency domain representation.

Substituting (42) into (26), yields the approximated fixed
beamformer

(43)

where and

. . .
...

...
. . .

. . .

where

By substituting (43) into (24), we get a reduced fixed beam-
former, which output is given by

(44)

where

(45)

Similarly to (41), the blocking matrix output based on the
CTF model is

(46)

Under the CTF approximation, the noise canceler is reduced
to a band-to-band filter at each subband, and is adaptively im-
plemented using the NLMS algorithm.

Thus, we obtain a new practical beamforming technique, de-
rived from the GSC scheme in the STFT domain, under the CTF
approximation. Based on this approximation, we obtain flexi-
bility in adjusting the RTF length and time frames length, re-
sulting in a good STFT representation of the signals in rever-
berant environments. Moreover, this representation is compact
enough, enabling the employment of a feasible solution.

C. RTF Identification Based on the CTF Model

In order to build the GSC blocks derived under the CTF ap-
proximation, estimates of the RTFs relating the speech compo-
nents at all the sensors, namely are re-
quired. In the following we briefly review a recently proposed
RTF identification method using the CTF model [14]. Let
be an Toeplitz matrix constructed from the STFT co-
efficients of in the th subband. Similarly, let be
an Toeplitz matrix constructed from the STFT co-
efficients of . From (3), based on the CTF approximation
(neglecting the cross-band filters), we have for each microphone
measurement

(47)
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where is the band-to-band filter of the relative impulse
response given by

and

(48)

By taking expectation of the cross multiplication of the STFT
samples of the two observed signals and , we
obtain from (47)

(49)

where is an matrix and its th term is

(50)

and and are vectors of length , given as

(51)

(52)

where denotes mathematical expectation, de-
notes the cross PSD between the signals , and

denotes the cross PSD between the signals
and and denotes the cross PSD between the
signal and its delayed version , all
at time frame and frequency . Since the speech signal
is uncorrelated with the noise signal , by taking mathemat-
ical expectation of the cross multiplication of the STFT samples

and , we get from (48)

(53)

where is a vector of length , given as

(54)

and is an matrix and its th term is given
by

(55)

where denotes the cross PSD between the signals
and , and denotes the cross PSD between

the signal and its delayed version ,
both at frequency bin . It is worth noting that since the noise
signals are stationary during our observation interval, the noise
PSD terms are independent of the time frame index.

Once again, by exploiting the fact that the speech signal
and the noise signal are uncorrelated, we obtain

, where is defined similarly to (50).
Thus, from (49) and (53), we have

(56)

Now, rewriting (56) in terms of the PSD estimates, we obtain

(57)

where denotes the PSD estimation error, and

(58)

(59)

A weighted least square (WLS) solution to (57) is of the form5:

(60)

where is the weight matrix (see [14] for more details re-
garding the proper choice of weights). This yields an RTF identi-
fication estimator carried out in the STFT domain using the CTF
approximation. This estimator requires estimates of the PSD
terms and . We can
estimate and directly from the measure-
ments, while, the stationary noise signals PSDs and

can be obtained from silent periods (where the speech
signal is absent).

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
MVDR beamformer implemented in a GSC scheme using the
CTF approximation in various environments, and compare it
with the TF-GSC method, which was formulated in this paper
as an MVDR beamformer in the GSC structure under the MTF
model.

