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Simultaneous Detection and Estimation
Approach for Speech Enhancement

Ari Abramson, Student Member, IEEE, and Israel Cohen, Senior Member, IEEE

Abstract—In this paper, we present a simultaneous detection
and estimation approach for speech enhancement. A detector for
speech presence in the short-time Fourier transform domain is
combined with an estimator, which jointly minimizes a cost func-
tion that takes into account both detection and estimation errors.
Cost parameters control the tradeoff between speech distortion,
caused by missed detection of speech components and residual mu-
sical noise resulting from false-detection. Furthermore, a modified
decision-directed a priori signal-to-noise ratio (SNR) estimation is
proposed for transient-noise environments. Experimental results
demonstrate the advantage of using the proposed simultaneous
detection and estimation approach with the proposed a priori SNR
estimator, which facilitate suppression of transient noise with a
controlled level of speech distortion.

Index Terms—Acoustic noise, estimation, signal detection, siren
noise, spectral analysis, speech enhancement.

I. INTRODUCTION

OPTIMAL design of efficient speech enhancement algo-
rithms has attracted significant research effort for sev-

eral decades. Speech enhancement systems often operate in the
short-time Fourier transform (STFT) domain, where the speech
spectral coefficients are estimated from the spectral coefficients
of the degraded signal. The spectral coefficients of the speech
signal are generally sparse in the STFT domain in the sense that
speech is present only in some of the frames, and in each frame
only some of the frequency-bins contain the significant part of
the signal energy. However, existing algorithms often focus on
estimating the spectral coefficients rather than detecting their
existence. The spectral-subtraction algorithm [1], [2] contains
an elementary detector for speech activity in the time–frequency
domain, but it generates musical noise caused by falsely de-
tecting noise peaks as bins that contain speech, which are ran-
domly scattered in the STFT domain. Subspace approaches for
speech enhancement [3]–[6] decompose the vector of the noisy
signal into a signal-plus-noise subspace and a noise subspace,
and the speech spectral coefficients are estimated after removing
the noise subspace. Accordingly, these algorithms are aimed at
detecting the speech coefficients and subsequently estimating
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their values. McAulay and Malpass [7] were the first to pro-
pose a speech spectral estimator under a two-state model. They
derived a maximum-likelihood (ML) estimator for the speech
spectral amplitude under speech-presence uncertainty. Ephraim
and Malah followed this approach of signal estimation under
speech presence uncertainty and derived an estimator which
minimizes the mean-square error (MSE) of the short-term spec-
tral amplitude (STSA) [8]. In [9], speech presence probability
is evaluated to improve the minimum MSE (MMSE) of the
log-spectral amplitude (LSA) estimator, and in [10] a further im-
provement of the MMSE-LSA estimator is achieved based on a
two-state model. Under speech absence hypothesis, Cohen and
Berdugo [10] considered a constant attenuation factor to enable
a more natural residual noise, characterized by reduced musi-
cality.

Under slowly time-varying noise conditions, an estimator
which minimizes the MSE of the STSA or the LSA under speech
presence uncertainty may yield reasonable results [8], [10].
However, under quickly time-varying noise conditions, abrupt
transients may not be sufficiently attenuated, since speech is
falsely detected with some positive probability. Reliable de-
tectors for speech activity and noise transients are necessary to
further attenuate noise transients without much degrading the
speech components [11], [12]. Despite the sparsity of speech
coefficients in the time–frequency domain and the importance
of signal detection for noise suppression performance, common
speech enhancement algorithms deal with speech detection
independently of speech estimation. Even when a voice activity
detector is available in the STFT domain (e.g., [13]–[19]), it
is not straightforward to consider the detection errors when
designing the optimal speech estimator. High attenuation of
speech spectral coefficients due to missed detection errors may
significantly degrade speech quality and intelligibility, while
falsely detecting noise transients as speech-contained bins, may
produce annoying musical noise.

In this paper, we present a novel formulation of the speech
enhancement problem, which incorporates simultaneous opera-
tions of detection and estimation. A detector for the speech coef-
ficients is combined with an estimator, which jointly minimizes
a cost function that takes into account both estimation and de-
tection errors. Under speech-presence, the cost is proportional
to a quadratic spectral amplitude (QSA) error [8], while under
speech-absence, the distortion depends on a certain attenuation
factor [2], [10], [20]. We derive a combined detector and es-
timator with cost parameters that enable to control the tradeoff
between speech distortion, caused by missed detection of speech
components and residual musical noise resulting from false-
detection. The combined solution generalizes the well-known
STSA algorithm, which involves merely estimation under signal
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presence uncertainty. In addition, we propose a modification of
the decision-directed a priori signal-to-noise ratio (SNR) esti-
mator, which is suitable for transient-noise environments. Ex-
perimental results show that the simultaneous detection and es-
timation yields better noise reduction than the STSA algorithm
while not degrading the speech signal. The advantage of using
a suitable indicator for transient noise is demonstrated in a non-
stationary noise environment, where the proposed algorithm fa-
cilitates suppression of transient noise with a controlled level of
speech distortion.

