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Abstract—In this paper, we investigate the influence of crossband
filters on a system identifier implemented in the short-time Fourier
transform (STFT) domain. We derive analytical relations between
the number of crossband filters, which are useful for system iden-
tification in the STFT domain, and the power and length of the
input signal. We show that increasing the number of crossband fil-
ters not necessarily implies a lower steady-state mean-square error
(mse) in subbands. The number of useful crossband filters depends
on the power ratio between the input signal and the additive noise
signal. Furthermore, it depends on the effective length of input
signal employed for system identification, which is restricted to en-
able tracking capability of the algorithm during time variations in
the system. As the power of input signal increases or as the time
variations in the system become slower, a larger number of cross-
band filters may be utilized. The proposed subband approach is
compared to the conventional fullband approach and to the com-
monly used subband approach that relies on multiplicative transfer
function (MTF) approximation. The comparison is carried out in
terms of mse performance and computational complexity. Exper-
imental results verify the theoretical derivations and demonstrate
the relations between the number of useful crossband filters and
the power and length of the input signal.

Index Terms—Echo suppression, short-time Fourier transform
(STFT), subband acoustic echo cancellers, subband filtering,
system identification, time-frequency analysis.

I. INTRODUCTION

I DENTIFICATION of systems with long impulse responses
is of major importance in many applications, including

acoustic echo cancellation [1], [2] relative transfer function
(RTF) identification [3], dereverberation [4], [5], blind source
separation [6], [7] and beamforming in reverberant environ-
ments [8], [9]. In acoustic echo cancellation applications, a
loudspeaker-enclosure-microphone (LEM) system needs to be
identified in order to reduce the coupling between loudspeakers
and microphones. A typical acoustic echo canceller (AEC)
for an LEM system is depicted in Fig. 1. The far-end signal

propagates through the enclosure, which is character-
ized by a time-varying impulse response , and received
in the microphone as an echo signal together with the
near-end speaker and a local noise. To cancel the echo signal,
we commonly identify the echo path impulse response using an
adaptive transversal filter and produce an echo estimate
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Fig. 1. Typical acoustic echo canceller (AEC) for a loudspeaker-enclosure-mi-
crophone (LEM) system.

. The cancellation is then accomplished by subtracting
the echo estimate from the microphone signal. Adaptation
algorithms used for the purpose of system identification are
generally of a gradient type (e.g., least-mean-square (LMS)
algorithm) and are known to attain acceptable performances in
several applications, especially when the length of the adaptive
filter is relatively short. However, in applications like acoustic
echo cancellation, the number of filter taps that need to be
considered is several thousands, which leads to high compu-
tational complexity and slow convergence rate of the adaptive
algorithm. Moreover, when the input signal to the adaptive
filter is correlated, which is often the case in acoustic echo
cancellation applications, the adaptive algorithm suffers from
slow convergence rate [10].

To overcome these problems, block processing techniques
have been introduced [10], [11]. These techniques partition the
input data into blocks and perform the adaptation in the fre-
quency domain to achieve computational efficiency. However,
block processing introduces a delay in the signal paths and re-
duces the time-resolution required for control purposes. Alter-
natively, the loudspeaker and microphone signals are filtered
into subbands then decimated and processed in distinct sub-
bands (e.g., [12]–[18]). The computational complexity is re-
duced and the convergence rate is improved due to the shorter
independent filters in subbands. However, as in block processing
structures, subband techniques introduce a delay into the system
by the analysis and synthesis filter banks. Moreover, they pro-
duce aliasing effects because of the decimation, which necessi-
tates crossband filters between the subbands [16], [19].