In the following experiments we use Habets’ simulator [26]
for simulating acoustic impulse responses, based on Allen and
Berkley’s image method [27]. The responses are generated for
a rectangular room, 4 m wide by 7 m long by 2.75 m high.
We locate a linear five microphone array at the center of the
room, at (2,3.5,1.375). The microphone array topology consists
of five microphones in a horizontal straight line with (3, 5, 7,
9) cm spacings. In order to improve the RTFs identification,
the primary microphone (designated here as the “first” micro-
phone) was set to be the microphone positioned at the middle
of the array in order to minimize the distance between the ref-
erence microphones and the primary microphone. As the dis-
tance between the microphones becomes shorter, the amount of
similar components in the acoustic transfer functions (between
the source and the microphones) increases. Since these compo-
nents may be canceled in the transfer function ratio, the RTFs
may become simpler and easier to estimate. A speech source
at (2, 5.5, 1.375) is 2 m distant from the primary microphone6.
We simulate a noise source in two locations: relatively near the
microphone array at (1.5, 4, 1.375) and relatively far from the
microphone array at (1, 6, 1.375). As the noise source is moved
further away from the microphone array, a more diffused noise

5Assuming �� ������������ is not singular. Otherwise, a regularization
in needed.

6Creating a far-end field regime.
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field is created at the array, which might be more difficult to
handle and more suitable for simulating realistic scenarios.

The signals are sampled at 8 kHz. The speech source signal is
a recorded speech from the TIMIT database [28] and the noise
source signal is a computer generated white zero mean Gaussian
noise with variance that varies to control the SNR level. The
microphones measurements are generated by convolving the
source signals with the corresponding simulated impulse re-
sponses. We use a short period of noise-only signals at the begin-
ning of each experiment for estimating the noise signals PSDs
and for adjusting the noise canceler adaptively. In practice, the
noise PSDs can be evaluated adaptively using the Minimum Sta-
tistics [29], MCRA [30], or IMCRA [31] methods, and the noise
canceler can be updated online using a voice activity detector
(VAD). The STFT is implemented using Hamming windows of
length with 50% overlap (i.e., ).

The relative impulse response is infinite but in both beam-
formers it is approximated as an FIR. Under the MTF approx-
imation, the RTF length is limited by the length of the time
frame, whereas under the CTF approximation the RTF length
can be set as desired. The RTF represents the ratio between
the room transfer functions of the speech source and a couple
of relatively close microphones. Consequently, as mentioned
before, the two transfer functions may contain similar compo-
nents, which cancel each other in the ratio. Thus, the effective
length of the RTF may be shorter in practice than the length
of the room transfer function, despite the fact that it contains
one room transfer function and an inverse of another. In the fol-
lowing experiments we set the estimated RTF length to be 1/8
of the room reverberation time . This particular ratio was set
since empirical tests produced satisfactory results [14]. Let
denote the length of the relative impulse response. Hence for
example, in reverberation time s, using the above
sampling frequency and ratio, we obtain that the relative im-
pulse response consists of taps. Now, the length of the
RTF under the CTF model is set according to the linear convo-
lution complete representation in the STFT domain [16], which
is given by

(61)

where the first two terms on the right-hand side represent the
length of the causal and non-causal parts of the band-to-band
filters. Consequently, to represent a relative impulse response of
length , we use band-to-band filter of length in
this case. In order to compensate for both the band-to-band filter
non causal coefficients and the non causal part of the RTFs, we
introduce an artificial delay of length
into the system.

We set the time frame weights matrix to be the unit matrix
when applying the estimator (60), i.e., each time frame

has the same weight. For evaluating an RTF identifica-
tion performance, we use a measure of the signal blocking factor
(SBF) [14], [15] defined by

TABLE I
BLOCKING ABILITY (SBF) IN dB

where is the power of the speech component received
at the primary sensor, and is the energy contained in
the leakage signal ,
where is the RTF estimate. The leakage signal represents
the difference between the reverberated speech at the reference
sensor and its estimate given the speech at the primary sensor. It
is worthwhile noting that the RTF identification is implemented
as batch processing, by solving (60) for each subband. Thus, the
overall algorithm implemented here is not completely adaptive.
An adaptive version of the RTF identification using the CTF
approximation is not available and needs to be developed. Such
a development requires additional derivation and testing, which
extends the scope of this paper and hence left for future work. In
[25], adaptive system identification is proposed under a different
approximation, and in [32], an online version of the TF-GSC
is proposed. These studies show the potential of the proposed
algorithm to become completely adaptive.