The paper is organized as follows. In Section II, we briefly
review classical speech enhancement under signal presence un-
certainty. In Section III, we reformulate the speech enhance-
ment problem in the STFT domain as a simultaneous detection
and estimation problem. In Section IV, we derive the combined
solution for a QSA distortion function. In Section V, we relate
our proposed approach to the spectral-subtraction approach. In
Section VI, we present an a priori SNR estimator suitable for
transient noise environments, and in Section VII we demon-
strate the performance of the proposed approach compared to
existing algorithms, both under stationary and transient-noise
environments.

II. CLASSICAL SPEECH ENHANCEMENT

In this section, we present the classical approach for spectral
speech enhancement in nonstationary noise environments, as-
suming that some indicator for transient noise activity is avail-
able.

Let and denote speech and uncorrelated additive
noise signals, and let be the observed signal.
Applying the STFT to the observed signal, we have

(1)

where is the time frame index and
is the frequency-bin index. Let and

denote, respectively, speech presence and absence hy-
potheses in the time–frequency bin , i.e.,

(2)

We assume that the noise expansion coefficients can be repre-
sented as the sum of two uncorrelated noise components

where denotes a quasi-stationary noise com-
ponent, and denotes a highly nonstationary transient com-
ponent. The transient components are generally rare, but they
may be of high energy and thus cause significant degradation
to speech quality and intelligibility. However, in many applica-
tions, a reliable indicator for the transient noise activity may be
available in the system. For example, in an emergency vehicle
(e.g., police or ambulance) the engine noise may be considered
as quasi-stationary, but activating a siren results in a highly non-
stationary noise which is perceptually very annoying. Since the
sound generation in the siren is nonlinear, linear echo cancelers,
e.g., [21], may be inappropriate. In a computer-based communi-
cation system, a transient noise such as a keyboard typing noise
may be present in addition to quasi-stationary background office
noise. Another example is a digital camera, where activating the
lens-motor (zooming in/out) may result in high-energy transient

noise components, which degrade the recorded audio. In the
above examples, an indicator for the transient noise activity may
be available, i.e., siren source signal, keyboard output signal and
the lens-motor controller output. Furthermore, given that a tran-
sient noise source is active, a detector for the transient noise in
the STFT domain may be designed and its spectrum can be es-
timated based on training data.

The objective of a speech enhancement system is to recon-
struct the spectral coefficients of the speech signal such that
under speech-presence a certain distortion measure between the
spectral coefficient and its estimate, , is minimized,
and under speech-absence a constant attenuation of the noisy
coefficient would be desired to maintain a natural background
noise [10], [20]. Although the speech expansion coefficients are
not necessarily present, most classical speech enhancement al-
gorithms try to estimate the spectral coefficients rather than de-
tecting their existence, or try to independently design detec-
tors and estimators. The well-known spectral subtraction al-
gorithm estimates the speech spectrum by subtracting the es-
timated noise spectrum from the noisy squared absolute coef-
ficients [1], [2], and thresholding the result by some desired
residual noise level. Thresholding the spectral coefficients is
in fact a detection operation in the time–frequency domain, in
the sense that speech coefficients are assumed to be absent in
the low-energy time–frequency bins and present in noisy coef-
ficients whose energy is above the threshold.

McAulay and Malpass were the first to propose a two-state
model for the speech signal in the time–frequency domain [7].
Accordingly, the MMSE estimator follows: [22]

(3)

The resulting estimator does not detect speech components,
but rather, a soft-decision is performed to further attenuate the
signal estimate by the a posteriori speech presence probability.
Ephraim and Malah followed the same approach and derived an
estimator which minimizes the MSE of the STSA under signal
presence uncertainty [8]. Accordingly

(4)

Both in [7] and [8], under the speech components are as-
sumed zero and the a priori probability of speech presence is
both time and frequency invariant, i.e., . In
[9] and [10], the speech presence probability is evaluated for
each frequency-bin and time-frame to improve the performance
of the MMSE-LSA estimator [23]. Further improvement of the
MMSE-LSA suppression rule can be achieved by considering
under a constant attenuation factor , which is de-
termined by subjective criteria for residual noise naturalness,
see also [20]. The OM-LSA estimator [10] is given by

(5)

Suppose that an indicator for the presence of transient noise
components is available in a highly nonstationary noise environ-
ment, then high-energy transients may be attenuated by using
one of the aforementioned estimators (3)–(5) and heuristically
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setting the a priori speech presence probability to a suf-
ficiently small value. Unfortunately, this also results in suppres-
sion of desired speech components and intolerable degradation
of speech quality. In general, an estimation-only approach under
signal presence uncertainty produces larger speech degradation
for small , since the optimal estimate is attenuated by the
a posteriori speech presence probability. On the other hand, in-
creasing prevents the estimator from sufficiently atten-
uating noise components. Integrating a jointly optimal detector
and estimator into the speech enhancement system may sig-
nificantly improve the speech enhancement performance under
highly nonstationary noise conditions and may allow further re-
duction of transient components without much degradation of
the desired signal.