It has been found [16] that the convergence rate of subband
adaptive filters that involve crossband filters with critical sam-
pling is worse than that of fullband adaptive filters. Several tech-
niques to avoid crossband filters have been proposed, such as
inserting spectral gaps between the subbands [12], employing
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1306 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

Fig. 2. System identification scheme in the STFT domain. The unknown system h(n) is modeled by the block Ĥ in the STFT domain.

auxiliary subbands [15], using polyphase decomposition of the
filter [17], and oversampling of the filter-bank outputs [13], [14].
Spectral gaps impair the subjective quality and are especially an-
noying when the number of subbands is large, while the other
approaches are costly in terms of computational complexity.
Some time-frequency representations, such as the short-time
Fourier transform (STFT) have been introduced for the imple-
mentation of subband adaptive filtering [20]–[23]. A typical
system identification scheme in the STFT domain is illustrated
in Fig. 2. The block represents a matrix of adaptive filters
which models the system in the STFT domain. The off-di-
agonal terms of (if exist) correspond to the crossband filters,
while the diagonal terms represent the band-to-band filters. Re-
cently, we analyzed the performance of an LMS-based direct
adaptive algorithm used for the adaptation of crossband filters
in the STFT domain [24].

In this paper, we consider an offline system identification in
the STFT domain using the least squares (LS) criterion, and in-
vestigate the influence of crossband filters on its performance.
We derive analytical relations between the input signal-to-noise
ratio (SNR), the length of the input signal, and the number of
crossband filters which are useful for system identification in
the STFT domain. We show that increasing the number of cross-
band filters not necessarily implies a lower steady-state mse in
subbands. The number of crossband filters, that are useful for
system identification in the STFT domain, depends on the length
and power of the input signal. More specifically, it depends on
the SNR, i.e., the power ratio between the input signal and the
additive noise signal, and on the effective length of input signal
employed for system identification. The effective length of input
signal employed for the system identification is restricted to en-
able tracking capability of the algorithm during time variations
in the impulse response.

We show that as the SNR increases or as the time variations
in the impulse response become slower (which enables to use
longer segments of the input signal), the number of crossband
filters that should be estimated to achieve the minimal mse in-
creases. Moreover, as the SNR increases, the mse that can be

achieved by the proposed approach is lower than that obtain-
able by the commonly used subband approach that relies on
long STFT analysis window and multiplicative transfer func-
tion (MTF) approximation [46]. Experimental results obtained
using synthetic white Gaussian signals and real speech signals
verify the theoretical derivations and demonstrate the relations
between the number of useful crossband filters and the power
and length of the input signal.

The paper is organized as follows. In Section II, we briefly
review the representation of digital signals and linear time-in-
variant (LTI) systems in the STFT domain and derive relations
between the crossband filters in the STFT domain and the im-
pulse response in the time domain. In Section III, we consider
the problem of system identification in the STFT domain and
formulate an LS optimization criterion for estimating the cross-
band filters. In Section IV, we derive an explicit expression for
the attainable minimum mean square error (mmse) in subbands.
In Section V, we explore the influence of both the input SNR
and the observable data length on the mmse performance. In
Section VI, we address the computational complexity of the pro-
posed approach and compare it to that of the conventional full-
band and MTF approaches. Finally, in Section VII, we present
simulation results which verify the theoretical derivations.

II. REPRESENTATION OF LTI SYSTEMS IN THE STFT DOMAIN

In this section, we briefly review the representation of digital
signals and LTI systems in the STFT domain. For further de-
tails, see, e.g., [25], [26]. We also derive relations between the
crossband filters in the STFT domain and the impulse response
in the time domain, and show that the number of crossband fil-
ters required for the representation of an impulse response is
mainly determined by the analysis and synthesis windows em-
ployed for the STFT. Throughout this paper, unless explicitly
noted, the summation indexes range from to .

The STFT representation of a signal is given by

(1)
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where

(2)

denotes an analysis window (or analysis filter) of length
, is the frame index, represents the frequency-band index,
is the discrete-time shift (in filter bank interpretation de-

notes the decimation factor as illustrated in Fig. 2), and denotes
complex conjugation. The inverse STFT, i.e., reconstruction of

from its STFT representation , is given by

(3)

where

(4)

and denotes a synthesis window (or synthesis filter) of
length . Throughout this paper, we assume that and

are real functions. Substituting (1) into (3), we obtain the
so-called completeness condition

for all (5)

Given analysis and synthesis windows that satisfy (5), a signal
is guaranteed to be perfectly reconstructed from

its STFT coefficients . However, for and for a given
synthesis window , there might be an infinite number of
solutions to (5); therefore, the choice of the analysis window is
generally not unique [27], [28].