In the first experiment, we assume that the RTFs are known,
and the simulated room reverberation time is set to s.
Table I presents the SBF achieved using the known RTFs, under
both MTF and CTF approximations, at each of the reference
microphones in the array. We observe that by using the RTFs
under the CTF approximation, we obtain better blocking ability
than by using the RTFs under the MTF approximation. For more
details on the RTF identification in various setups using different
parameters, we refer the reader to [14].

Fig. 4(a)–(d) shows the waveform of the speech component
received by the primary microphone, the noisy measurement
with SNR level of 0 dB at the primary microphone and the en-
hanced speech at the output of the TF-GSC and the proposed
methods (audio files are available online [13]). It is obvious
that the enhanced signal achieved by the proposed method is
less noisy than the enhanced signal achieved by the TF-GSC
method.

In order to compare the performance of the competing algo-
rithms, we use three measures. The first is the signal-to-noise
ratio (SNR) defined by

SNR

where denotes periods in the observation interval where the
speech signal is present. The second measure is the segmental
signal-to-noise ratio (SegSNR), defined by

where represents the set of frames which contain speech,
denotes the number of elements in , and confines the SNR at
each frame to a perceptually meaningful range between and
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Fig. 4. Signal waveforms under known RTFs scenario. (a) Reverberant speech source received at the first microphone. (b) Noisy signal received at the first micro-
phone, SNR � � dB. (c) Enhanced signal obtained at the TF-GSC output, SNR � ��� dB. (d) Enhanced signal obtained at the CTF-GSC output, SNR � ���� dB.

Fig. 5. Results obtained under known RTF scenario with room reverberation time set to 0.5 s. Curves obtained when the noise source is positioned relatively
near the array are plotted in solid line. Curves obtained when the noise source is positioned relatively far away from the array are plotted in dashed line. (a) SNR
improvement. (b) SegSNR improvement. (c) Noise reduction.

35 dB. The third measure is the noise reduction (NR), defined
by

NR

where denotes periods where the speech signal is absent.
Thus, the NR is the ratio between the variance of the noise at
the input of the system and the variance of the residual noise at
the output of the system, which indeed may give a sense of noise
reduction.

Fig. 5 shows the SNR improvement, the SegSNR improve-
ment and the noise reduction obtained by the TF-GSC and the
proposed algorithm in various input SNR levels. From Fig. 5(a)
and (b), we observe that both the SNR improvement and the
SegSNR improvement achieved by the proposed method is
higher than the improvement achieved by the TF-GSC method.
In addition, Fig. 5(c) shows that the proposed technique obtains
better noise reduction than the TF-GSC method. Furthermore,
the noise reduction obtained by both algorithms is at a fixed
level during this experiment and is independent of the input
SNR level. We can also observe that a constant difference be-
tween the SNR improvement (and the SegSNR improvement)
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Fig. 6. Signal waveforms and spectrograms under identified RTF scenario. (a) Reverberant speech source received at the first microphone. (b) Noisy signal received
at the first microphone, SNR � � dB. (c) Enhanced signal obtained at the TF-GSC output, SNR � ��� dB. (d) Enhanced signal obtained at the CTF-GSC output,
SNR � ��� dB. (e) Reference noise signal at the output of the TF-GSC blocking matrix. (f) Reference noise signal at the end of the CTF-GSC blocking matrix.

achieved by the competing methods is maintained. Thus, since
the RTFs are known and are not influenced by changes of the
input SNR, we may conclude that both competing algorithms
depend on the input SNR only through the RTFs identifica-
tion. Another observation drawn from Fig. 5 is the competing
methods performance under the two different locations of the
noise source. It shows that both methods obtain better results
when the noise source is located near the microphone array,
since in this case, the created noise field at the array is less
diffused and is easier to attenuate.