III. REFORMULATION OF THE SPEECH

ENHANCEMENT PROBLEM

In this section, we reformulate the speech enhancement as a
simultaneous detection and estimation problem.

Middleton and Esposito [22] were the first to propose si-
multaneous signal detection and estimation within the frame-
work of statistical decision theory. A decision space
is assumed for the detection operation where under the deci-
sion , signal hypothesis is accepted and a corresponding
estimate is considered. The detection and esti-
mation are strongly coupled so that the detector is optimized
with the knowledge of the specific structure of the estimator,
and the estimator is optimized in the sense of minimizing a
Bayesian risk associated with the combined operations. For no-
tation simplification, we omit the time–frequency indices .
Let denote the cost of making a decision (and
choosing an estimator ) where is the desired signal. Then,
the Bayes risk of the two operations associated with simulta-
neous detection and estimation is defined by [22] and [24]

(6)

where and are the spaces of the speech and noisy sig-
nals, respectively. The simultaneous detection and estimation
approach is aimed at jointly minimizing the Bayes risk over
both the decision rule and the corresponding signal estimate.
Let denote the a priori speech presence probability
and let and denote the real and imaginary parts of the
expansion coefficient . Then, the a priori distribution of the
speech expansion coefficient follows:

(7)

where and denotes the
Dirac-delta function. The cost function may be de-
fined differently whether or is true. Therefore, we let

denote the cost which is condi-
tioned on the true hypothesis.1 The cost function de-
pends on both the true signal value and its estimate under the de-

1Note that X = 0 implies that H is true, and X 6= 0 implies H so the
subindex imay seem to be redundant. However, this notation simplifies the sub-
sequent formulations.

cision and therefore couples the operations of detection and
estimation. By substituting (7) into (6), we obtain

(8)

Let

(9)

denote a risk associated with the pair and the observa-
tion . Then, the combined Bayes risk follows:

(10)

Since the detector’s decision under a given observation is
binary, i.e., , for minimizing the combined
risk we first evaluate the optimal estimator under each of the
decisions, then the optimal decision rule is derived based on the
optimal estimators , to further minimize the combined
risk. The two-stage minimization guaranties minimum com-
bined risk [24]. The optimal nonrandom decision rule which
minimizes the combined risk (10) is given by

Decide (i.e., ) if

(11)

otherwise, decide .
The optimal estimator under a decision is obtained from

(10) by

(12)

Note that depends on the estimate through the cost
function. Fig. 1 shows a block diagram of the simultaneous de-
tection and estimation scheme compared with an independent
detection and estimation system. The standard, noncoupled de-
tection and estimation system (a) consists of an estimator and
a detector which independently chooses to accept or reject the
estimator output. In the simultaneous detection and estimation
scheme, the estimator is obtained by (12) and the interrelated
decision rule (11) chooses the appropriate estimator, or ,
for minimizing the combined Bayes risk. Since the risk
is a function of the signal estimate , the decision rule (11)
requires knowledge of the estimator under any of its own de-
cisions. Therefore, the arrow between the estimation and the
detection blocks is unidirectional. It is important to note that
the optimal estimator (12) minimizes the Bayes risk under any
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Fig. 1. (a) Independent detection and estimation system. (b) Strongly coupled
detection and estimation system.

given decision rule, even if the detector is not optimal and/or is
unknown to the estimator.

The cost function associated with the pair is gener-
ally defined by

(13)

where is an appropriate distortion measure and the
cost parameters control the tradeoff between the costs asso-
ciated with the pairs . That is, a high-valued raises
the cost of a false alarm, (i.e., decision of speech presence when
speech is actually absent) which may result in residual musical
noise. Similarly, is associated with the cost of missed detec-
tion of a signal component, which may cause perceptual signal
distortion. Under a correct classification, normalized cost pa-
rameters are generally used, . However,
is not necessarily zero since estimation errors are still possible
even when there is no detection error.

Contrary to the approach in [22], [24], and [25], we do not
reject the signal estimator when a decision is made. Instead,
we allow the estimator to compensate for any detection
errors and to reduce potential musical noise and audible distor-
tions. Furthermore, when speech is indeed absent, the distortion
function is defined to allow some natural background noise level
such that under , the attenuation factor will be lower bounded
by a constant gain floor as proposed in [2], [10], [20],
and [26].