We now proceed with an STFT representation of LTI systems.
Let denote a length impulse response of an LTI system,
whose input and output are related by

(6)

In the STFT domain, we obtain after some manipulations (see
Appendix I)

(7)
where may be interpreted as a response to an impulse

in the time-frequency domain (the impulse response
is translation-invariant in the time axis and is translation varying
in the frequency axis). The impulse response in the time-
frequency domain is related to the impulse response in the
time domain by

(8)

where denotes convolution with respect to the time index
and

(9)

where is the STFT representation of the synthesis window
calculated with a decimation factor . Equation (7)

indicates that for a given frequency-band index , the temporal
signal can be obtained by convolving the signal in
each frequency-band with the corre-
sponding filter and then summing over all the outputs.
We refer to for as a band-to-band filter and for

as a crossband filter. Crossband filters are used for can-
celing the aliasing effects caused by the subsampling. Note that
(8) implies that for fixed and , the filter is noncasual
in general, with noncasual coefficients. In echo can-
cellation applications, in order to consider those coefficients, an
extra delay of samples is generally introduced
into the microphone signal ( in Fig. 1) [13]. It can also be
seen from (8) that the length of each crossband filter is given by

(10)

To illustrate the significance of the crossband filters, we apply
the discrete-time Fourier transform (DTFT) to the undecimated
crossband filter [defined in (8)] with respect to the time
index and obtain

(11)

where , and are the DTFT of , , and
, respectively. Had both and been ideal low-

pass filters with bandwidth (where is the sampling
frequency), a perfect STFT representation of the system
could be achieved by using just the band-to-band filter ,
since in this case the product of and

is identically zero for . However, the band-
widths of and are generally greater than and
therefore, and are not zero for . One
can observe from (11) that the energy of a crossband filter from
frequency-band to frequency-band decreases as in-
creases, since the overlap between and

becomes smaller. As a result, relatively few cross-
band filters need to be considered in order to capture most of the
energy of the STFT representation of .

Fig. 3 illustrates a synthetic LEM impulse response based on
a statistical reverberation model, which assumes that a room im-
pulse response can be described as a realization of a nonsta-
tionary stochastic process , where
is a step function (i.e., for , and
otherwise), is a zero-mean white Gaussian noise, and is
related to the reverberation time (the time for the reverberant
sound energy to drop by 60 dB from its original value). In our
example, corresponds to ms (where kHz)
and has a unit variance.

To compare the crossband filters obtained for this synthetic
impulse response with those obtained in anechoic chamber (i.e.,
impulse response ), we employed a Hamming syn-
thesis window of length , and computed a minimum
energy analysis window that satisfies (5) for
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Fig. 3. (a) Synthetic LEM impulse response: h(n) = �(n)e and (b) its frequency response. �(n) is unit-variance white Gaussian noise, and � corresponds
to T = 300 ms (sampling rate is 16 kHz).

(50% overlap) [27]. Then we computed the undecimated cross-
band filters using (8). Fig. 4(a) and (b) show mesh plots
of the and contours at 40 dB (values outside this con-
tour are lower than 40 dB) for and for the syn-
thetic impulse response depicted in Fig. 3. Fig. 4(c) shows an en-
semble averaging of over realizations of the stochastic
process which is given by

(12)

Recall that the crossband filter is obtained from
by decimating the time index by a factor of [see (8)]. We
observe from Fig. 4 that most of the energy of (for both
anechoic chamber and the LEM reverberation model) is con-
centrated in the eight crossband filters, i.e.,

; therefore, both impulse responses may be
represented in the time-frequency domain by using only eight
crossband filters around each frequency-band. As expected from
(11), the number of crossband filters required for the representa-
tion of an impulse response is mainly determined by the analysis
and synthesis windows, while the length of the crossband filters
(with respect to the time index ) is related to the length of the
impulse response.

III. SYSTEM IDENTIFICATION IN THE STFT DOMAIN

In this section, we consider system identification in the STFT
domain and address the problem of estimating the crossband fil-
ters of the system using an LS optimization criterion for each
frequency-band. Throughout this section, scalar variables are
written with lowercase letters and vectors are indicated with
lowercase boldface letters. Capital boldface letters are used for
matrices, and norms are always norms.