In the second experiment, the RTFs are unknown and should
be estimated from the measurements. To make a fair compar-
ison we implemented an improved version of the TF-GSC tech-
nique. The original version of the TF-GSC, proposed in [6], is
based on the nonstationarity RTF identification method [33],
which assumes the presence of nonstationary source and sta-
tionary uncorrelated noise. We improve this algorithm by re-
placing the RTF identification method with a method adapted
to speech signals [15] which also takes advantage of silent pe-
riods. Thus, both the improved version of the TF-GSC and the
proposed method require knowledge of speech presence proba-
bilities, which can be obtained using a VAD.7

Fig. 6(a)–(f) shows the waveform and the spectrogram of the
speech component received by the primary microphone, the
primary microphone noisy measurement at SNR level of 5 dB,
the enhanced speech obtained by the TF-GSC and the proposed
methods, and a reference noise signal obtained at the output of

7As mentioned above, in these experiments we use a short period of noise-
only signal in an a priori known location rather than using a VAD. The silent
time frames are used for estimation the noise PSDs and the time frames that
contain speech are used for identifying the RTFs.

the blocking matrix in both methods (audio files are available
online8). We clearly observe that the enhanced signal obtained
by the proposed algorithm is less noisy than the enhanced signal
obtained by the TF-GSC technique. In addition, we can observe
a significant speech distortion at the output of the TF-GSC
method (e.g., from the waveforms in the range of 1.5–2 s),
whereas the output of the proposed method seems undistorted.
Examining the reference noise signals in Fig. 6(e)–(f) may
suggest an explanation. It shows that the reference noise signal
obtained at the output of the blocking matrix in the proposed
method has less components of speech than the reference noise
signal obtained at the output of the blocking matrix of the
TF-GSC method. These speech components are leaked into the
output of the noise canceler and then are subtracted from the
fixed beamformer output, inducing a distortion.

Fig. 7 summarizes the SNR improvement, the SegSNR
improvement and the noise reduction obtained by the com-
peting algorithms. It shows that the SNR improvement (and
the SegSNR improvement) achieved by the proposed method
is higher than the SNR improvement (and the SegSNR im-
provement) achieved by the TF-GSC. In addition, the proposed
algorithm obtains better noise reduction. Furthermore, we
notice that as the input SNR level increases, the difference
between the SNR improvement achieved by the competing
methods increases. In particular, at higher input SNR levels the
proposed method based on the CTF approximation becomes
more advantageous. Since the CTF model is associated with
larger model complexity than the MTF model, as the input

8[Online]. Available: http://www.ee.technion.ac.il/people/IsraelCohen/Pub-
lications/CTF-GSC-audio-files/waves.pdf
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Fig. 7. Results obtained under identified RTF scenario with room reverberation time set to 0.5 s. Curves obtained when the noise source is positioned relatively
near the array are plotted in solid line. Curves obtained when the noise source is positioned relatively far away from the array are plotted in dashed line. (a) SNR
improvement. (b) SegSNR improvement. (c) Noise reduction.

Fig. 8. Noise reduction obtained in various room reverberation times relying on identified RTF. The noise source is positioned relatively far away from the array.
(a) Input SNR 0 dB. (b) Input SNR 5 dB.

SNR level increases and the data becomes more reliable, larger
number of parameters can be accurately estimated [14], [16].
Similar trends can be observed in the SegSNR improvement
and in the noise reduction findings, where the difference in
these measures between the competing methods increases in
favor of the proposed method as the input SNR increases. We
can also observe that in this experiment the competing methods
obtain better results when the noise source is located relatively
far away from the microphone array, unlike the results shown
in Fig. 5. The input SNR is defined as the ratio between the
energy of the speech component and the noise component at
the primary microphone. Now, since the acoustic room impulse
response between the noise source and the array conveys more
energy as the noise source becomes further away, the noise
source power is decreased in order to maintain a certain input
SNR level. Consequently, the RTF identification improves
when the noise source is moved further away from the array
and its power is decreased.