IV. QUADRATIC SPECTRAL AMPLITUDE COST FUNCTION

In this section, we derive a speech simultaneous detection and
estimation scheme for a QSA cost function.

The distortion measure of the QSA cost function is defined
by

(14)

and is related to the STSA suppression rule of Ephraim and
Malah [8]. We assume that both and are statistically in-
dependent, zero-mean, complex-valued Gaussian random vari-
ables with variances and , respectively. Let

denote the a priori SNR under hypothesis , let
denote the a posteriori SNR and let . For eval-
uating the optimal detector and estimator under the QSA cost

function we denote by and the clean
and noisy spectral coefficients, respectively, where and

. Accordingly, the pdf of the speech expansion coeffi-
cient under satisfies

(15)

The combined risk under the QSA cost function is independent
of the signal phase nor the estimation phase. Therefore, we de-
fine as the estimated amplitude under . Substituting
the QSA cost function into (12) we have

(16)

and by constraining the derivative according to to equal zero,
we obtain

(17)

where is the generalized likelihood ratio defined by [8]

(18)

Note that given the a priori speech presence probability, the
generalized likelihood ratio is a function of the a priori and a
posteriori SNRs . Using [8] we observe that

(19)

where denotes the modified Bessel function of order .
Let . Then, by using the phase of
the noisy signal [8], we obtain from (17) and (19) the optimal
estimation under the decision , :

(20)



2352 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 8, NOVEMBER 2007

Fig. 2. Gain curves of G (dashed line), G (dotted line), and the total detection and estimation system gain curve (solid line), compared with the STSA gain
under signal presence uncertainty (dashed-dotted line). The a priori SNRs are (a) � = �15 dB, (b) � = �5 dB, (c) � = 5 dB, and (d) � = 15 dB.

For evaluating the optimal decision rule, we need to compute
the risk . Under , we obtain

(21)

(see proof in the Appendix) where holds for , the
gain function under the QSA cost function and the decision
which is defined in (20), and holds for
which is defined in (19).

For deriving the risk under , , we observe
. Consequently

(22)

Substituting (21) and (22) into (11), we obtain the optimal
decision rule under the QSA cost function

(23)

To conclude the above results, simultaneous detection and es-
timation from noisy observations requires 1) calculating the gain
factor under any of the decisions using (20) and 2) finding the
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optimal decision using (23). The corresponding signal esti-
mate is obtained by applying the gain to the noisy observa-
tion.

Fig. 2 demonstrates attenuation curves under QSA cost func-
tion as a function of the instantaneous SNR defined by ,
for several a priori SNRs, using the parameters , (as
proposed in [8]) 25 dB and cost parameters
and . The gains (dashed line), (dotted line),
and the total detection and estimation system gain (solid line)
are compared to the STSA gain under signal presence uncer-
tainty of Ephraim and Malah [8] (dashed-dotted line). The a
priori SNRs range from 15 to 15 dB. Not only that the cost
parameters shape the STSA gain curve, when combined with
the detector the proposed method provides a significant noncon-
tinuous modification of the standard STSA estimator. For ex-
ample, for a priori SNRs of and dB, as shown
in Fig. 2(b) and (d), respectively, as long as the instantaneous
SNR is higher than about 2 dB (for 5 dB) or 5 dB (for

15 dB), the detector decision is , while for lower instan-
taneous SNRs, the detector decision is . Note that if an ideal
detector for the speech coefficients would be available, a more
significantly noncontinuous gain would be desired to block the
noise-only coefficients. However, in the proposed simultaneous
detection and estimation approach, the detector is not ideal but
optimized to minimize the combined risk and the noncontinuity
of the system gain depends on the chosen cost parameters as
well as on the gain floor. As shown in our experimental results,
this noncontinues gain function may yield greater noise reduc-
tion with slightly higher level of musicality, while not degrading
speech quality.

It is of interest to examine the asymptotic behavior of the esti-
mator (20) under each of the decisions. When the cost parameter
associated with false alarm is much smaller than the general-
ized likelihood ratio, i.e., , the spectral gain of
the estimator under the decision is ,
which is optimal when the signal is surely present. However, if

, the spectral gain under needs to compen-
sate the possibility of a high-cost false-decision made by the
detector, and thus . On the other hand, if the cost
parameter associated with missed detection is small and we have

, then (i.e., estimation where
speech is surely absent) but under , in order
to overcome the high cost related to missed detection, we have

.
Recall that

(24)

is the a posteriori probability for speech presence [8], it can
be shown that the proposed estimator (20) generalizes the well-
known STSA estimator. For the case of we have

(25)

In that case, the detection operation is not required since the
estimation is independent of the decision rule. If we also set
to zero, the estimation reduces to the STSA suppression rule
under signal presence uncertainty [8].