Consider the STFT-based system identification scheme as il-
lustrated in Fig. 2. The input signal passes through an un-
known system characterized by its impulse response , ob-
taining the desired signal . Together with the corrupting
noise signal , the system output signal is given by

(13)

Note that the noise signal may often include a useful signal,
as in acoustic echo cancellation where it consists of the near-end
speaker signal as well as a local noise. From (13) and (7), the
STFT of may be written as

(14)

where is the length of the crossband filters. Here, we do
not consider the case where the crossband filters in the th fre-
quency-band are shorter than the band-to-band filter, as in [16].
We assume that all the filters have the same length . Defining

as the length of in frequency band , we can write
the length of for a fixed as . It is
worth noting that due to the noncasuality of the filter
(see Section II), the index in (14) should have ranged from

to , where is the number
of noncasual coefficients of . However, we assume that an
artificial delay of samples has been introduced
into the system output signal in order to compensate for
those noncasual coefficients, so the signal in (14) corre-
sponds to the STFT of a delayed signal .
Therefore, both and take on values starting with 0 rather
than with .

Let denote the crossband filter from frequency-band
to frequency-band

(15)
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Fig. 4. Mesh plot of the crossband filters j�h j for different impulse responses. (a) An anechoic chamber impulse response: h(n) = �(n). (b) An LEM
synthetic impulse response: h(n) = u(n)�(n)e , where u(n) is a step function, �(n) is zero-mean unit-variance white Gaussian noise, and � corresponds
to T = 300 ms (sampling rate is 16 kHz). (c) An ensemble averaging Ej�h j of the impulse response given in (b).

and let denote a column-stack concatenation of the filters

(16)

Let

...
...

...
...

...
(17)

represent an Toeplitz matrix constructed from the input
signal STFT coefficients of the th frequency-band, and let
be a concatenation of along the column dimension

(18)

Then, (14) can be written in a vector form as

(19)

where

(20)

represents the output signal STFT coefficients of the th fre-
quency-band, and the vectors and are defined similarly.

Let be an estimate of the crossband filter , and
let be the resulting estimate of using only cross-
band filters around the frequency-band , i.e.,

(21)

where we exploited the periodicity of the frequency-bands (see

an example illustrated in Fig. 5). Let be the estimated
filters at frequency band

(22)
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Fig. 5. Crossband filters illustration for frequency-band k = 0 and K = 1.

where is the estimated crossband filter from frequency-
band to frequency-band , and let be a concatenation of

along the column dimension

(23)

Then, the estimated desired signal can be written in a vector
form as

(24)

Note that both and depend on the parameter , but for
notational simplicity, has been omitted. Using the above no-
tations, the LS optimization problem can be expressed as

(25)

The solution to (25) is given by

(26)

where we assumed that is not singular.1 Substituting
(26) into (24), we obtain an estimate of the desired signal in the
STFT domain at the th frequency-band, using crossband
filters. Our objective is to analyze the mse in each frequency-
band, and investigate the influence of the number of estimated
crossband filters on the mse performance.

IV. MSE ANALYSIS

In this section, we derive an explicit expression for the mmse
obtainable in the th frequency-band.2 To make the following
analysis mathematically tractable, we assume that and
are zero-mean white Gaussian signals with variances and

, respectively. We also assume that is statistically inde-
pendent of . The Gaussian assumption of the corresponding

1In the ill-conditioned case, when ~��� ~��� is singular, matrix regularization
is required [29].

2We are often interested in the time-domain mmse, i.e., in the mmse of d̂(n).
However, the time-domain mmse is related to the sum of mmses in all the fre-
quency-bands.

STFT signals is often justified by a version of the central limit
theorem for correlated signals [30, Th. 4.4.2], and it underlies
the design of many speech-enhancement systems [31], [32].