In the third experiment, we explore the proposed method per-
formance in various room reverberation times. As in the pre-
vious experiment, the RTFs are unknown and should be esti-
mated from the measurements and the remote noise source is
simulated (located further away from the microphone array). As
previously mentioned, since the input SNR is defined as the ratio
between the variance of the reverberant speech component and
the noise component at the primary microphone, it is signifi-
cantly influenced by changes of the room reverberation time. In

order to circumvent these changes, we redefine the input SNR
as the ratio between the variances of the clean sources (hence,
the input SNR and the reverberation time are independent) and
maintain it on a fixed level during this experiment. In addition,
we use the noise reduction measure to evaluate the performance
since both the SNR and the SegSNR measures might be influ-
enced by the room reverberation time.

Fig. 8 shows the noise reduction obtained by the proposed
method and the TF-GSC in various reverberation times. It
shows that as the reverberation time increases, the noise re-
duction obtained by both competing methods decreases. In
addition, we observe that in shorter reverberation times the
TF-GSC achieves better noise reduction, whereas in longer
reverberation times the proposed method performs better. Since
the effective length of the RTF increases with the reverberation
time, the CTF model becomes more appropriate for the RTF
representation. As mentioned in previous sections, under the
MTF model the RTF length is bounded by the length of the
time frame (which should be relatively short to obtain larger
number of frames for reducing the estimation variance, and to
validate the assumption that the speech is stationary in each
time frame). However, under the CTF model, long RTFs can be
represented using short time frames by using longer CTF filters.
It is worthwhile noting that when using the proposed method,
the CTF filter length increases [according to (61)] and more
variables are estimated as the reverberation time increases,
whereas, the number of variables is unchanged when using the
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TF-GSC (i.e., larger part of the RTF is truncated). We can also
observe that both competing methods perform better in higher
input SNR levels [Fig. 8(b)] than in lower input SNR levels
[Fig. 8(a)]. In addition, the proposed method becomes advanta-
geous over the TF-GSC in shorter reverberation time when the
input SNR is higher. In Fig. 8(b), the intersection point between
the curves is at reverberation time of approximately 280 ms,
and in Fig. 8(a) the intersection point between the curves is at
reverberation time of approximately 350 ms. As already stated,
the CTF model is associated with a greater model complexity
than the MTF model [16]; thus, the CTF-GSC becomes more
advantageous when the input SNR is higher and the data is
more reliable.

VII. CONCLUSION

We have proposed an MVDR beamformer based on a new
approach for signal and system representation in the STFT do-
main. The proposed algorithm is implemented using the GSC
scheme, yielding an unconstrained minimization problem which
can be solved efficiently. Unlike other classical methods, which
rely on the multiplicative model for linear convolution represen-
tation (the so-called MTF approximation), our method is based
on a convolutive model (the CTF approximation). The CTF ap-
proximation, which was shown to be more accurate and less
restrictive, enables representations of long transfer functions
with short time frames. This property may be especially useful
in reverberant environments, where acoustic room impulse re-
sponses are long. We demonstrated the performance of the pro-
posed method and compared it with the TF-GSC in reverberant
environments. When the input SNR is sufficiently high, the CTF
approximation and proposed method enable improved SNR and
better noise reduction. The improved experimental results imply
that the CTF approximation may be beneficially utilized also in
other beamforming methods.

An adaptive version of the proposed solution is a topic for fu-
ture reserach. The proposed RTF identification is based on batch
processing, and therefore, an adaptive version of the RTF iden-
tification is required. In addition, online estimation of speech
presence probabilities and noise PSDs should be incorporated
into the system, in order to fully enjoy the advantages of the
proposed GSC scheme.