The simultaneous detection and estimation approach requires
the calculation of two gain functions, and ,
and the decision rule. However, as can be seen from (20), both

and are linear functions of and
the generalized likelihood ratio . In addition, the decision
rule (23) requires the calculation of a second-order polynomial.
Therefor, the additional complexity of the simultaneous detec-
tion and estimation approach is insignificant compared to the
STSA estimator [8], which also requires the calculation of the
gain function (19) and the generalized likelihood
function (28).

V. RELATION TO SPECTRAL SUBTRACTION

The general formulation of the spectral subtraction approach
assumes a spectral estimator which can be written as [1], [2]

(26)
where is the -order moment of the noise spectral
coefficient, represents an over-subtraction factor, and

represents spectral floor factor. Boll [1] considered
while Berouti et al. [2] used . McAulay and Mal-

pass [7] showed that under a Gaussian statistical model, spec-
tral subtraction with , , and yields a max-
imum-likelihood estimator for the speech spectral variance.

The spectral subtraction scheme (26) classifies high-energy
time–frequency bins as active speech bins, and only in these
bins the signal is estimated. Low-energy bins below a given
threshold are classified as noise-only bins, and set to some back-
ground noise level for reducing the residual musical noise. Con-
sequently, low-energy bins that contain the speech signal are
not detected, while noise peaks are detected as speech bins.
When the over-subtraction factor is increased, fewer noise
peaks are detected as speech and therefore the residual mu-
sical noise is reduced at the expanse of deterioration of speech
quality. The spectral floor “fills-in” the valleys
of the residual noise, which yields a more natural noise with
less annoying musicality [2]. However, a large reduces the
background noise suppression. Further reduction of the musical
noise may be achieved by local smoothing of the noisy spec-
tral values prior to noise subtraction. As a result, noise peaks
are attenuated and the spectral estimation error can be reduced
[1]. However, as the speech signal is highly nonstationary, its in-
telligibility may be dramatically decreased when the smoothing
parameter increases.

The classical spectral subtraction approach heuristically com-
bines a detector and an estimator for the speech spectral coef-
ficients while the parameters , , and the smoothing length
control the tradeoff between the residual musical noise and the
speech quality. In the proposed simultaneous detection and esti-
mation approach, the detector is optimally designed jointly with
the estimator. The residual noise musicality is controlled by both
the spectral gain floor which bounds the attenuation and the
false-alarm cost parameter . A high-valued false-alarm cost
parameter (with relation to the generalized likelihood ratio) re-
duces the estimation gain under , which compensates for a
false-detection. The amount of speech distortion is affected by
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Fig. 3. Signals in the time domain. (a) Clean sinusoidal signal.(b) Noisy
signal. (c) Enhanced signal obtained by using the spectral-subtraction esti-
mator. (d) Enhanced signal obtained by using the detection and estimation
approach.

Fig. 4. Amplitudes of the STFT coefficients along the time-trajectory corre-
sponding to the frequency of the sinusoidal signal: noisy signal (dotted line),
spectral subtraction (dashed line), and simultaneous detection and estimation
(solid line).

the missed detection parameter , which increases the esti-
mation gain under . Since the decision rule depends on both
parameters as well as on the gain floor, it is the combination of
the three parameters that control the tradeoffs between noise re-
duction and speech distortion.

The different behaviors of the spectral subtraction and the
simultaneous detection and estimation approach are illustrated
in Figs. 3 and 4. The signals in the time domain are shown
in Fig. 3. The clean signal is a sinusoidal wave which is ac-
tive only in a specific time interval and the noisy signal con-
tains white Gaussian noise with an SNR of 5 dB. The noisy
signal is transformed into the STFT domain using half-over-
lapping Hamming windows of 256 taps. The signal enhanced
by spectral subtraction with , , and is
shown in Fig. 3(c), and the signal enhanced by using the pro-
posed algorithm is shown in Fig. 3(d) with , ,

20 dB, and . The a priori SNR needed for
the simultaneous detection and estimation approach is estimated
using the decision-directed approach as will be defined in (27),
with a weighting factor and 20 dB as
the lower bound for the a priori SNR, while the variance of
the background noise coefficients is evaluated from the noise
signal (for both algorithms). The amplitudes of the signals in
the STFT domain (at the specific frequency band of the desired
signal’s frequency) are shown in Fig. 4. It can be seen that when

the desired signal is absent, high-energy noise components are
falsely detected by the spectral subtraction algorithm which po-
tentially results in an annoying musical noise. The detection and
estimation algorithm results in a higher attenuation of the noise
peaks and smoother and more natural background noise while
not increasing the audible distortion in the enhanced signal. Fur-
thermore, it may seem from Fig. 4 that when the desired signal
is active and the instantaneous SNR is high, both algorithms
imply similar results. However, in time frames where the de-
sired signal is present, the spectral subtraction approach results
in higher residual noise in frequencies where the signal is absent
or of low SNR. Therefore, the enhanced signal using the spectral
subtraction approach is inferior to the enhanced signal using the
detection and estimation approach even in time intervals where
the signal is present, as can be seen from Figs. 3(c) and (d).