The (normalized) mse is defined by

(27)

Substituting (24) and (26) into (27), the mse can be expressed
as

(28)

Equation (28) can be rewritten as

(29)

where

(30)

and

(31)

To proceed with the mean-square analysis, we derive simplified
expressions for and . Recall that for any two vectors and

we have , where the operator denotes
the trace of a matrix. Then can be expressed as

(32)
The whiteness assumption for yields

, where is an identity matrix of size
. Using the property that for any

two matrices and , we have

(33)

Using (19), can be expressed as

(34)

and by using the whiteness property of , the th term
of is given by
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(35)

Accordingly, is a diagonal matrix, and (34) reduces
to

(36)

Substituting (36) into (33), we obtain

(37)

We now evaluate defined in (31), assuming that is
variance-ergodic [33] and that is sufficiently large. More
specifically, we assume that

. Hence, the th term of can be
approximated by

(38)

which reduces to (see Appendix II)

(39)

Substituting (39), (36), and the definition of from (19) into
(31), we obtain

(40)

where . Using the fourth-order mo-
ment factoring theorem for zero-mean complex Gaussian sam-
ples [34], can be expressed as (see Appendix III)

(41)
where is a diagonal matrix whose th term
satisfies

otherwise
(42)

where
. Substituting (41) into

(40), we obtain

(43)

Finally, substituting (37) and (43) into (29), we have an explicit
expression for :

(44)

Expression (44) represents the mmse obtained in the th band
using LS estimates of crossband filters. It is worth noting
that depends, through , on the time impulse response

and on the analysis and synthesis parameters, e.g., , ,
and window type [see (8)]. However, in this paper, we address
only with the influence of on the value of .

V. RELATIONS BETWEEN MMSE AND SNR

In this section, we explore the relations between the input
SNR and the mmse performance. The mmse performance is also
dependent on the length of the input signal, but we first consider
a fixed , and subsequently discuss the influence of on the
mmse performance.

Denoting the SNR by , (44) can be rewritten as

(45)

where

(46)

(47)

From (45), the mmse for fixed and values, is a mono-
tonically decreasing function of , which expectedly indicates
that higher SNR values enable a better estimation of the rele-
vant crossband filters. Moreover, it is easy to verify from (46)
and (47) that and .
Consequently and are two monotonically de-
creasing functions of that satisfy

for (low SNR)
for (high SNR).

(48)

Accordingly, these functions must intersect at a certain SNR
value , that is, for

, and otherwise
(see typical mse curves in Fig. 6). For SNR values higher than

, a lower mse value can be achieved by esti-
mating crossband filters rather than only filters. In-
creasing the number of crossband filters is related to increasing
the complexity of the system model [35], as will be explained
in more details at the end of this section.

The SNR-intersection point is obtained from
(45) by requiring that

(49)
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Fig. 6. Illustration of typical mse curves as a function of the input SNR showing
the relation between � (K) (solid line) and � (K + 1) (dashed line).

Substituting (46) and (47) into (49), we have (50) shown at the
bottom of the page. Since the crossband filter’s energy
decreases as increases (see Section II), we have

(51)

Specifically, the number of crossband filters, which should be
used for the system identifier, is a monotonically increasing
function of the SNR. Estimating just the band-to-band filter and
ignoring all the crossband filters yields the minimal mse only
when the SNR is lower than .

Another interesting point that can be concluded from (50) is
that is inversely proportional to , the length
of in frequency-band . Therefore, for a fixed SNR value,
the number of crossband filters, which should be estimated in
order to achieve the minimal mse, increases as we increase .
For instance, suppose that is chosen such that the input SNR
satisfies , so that

crossband filters should be estimated. Now, suppose that
we increase the value of , so that the same SNR now sat-
isfies . In
this case, although the SNR remains the same, we would now
prefer to estimate crossband filters rather than . It
is worth noting that is related to the update rate of .
We assume that during frames, the system impulse response
does not change, and its estimate is updated every frames.
Therefore, a small should be chosen whenever the system
impulse response is time varying and fast tracking is desirable.
However, in case the time variations in the system are slow, we

can increase , and correspondingly increase the number of
crossband filters.