APPENDIX A
DERIVATION OF (7)

Writing (6) in matrix form yields

(62)

where represents complex conjugate transpose and
is a convolution matrix of the cross-band filter

of size 9. Let be a concatenation of
the from all subbands, i.e.,

and let be a concatenation of all the convolution ma-
trices of of size , i.e.,

Thus, we can rewrite (62) as

(63)

Now, by concatenating the filters and the STFT samples from all
the microphones, the estimator (63) can be compactly expressed
as

(64)

where is a vector of length defined as

and is a matrix of size , defined as

APPENDIX B
DERIVATION OF (14)

From (4), we can write the coupling between the speech com-
ponents at each microphone using the relative impulse response

(65)

or in a compact form

(66)

where is a matrix of size consisting of the
convolution matrices . It is worthwhile noting
that is a unit matrix . Substituting (66) into (10) yields

(67)

where is a constant matrix of size given by

9We assumed that the number of time frames � is greater than the length of
the cross-band filter � ��� � � ��.
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where is a vector of zeros and is a unit matrix of size
. Thus, from (67) we have

(68)

where is a matrix of size , defined as

Now, from (68) we can write the constraint of zero speech dis-
tortion, i.e., , explicitly as

(69)

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments and helpful suggestions.

REFERENCES

[1] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile ap-
proach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 5, pp. 4–24,
Apr. 1988.

[2] O. L. Frost III, “An algorithm for linearly constrained adaptive array
processing,” Proc. IEEE, vol. 60, no. 8, pp. 926–935, Jan. 1972.

[3] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly con-
trained adaptive beamforming,” IEEE Trans. Antennas Propag., vol.
30, no. 1, pp. 27–34, Jan. 1982.

[4] B. R. Breed and J. Strauss, “A short proof of the equivalence of LCMV
and GSC beamforming,” IEEE Signal Process. Lett., vol. 9, no. 6, pp.
168–169, Jun. 2002.

[5] S. Haykin, Adaptive Filter Theory. Upper Saddle RIver, New Jersey:
Prentice-Hall, 2002.

[6] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech,” IEEE
Trans. Signal Process., vol. 49, no. 8, pp. 1614–1626, Aug. 2001.

[7] S. Gannot and I. Cohen, “Speech enhancement based on the general
transfer function GSC and postfiltering,” IEEE Trans. Speech Audio
Process., vol. 12, no. 6, pp. 561–571, Nov. 2004.

[8] G. Reuven, S. Gannot, and I. Cohen, “Joint noise reduction and acoustic
echo cancellation using the transfer-function generalized sidelobe can-
celler,” Special Iss. Speech Commun. Speech Enhancement, vol. 49, pp.
623–635, Jul.–Aug. 2007.

[9] G. Reuven, S. Gannot, and I. Cohen, “Dual source transfer-function
generalized sidelobe canceller,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 16, no. 4, pp. 711–727, May 2008.

[10] J. Chen, J. Benesty, and Y. Huang, “A minimum distortion noise re-
duction algorithm with multiple microphones,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 16, no. 3, pp. 481–493, Mar. 2008.

[11] Y. Avargel and I. Cohen, “On multiplicative transfer function approx-
imation in the short time Fourier transform domain,” IEEE Signal
Process. Lett., vol. 14, no. 5, pp. 337–340, May 2007.

[12] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive
beam-former for microphone arrays with a blocking matrix using
constrained adaptive filters,” IEEE Trans. Signal Process., vol. 47, no.
10, pp. 2677–2684, Oct. 1999.

[13] S. Gannot and I. Cohen, “Adaptive beamforming and postfiltering,” in
Springer Handbook of Speech Processing, J. Benesty, M. Mohan, and
Y. Huang, Eds. New York: Springer, 2007, ch. 47, pt. H, pp. 945–978.

[14] R. Talmon, I. Cohen, and S. Gannot, “Relative transfer function iden-
tification using convolutive transfer function approximation,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 17, no. 4, pp. 546–555,
May 2008.