VI. A PRIORI SNR ESTIMATION

Speech enhancement in the STFT domain generally relies on
an estimation-only approach under signal presence uncertainty,
e.g., [7], [8], and [10]. The a priori SNR is often estimated by
using the decision-directed approach [8]. Accordingly, in each
time–frequency bin we compute

(27)

where is a weighting factor that controls the
tradeoff between noise reduction and transient distortion intro-
duced into the signal, and is a lower bound for the a priori
SNR which is necessary for reducing the residual musical noise
in the enhanced signal [8], [20]. Since the a priori SNR is de-
fined under the assumption that is true, it is proposed in
[10] to replace the gain in (27) by which represents the
spectral gain when the signal is surely present (i.e., ).
Increasing the value of results in a greater reduction of the
musical noise phenomena, at the expense of further attenuation
of transient speech components (e.g., speech onsets) [20]. By
using the proposed approach with high cost for false speech de-
tection, the musical noise can be reduced without increasing the
value of , which enables rapid changes in the a priori SNR es-
timate. The lower bound for the a priori SNR is related to the
spectral gain floor since both imply a lower bound on the
spectral gain. The latter parameter is used to evaluate both the
optimal detector and estimator while taking into account the de-
sired residual noise level.

The decision-directed estimator is widely used, but is not
suitable for transient noise environments, since a high-energy
noise burst may yield an instantaneous increase in the a poste-
riori SNR and a corresponding increase in as can be seen
from (27). The spectral gain would then be higher than the de-
sired value, and the transient noise component would not be
sufficiently attenuated. Let denote the estimated spectral
variance of the stationary noise component and let de-
note the estimated spectral variance of the transient compo-
nent. The former may be practically estimated by using the im-
proved minima-controlled recursive averaging (IMCRA) algo-
rithm [10], [27] or by using the minimum-statistics approach
[28], while may be evaluated based on a training phase as
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Fig. 5. Signals in the time domain. (a) Clean sinusoidal signal. (b) Noisy signal
with both stationary and transient components. (c) Enhanced signal obtained by
using the STSA and the decision-directed estimators. (d) Enhanced signal ob-
tained by using the STSA and the modified a priori SNR estimators. (e) En-
hanced signal obtained by using the detection and estimation approach and the
modified a priori SNR estimator.

assumed in [29]. The total variance of the noise component is
. Note that in time–frequency bins

where the transient noise is inactive. Since the a priori SNR is
highly dependent on the noise variance, we first estimate the
speech spectral variance by

(28)

where . Then, the a priori SNR is evaluated
by . It is straightforward to show that in a
stationary noise environment, the proposed a priori SNR es-
timator reduces to the decision-directed estimator (27), with

substituting . However, under the presence of a tran-
sient noise component, the proposed method yields a lower a
priori SNR estimate, which enables higher attenuation of the
high-energy transient noisy component. Furthermore, to allow
further reduction of the transient noise component to the level
of the residual stationary noise, we modify the gain floor by

as proposed in [30].
The different behaviors under transient noise conditions of

the proposed modified decision-directed a priori SNR estimator
and the decision-directed estimator as proposed in [10] are il-
lustrated in Figs. 5 and 6. Fig. 5 shows the signals in the time
domain: the analyzed signal contains a sinusoidal wave which is
active in only two specific segments. The noisy signal contains
both additive white Gaussian noise with 5-dB SNR and high-en-
ergy transient noise components. The signal enhanced by using
the decision-directed estimator and the STSA suppression rule
is shown in Fig. 5(c). The signal enhanced by using the modified
a priori SNR estimator and the STSA suppression rule is shown
in Fig. 5(d), and the result obtained by using the proposed mod-
ified a priori SNR estimation with the detection and estimation
approach is shown in Fig. 5(d) (using the same parameters as in
the previous section). Both the decision-directed estimator and
the modified a priori SNR estimator are applied with

Fig. 6. Amplitudes of the STFT coefficients along time-trajectory corre-
sponding to the frequency of the sinusoidal signal: noisy signal (light solid
line), STSA with decision-directed estimation (dotted line), STSA with the
modified a priori SNR estimator (dashed-dotted line), and simultaneous
detection and estimation with the modified a priori SNR estimator (dark solid
line).

and 20 dB. Clearly, in stationary noise intervals, and
where the SNR is high, similar results are obtained by both a
priori SNR estimators. However, the proposed modified a priori
SNR estimator obtain higher attenuation of the transient noise,
whether it is incorporated with the STSA or the simultaneous
detection and estimation approach. Fig. 6 shows the amplitudes
of the STFT coefficients of the noisy and enhanced signals at
the frequency band which contains the desired sinusoidal com-
ponent. Accordingly, the modified a priori SNR estimator en-
ables a greater reduction of the background noise, particularly
transient noise components. Moreover, it can be seen that using
the simultaneous detection and estimation yields better attenu-
ation of both the stationary and background noise compared to
the STSA estimator, even while using the same a priori SNR
estimator.