It is worthwhile noting that the number of crossband filters
determines the complexity of system model. As the model com-
plexity increases, the empirical fit to the data improves (i.e.,

can be smaller), but the variance of parametric esti-
mates increases too (i.e., variance of ), thus possibly worsening
the accuracy of the model on new measurements [35]–[37], and
increasing the mse, . Hence, the appropriate model com-
plexity is affected by the level of noise in the data, and the length
of observable data that can be employed for the system identi-
fication. As the SNR increases or as more data is employable,
additional crossband filters can be estimated and lower mmse
can be achieved.

VI. COMPUTATIONAL COMPLEXITY

In this section, we address the computational complexity of
the proposed approach and compare it to the conventional full-
band approach and to the commonly used subband approach
that relies on the MTF approximation. The computational com-
plexity is computed by counting the number of arithmetic oper-
ations3 needed for the estimation process in each method.

A. Proposed Subband Approach

The computation of the proposed subband approach requires
the solution of the LS normal equations [see (26)]

(52)

for each frequency band. Assuming that is nonsingular,
we may solve the normal equations in (52) using the Cholesky
decomposition [38]. The number of arithmetic operations in-
volved in forming the normal equations and solving them using
the Cholesky decomposition is

[38]. As the system is identified, the desired signal es-
timate is computed by using (24), which requires

arithmetic operations. In addition to the above computations,
we need to consider the complexity of implementing the STFT.
Each frame index in the STFT domain is computed by applying
the discrete Fourier transform (DFT) on a short-time section
of the input signal multiplied by a length analysis window.
This can be efficiently done by using fast Fourier transform
(FFT) algorithms [39] which involve arithmetic op-
erations. Consequently, each STFT frame index requires

arithmetic operations (the complexity of the ISTFT
is approximately the same). Since the subband approach con-
sists of two STFT (analysis filter bank) and one ISTFT (syn-
thesis filter bank), the overall complexity of the STFT-ISTFT
operations is . Note that we also need to

3An arithmetic operation is considered to be any complex multiplication,
complex addition, complex subtraction, or complex division.

(50)



AVARGEL AND COHEN: SYSTEM IDENTIFICATION IN THE STFT DOMAIN WITH CROSSBAND FILTERING 1313

calculate the minimum energy analysis window by solving (5);
however, since we compute it only once, we do not consider the
computations required for its calculation. Therefore, the total
number of computations required in the proposed approach is

arithmetic operations (53)

Assuming that is sufficiently large (more specifically,
) and that the computations required for

the STFT-ISTFT calculation can be neglected, the computa-
tional complexity of the subband approach with crossband
filters in each frequency-band can be expressed as

(54)

B. Fullband Approach

In the fullband approach, we consider the following LS opti-
mization problem:

(55)

where is the Toeplitz matrix constructed from the
input data , is the observable data length, is the
system output vector constructed from , and is the
system estimate vector. In this case, the LS normal equations
take the form of

(56)

As in the subband approach, forming the normal equations,
solving them using the Cholesky decomposition and calculating
the desired signal estimate, require arith-
metic operations. For sufficiently large (i.e., ),
the computational complexity of the fullband approach can be
expressed as

(57)

A comparison of the fullband and subband complexities is given
in Section VI-D, by rewriting the subband complexity in terms
of the fullband parameters ( and ).

C. MTF Approach

The MTF approximation is widely used for the estimation
of linear system in the STFT domain [46]. Examples of such
applications include frequency-domain blind source separation
(BSS) [40], STFT-domain acoustic echo cancellation [23], rela-
tive transfer function (RTF) identification [3], and multichannel
processing [8], [41]. Therefore, it is of great interest to compare
the performance of the proposed approach to that of the MTF
approach. In the above-mentioned applications, it is commonly
assumed that the support of the STFT analysis window is suffi-
ciently large compared with the duration of the system impulse
response, so the system is approximated in the STFT domain

with a single multiplication per frequency-band, and no cross-
band filters are utilized. Following this assumption, the STFT of
the system output signal is approximated by [42]

(58)

where . The single coef-
ficient is estimated using the following LS optimization
problem:

(59)

where was defined in (19), and is the first column of
[defined in (17)]. The solution of (59) is given by

(60)