[15] I. Cohen, “Relative transfer function identification using speech sig-
nals,” IEEE Trans. Speech Audio Processs., vol. 12, no. 5, pp. 451–459,
Sep. 2004.

[16] Y. Avargel and I. Cohen, “System identification in the short time
Fourier transform domain with crossband filtering,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 4, pp. 1305–1319, May
2007.

[17] Springer Handbook of Speech Processing, J. Benesty, M. Sondhi, and
Y. Huang, Eds. New York: Springer, 2007.

[18] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE
Signal Process. Mag., vol. 9, no. 1, pp. 14–37, Jan. 1992.

[19] P. C. W. Sommen, “Partitioned frequency domain adaptive filters,” in
Proc. Asilomar Conf. Siganls, Syst. Comput., 1989, pp. 676–681.

[20] M. Portnoff, “Time frequency representation of digital signals and
systems based on short-time Fourier analysis,” IEEE Trans. Signal
Process., vol. ASSP-28, no. 1, pp. 55–69, Feb. 1980.

[21] S. Farkash and S. Raz, “Linear systems in Gabor time–frequency
space,” IEEE Trans. Signal Process., vol. 42, no. 3, pp. 611–617, Mar.
1994.

[22] J. Benesty, J. Chen, and J. Huang, “On microphone-array beamforming
from a MIMO acoustic signal processing perspective,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 3, pp. 1053–1065, Mar.
2007.

[23] A. Gilloire and M. Vetterli, “Adaptive filtering in subbands with critical
sampling: Analysis, experiments and applications to acoustic echo can-
cellation,” IEEE Trans. Signal Process., vol. 40, no. 8, pp. 1862–1875,
Aug. 1992.

[24] G. Strang, Linear Algebra and Its Applications. Orlando, FL: Har-
court Brace Jovanovich, 1988.

[25] Y. Avargel and I. Cohen, “Adaptive system identification in the short-
time Fourier transform domain using cross-multiplicative transfer func-
tion approximation,” IEEE Trans. Audio, Speech, Lang. Process., vol.
16, no. 1, pp. 162–173, Jan. 2008.

[26] E. A. P. Habets, “Room impulse response (RIR) generator,” Jul. 2006
[Online]. Available: http://home.tiscali.nl/ehabets/rir_generator.html

[27] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small room acoustics,” J. Acoust. Soc. Amer., vol. 65, no. 4, pp.
943–950, 1979.

[28] J. S. Garofolo, Getting Started With the DARPA TTMIT CD-ROM: An
Acoustic-Phonetic Continuous Speech Database. Gaithersburg, MD:
National Inst. of Standards and Technol. (NIST), Feb. 1993.

[29] R. Martin, “Noise power spectral density estimation based on op-
timal smoothing and minimum statistics,” IEEE Trans. Speech Audio
Process., vol. 9, no. 5, pp. 504–512, Jul. 2001.

[30] I. Cohen, “Noise estimation by minima controlled recursive averaging
for robust speech enhancement,” IEEE Signal Process. Lett., vol. 9, no.
1, pp. 12–15, Jan. 2002.

[31] I. Cohen, “Noise spectrum estimation in adverse environments: Im-
proved minima controlled recursive averaging,” IEEE Trans. Speech
Audio Process., vol. 11, no. 5, pp. 466–475, Sep. 2003.

[32] I. Cohen, S. Gannot, and B. Berdugo, “An integrated real-time
beam-forming and postfiltering system for non-stationary noise en-
vironments,” Special Iss. EURASIP J. Appl. Signal Process.: Signal
Process. Acoust. Commun. Syst., pp. 1064–1073, Oct. 2003.

[33] O. Shalvi and E. Weinstein, “System identification using nonstationary
signals,” IEEE Trans. Signal Process., vol. 40, no. 8, pp. 2055–2063,
Aug. 1996.