VII. EXPERIMENTAL RESULTS

In our experimental study, we first evaluate the detection and
estimation approach compared with the STSA suppression rule
under a stationary noise environment. Then, we consider the
problem of hands-free communication in an emergency vehicle
and demonstrate the advantage of the modified a priori SNR es-
timator together with the simultaneous detection and estimation
approach under transient noise environment. Speech signals are
taken from the TIMIT database [31], sampled at 16 kHz and
degraded by additive noise. The test signals include 16 speech
utterances from 16 different speakers, half male half female.
The noisy signals are transformed into the STFT domain using
half-overlapping Hamming windows of 32-ms length, and the
background-noise spectrum is estimated by using the IMCRA
algorithm (for all the considered enhancement algorithms) [10],
[27]. The performance evaluation in our study includes objec-
tive quality measures, a subjective study of spectrograms, and
informal listening tests. The first quality measure is the seg-
mental SNR defined, in dB, by [32]

SegSNR

(29)
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TABLE I
SEGMENTAL SNR AND LOG SPECTRAL DISTORTION OBTAINED BY USING EITHER THE SIMULTANEOUS DETECTION

AND ESTIMATION APPROACH OR THE STSA ESTIMATOR IN STATIONARY NOISE ENVIRONMENT

where represents the set of frames which contain speech,
denotes the number of elements in , is the number of
samples per frame, and the operator confines the SNR at each
frame to a perceptually meaningful range between 10 and 35
dB. The second quality measure is log-spectral distortion (LSD)
which is defined, in dB, by

(30)

where is a spectral power clipped such
that the log-spectrum dynamic range is confined to about 50
dB, that is, . The third quality
measure (used in Section VII-B) is the perceptual evaluation of
speech quality (PESQ) score [33].

A. Comparison With the STSA Estimator

In this section, the suppression rule results from the proposed
simultaneous detection and estimation approach is compared to
the STSA estimation [8] for stationary white Gaussian noise
with SNRs in the range [ 5, 10] dB. For both algorithms the a
priori SNR is estimated by the decision-directed approach (27)
with 15 dB, and the a priori speech presence proba-
bility is , as proposed in [8]. For the STSA estimator
a decision-directed estimation [10] with reduces the
residual musical noise but generally implies transient distortion
of the speech signal [8], [20]. However, the inherent detector
obtained by the simultaneous detection and estimation approach
may improve the residual noise reduction, and therefore a lower
weighting factor may be used to allow lower speech distor-
tion. Indeed, we have found out that for the simultaneous de-
tection and estimation approach implies better re-
sults, while for the STSA algorithm, better results are achieved
with . The cost parameters for the simultaneous detec-
tion and estimation should be chosen according to the system
specification, i.e., whether the quality of the speech signal or
the amount of noise reduction is of higher importance. Table I
summarizes the average segmental SNR and LSD for these two
enhancement algorithms, with cost parameters and

, and 15 dB for the simultaneous detection
and estimation algorithm. The results for the STSA algorithm
are presented for as well as for (note that
for the STSA estimator is considered as originally pro-
posed). It shows that the simultaneous detection and estimation

yields improved segmental SNR and LSD, while a greater im-
provement is achieved for lower input SNR. Informal subjective
listening tests and inspection of spectrograms demonstrate im-
proved speech quality with higher attenuation of the background
noise. However, since the weighting factor used for the a priori
SNR estimate is lower, and the gain function is discontinuous,
the residual noise resulting from the simultaneous detection and
estimation algorithm is slightly more musical than that resulting
from the STSA algorithm (examples are available online).2

B. Speech Enhancement Under Nonstationary Noise
Environment

In this section, we demonstrate the potential advantage of the
simultaneous detection and estimation approach with the pro-
posed a priori SNR estimator under transient noise. We con-
sider a hands-free communication in an emergency vehicle (po-
lice car, ambulance etc.) where the engine noise is assumed
quasi-stationary. However, activating the emergency siren sig-
nificantly degrades the perceptual quality and intelligibility of
the speech signal, since its energy is much higher than that
of the speech signal. The sound generation in a siren is non-
linear, which produces harmonics not present in the original
signal (siren source signal), as can be seen in Fig. 7(b). However,
using the available siren source signal, a reliable indicator in the
time–frequency domain for the presence of siren noise, and an
estimate for the variance of the transient noise, , may be
designed in a training phase. Note that standard echo-cancella-
tion algorithms are not suitable for eliminating noise generated
by nonlinear systems and nonlinear algorithms may be required
(e.g., [34], [35]).