In contrast with the fullband and the proposed approaches,
the estimation of the desired signal in the MTF approach does
not necessitate the inverse of a matrix. In fact, it requires only

arithmetic operations.
Neglecting the STFT-ISTFT calculation (the second term),
the computational complexity of the MTF approach can be
expressed as

(61)

D. Comparison and Discussion

To make the comparison of the above three approaches
tractable, we rewrite the complexities of the subband ap-
proaches in terms of the fullband parameters by using the
relations and . Consequently, (54) and
(61) can be rewritten as

(62)

and

(63)

A comparison of (57), (62), and (63) indicates that the com-
plexity of the proposed subband approach is lower than that of
the fullband approach by a factor of but higher
than that of the MTF approach by a factor of .
For instance, for , , , and ,
the proposed approach complexity is reduced by a factor 100,
when compared to the fullband approach complexity and in-
creased by a factor 10 , when compared to the MTF approach
complexity. However, the relatively high computational com-
plexity of the fullband approach is compensated with a better
mse performance of the system identifier (see Section VII). On
the other hand, the substantial low complexity of the MTF ap-
proach results in an insufficient accuracy of the system estimate,
especially when the large window support assumption is not
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Fig. 7. (a) Measured impulse response and (b) its frequency response (sampling frequency = 16 kHz).

valid (e.g., when long impulse response duration is considered).
This point will be demonstrated in Section VII.

It can be seen from (62) that the computational complexity of
the proposed approach increases as we increase the number of
crossband filters. However, as was shown in the previous sec-
tion, this does not necessarily imply a lower steady-state mse in
subbands. Consequently, under appropriate conditions (i.e., low
SNR or fast time variations in the system), a lower mse can be
attained in each frequency-band with relatively few crossband
filters, resulting in low computational complexity. It is worth
noting that the complexities of both the fullband and the pro-
posed approaches may be reduced by exploiting the Toeplitz
and block-Toeplitz structures of the corresponding matrices in

the LS normal equations ( and , respectively) [38].

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results that verify
the theoretical derivations obtained in Sections IV and V. The
signals employed for testing include synthetic white Gaussian
signals as well as real speech signals. The performance of the
proposed approach is evaluated for several SNR and values
and compared to that of the fullband approach and the MTF ap-
proach. Results are obtained by averaging over 200 independent
runs.

We use the following parameters for all simulations presented
in this section: Sampling rate of 16 kHz; a Hamming synthesis
window of length (16 ms) with 50% overlap

; and a corresponding minimum energy analysis window
which satisfies the completeness condition (5) [27]. The im-
pulse response used in the experiments was measured in
an office which exhibits a reverberation time of about 300 ms.
Fig. 7 shows the impulse and frequency responses of the mea-
sured system. The length of the impulse response was truncated
to .

In the first experiment, we examine the system identifier per-
formance in the STFT domain under the assumptions made in

Section IV. That is, the STFT of the input signal is a zero-
mean white Gaussian process with variance . Note that
is not necessarily a valid STFT signal, as not always a sequence
whose STFT is given by may exist [43]. Similarly, the
STFT of the noise signal is also a zero-mean white Gaussian
process with variance , which is uncorrelated with . Fig. 8
shows the mse curves for the frequency-band as a func-
tion of the input SNR for and (similar
results are obtained for the other frequency-bands). The results
confirm that as the SNR increases, the number of crossband fil-
ters that should be estimated to achieve a minimal mse increases.
We observe, as expected from (51), that the intersection-points
of the mse curves are a monotonically increasing series. Further-
more, a comparison of Fig. 8(a) and (b) indicates that the inter-
section-points values decrease as we increase , as expected
from (50). This verifies that when the signal length increases
(while the SNR remains constant), more crossband filters need
to be used in order to attain the mmse.