Ronen Talmon received the B.A. degree in mathe-
matics and computer science from the Open Univer-
sity, Ra’anana, Israel, in 2005. He is currently pur-
suing the Ph.D. degree in electrical engineering at the
Technion—Israel Institute of Technology, Haifa, Is-
rael.

From 2000 to 2005, he was a Software Developer
and Researcher in a technological unit of the Israeli
Defense Forces. Since 2005, he has been a Teaching
Assistant and a Project Supervisor with the Signal
and Image Processing Lab (SIPL), Electrical Engi-

neering Department, the Technion. His research interests are statistical signal
processing, speech enhancement, system identification, and geometric methods
for data analysis.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 28, 2009 at 11:20 from IEEE Xplore.  Restrictions apply. 



1434 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

Israel Cohen (M’01–SM’03) received the B.Sc.
(summa cum laude), M.Sc., and Ph.D. degrees in
electrical engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 1990, 1993,
and 1998, respectively.

From 1990 to 1998, he was a Research Scientist
with RAFAEL Research Laboratories, Haifa, Israel
Ministry of Defense. From 1998 to 2001, he was a
Postdoctoral Research Associate with the Computer
Science Department, Yale University, New Haven,
CT. In 2001, he joined the Electrical Engineering

Department of the Technion, where he is currently an Associate Professor. His
research interests are statistical signal processing, analysis and modeling of
acoustic signals, speech enhancement, noise estimation, microphone arrays,
source localization, blind source separation, system identification, and adaptive
filtering. He served as Guest Editor of a special issue of the EURASIP Journal
on Advances in Signal Processing on Advances in Multimicrophone Speech
Processing and a special issue of the EURASIP Speech Communication
Journal on Speech Enhancement. He is a coeditor of the Multichannel Speech
Processing section of the Springer Handbook of Speech Processing (Springer,
2007), a coauthor of Noise Reduction in Speech Processing (Springer, 2009),
and a Co-Chair of the 2010 International Workshop on Acoustic Echo and
Noise Control.

Dr. Cohen received in 2005 and 2006 the Technion Excellent Lecturer
awards and in 2009 the Muriel and David Jacknow Award for Excellence
in Teaching. He served as an Associate Editor of the IEEE TRANSACTIONS

ON AUDIO, SPEECH, AND LANGUAGE PROCESSING and the IEEE SIGNAL

PROCESSING LETTERS

Sharon Gannot (S’92–M’01–SM’06) received the
B.Sc. degree (summa cum laude) from the Tech-
nion—Israel Institute of Technology, Haifa, Israel in
1986 and the M.Sc. (cum laude) and Ph.D. degrees
from Tel-Aviv University, Tel-Aviv, Israel, in 1995
and 2000, respectively, all in electrical engineering.

In 2001, he held a postdoctoral position in the
Department of Electrical Engineering (SISTA), K.U.
Leuven, Leuven, Belgium. From 2002 to 2003, he
held a research and teaching position at the Faculty
of Electrical Engineering, Technion-Israel Institute

of Technology. Currently, he is a Senior Lecturer at the School of Engineering,
Bar-Ilan University, Ramat-Gan, Israel. He is an Associate Editor of the
EURASIP Journal of Applied Signal Processing, an Editor of a special issue on
Advances in Multi-Microphone Speech Processing of the same journal, and a
Guest Editor of the ELSEVIER Speech Communication Journal. His research
interests include parameter estimation, statistical signal processing, and in
particular speech processing using either single- or multi-microphone arrays.

Dr. Gannot is an Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING and a reviewer of many IEEE journals
and conferences. He has been a member of the Technical and Steering Com-
mittee of the International Workshop on Acoustic Echo and Noise Control
(IWAENC) since 2005 and is the General Co-Chair of IWAENC 2010 to be
held in Tel-Aviv, Israel.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 28, 2009 at 11:20 from IEEE Xplore.  Restrictions apply. 