The proposed approach is compared with the STSA algo-
rithm [8] and the OM-LSA algorithm [10]. The speech pres-
ence probability required for the OM-LSA estimator as well
as for the simultaneous detection and estimation approach is
estimated as proposed in [10], while for the STSA estimator

is used as originally proposed in [8]. However, since
the a priori SNR estimate has a major importance under tran-
sient noise, the proposed modified decision-directed estimator is
applied both for the simultaneous detection and estimation ap-
proach and for the STSA algorithm with 20 dB. For
the simultaneous detection and estimation algorithm
is used while for the STSA algorithm (as shown
in Section VII-A to be more appropriate for the STSA esti-
mator). For the OM-LSA algorithm, the decision-directed es-
timator with is implemented as specified in [10],
and the gain floor is 20 dB. Fig. 7 shows waveforms
and spectrograms of a clean signal, noisy signal, and enhanced
signals. The noisy signal contains engine car noise with 0-dB

2A. Abramson homepage. [Online]. Available: http://siglab.tech-
nion.ac.il/~ari_a
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Fig. 7. Speech spectrograms (in dB) and waveforms. (a) Clean speech signal: “Draw every outer line first, then fill in the interior.” (b) Speech degraded by engine
car noise and siren noise with SNR of �3 dB. (c) Speech enhanced by using the OM-LSA estimator. (d) Speech enhanced by using the STSA estimator (together
with the modified a priori SNR estimator). (e) Speech enhanced by using the simultaneous detection and estimation approach with b = b = 1:5. (f) Speech
enhanced by using the simultaneous detection and estimation approach with b = b = 5.

SNR and additional siren noise with 1-dB SNR, such that
the total SNR is about 3 dB. The speech enhanced by using
the OM-LSA algorithm and the STSA algorithm are shown in
Fig. 7(c) and (d), respectively. The signal enhanced by using
the simultaneous detection and estimation approach is shown in
Fig. 7(e) and (f) with and ,
respectively, and a gain floor of 20 dB. It can be seen
that compared with the decision-directed-based OM-LSA algo-
rithm, the modified a priori SNR estimator substantially con-
tributes to the transient noise reduction, whether it is integrated
with the simultaneous detection and estimation approach or with
the STSA algorithm. However, the simultaneous detection and

TABLE II
SEGMENTAL SNR, LOG SPECTRAL DISTORTION,

AND PESQ SCORE UNDER TRANSIENT NOISE

estimation approach which is combined with adapted speech
presence probability and gain floor yields greater reduction of
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transient noise without affecting the quality of the enhanced
speech signal. Averaged quality measures for the whole set of
tested utterances are summarized in Table II, for the same noise
conditions. The results demonstrate improved speech quality
obtained by using the modified a priori SNR estimator either
while combined with the STSA or the simultaneous detection
and estimation approach, applying the detection and estimation
approach introduced additional improvement to the enhanced
signal. Subjective listening tests confirm that the speech quality
improvement achieved by using the proposed method is percep-
tually substantial (audio files are available online ).

VIII. CONCLUSION

We have presented a novel formulation of the single-channel
speech enhancement problem in the time–frequency domain.
Our formulation relies on coupled operations of detection
and estimation in the STFT domain and a cost function that
combines both the estimation and detection errors. A detector
for the speech coefficients and a corresponding estimator for
their values are jointly designed to minimize a combined Bayes
risk. In addition, cost parameters enable to control the tradeoff
between speech quality, noise reduction, and residual musical
noise. The proposed method generalizes the traditional spectral
enhancement approach which considers estimation-only under
signal presence uncertainty. In addition we propose a modified
decision-directed a priori SNR estimator which is adapted
to transient noise environment. Experimental results show
greater noise reduction with improved speech quality when
compared with the STSA suppression rules under stationary
noise. Furthermore, it is demonstrated that under transient
noise environment, greater reduction of transient noise compo-
nents may be achieved by exploiting reliable information for
the a priori SNR estimation with simultaneous detection and
estimation approach.

APPENDIX

In this appendix, we derive the risk . Under
we obtain

(31)
and the multiplication of the two pdf’s implies

(32)

where . Integrating (31) with regard to
the phase variable we obtain [36, eq. 3.339, 8.406.3]

(33)

where denotes the Bessel function of order zero. Note that
in this appendix . Using [37, eq. 13.3.1, 2] we have

(34)

and

(35)
where denotes the Gamma function with and

, and is the confluent hypergeo-
metric function [38, eq. A.1.31.c]

(36)

Using [37, eq. 13.3.2], [38, eq. A.1.19.c], we obtain

(37)

Substituting (32)–(37) into (31) yields

(38)
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