In the second experiment, we demonstrate the proposed
theory on subband acoustic echo cancellation application (see
Fig. 1). The far-end signal is a speech signal and the local
disturbance consists of a zero-mean white Gaussian local
noise with variance . The echo canceller performance is
evaluated in the absence of near-end speech, since in such case
a double-talk detector (DTD) is often applied in order to freeze
the system adaptation process. A commonly used measure
for evaluating the performance of conventional AECs is the
echo-return loss enhancement (ERLE), defined in decibels by

ERLE (64)

where is the inverse STFT of the estimated echo signal
using crossband filters around each frequency-band. The
ERLE performance of a conventional fullband AEC, where the
echo signal is estimated by (55), is also evaluated. Fig. 9 shows



AVARGEL AND COHEN: SYSTEM IDENTIFICATION IN THE STFT DOMAIN WITH CROSSBAND FILTERING 1315

Fig. 8. MSE curves as a function of the input SNR for white Gaussian signals. (a) N = 200. (b) N = 1000.

Fig. 9. ERLE curves for the proposed subband approach and the conventional fullband approach as a function of the input SNR for a real speech input signal. (a)
Signal length is 1.5 s (N = 190). (b) Signal length is 2.56 s (N = 322).

the ERLE curves of both the fullband and the proposed ap-
proaches as a function of the input SNR obtained for a far-end
signal of length 1.5 s and for a longer signal of length 2.56 s.
Clearly, as the SNR increases, the performance of the proposed
algorithm can be generally improved (higher ERLE value can be
obtained) by using a larger number of crossband filters. Fig. 9(a)
shows that when the SNR is lower than 7 dB, estimating just
the band-to-band filter and ignoring all the cross-
band filters yields the maximal ERLE. Incorporating into the
proposed AEC two crossband filters decreases the
ERLE by approximately 5 dB. However, when considering SNR
values higher than 7 dB, the inclusion of two crossband filters

is preferable. It enables an increase of 10–20 dB in the
ERLE relative to that achieved by using only the band-to-band
filter. Similar results are obtained for a longer signal Fig. 9(b),
with the only difference that the intersection-points of the sub-
band ERLE curves move towards lower SNR values. A com-

parison of the proposed subband approach with the fullband ap-
proach indicates that higher ERLE values can be obtained by
using the latter, but at the expense of substantial increase in com-
putational complexity. The advantage of the fullband approach
in terms of ERLE performance stems from the fact that ERLE
criterion is defined in the time domain and fullband estimation
is also performed in the time domain.

In the third experiment, we compare the proposed approach
to the MTF approach and investigate the influence of the STFT
analysis window length on their performances. We use a
1.5-s length input speech signal and a white additive noise, as
described in the previous experiment. A truncated impulse re-
sponse with 256 taps (16 ms) is used. Fig. 10 shows the ERLE
curves of both the MTF and the proposed approaches as a func-
tion of the input SNR obtained for an analysis window of length

[16 ms, Fig. 10(a)] and for a longer window of
length [128 ms, Fig. 10(b)]. In both cases, we have
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Fig. 10. ERLE curves for the proposed subband approach and the commonly used multiplicative transfer function (MTF) approach as a function of the input SNR
for a real speech input signal and an impulse response 16-ms length. (a) Length of analysis window is 16 ms (N = 256). (b) Length of analysis window is 128
ms (N = 2048).

. As expected, the performance of the MTF ap-
proach can be generally improved by using a longer analysis
window. This is because the MTF approach heavily relies on
the assumption that the support of the analysis window is suffi-
ciently large compared with the duration of the system impulse
response. As the SNR increases, using the proposed approach
yields the maximal ERLE, even for long analysis window. For
instance, Fig. 10(b) shows that for 20-dB SNR, the MTF al-
gorithm achieves an ERLE value of 20 dB, whereas the in-
clusion of two crossband filters in the proposed ap-
proach increases the ERLE by approximately 10 dB. Further-
more, it seems to be preferable to reduce the window length,
as seen from Fig. 10(a), as it enables an increase of approxi-
mately 7 dB in the ERLE (for a 20-dB SNR) by using the pro-
posed method. A short window is also essential for the analysis
of nonstationary input signal, which is the case in acoustic echo
cancellation application. However, a short window support en-
tails additional crossband filters for performance improvement,
and correspondingly increases the computational complexity.

Another interesting point that can be concluded from Fig. 10
is that for low SNR values, a higher ERLE can be achieved by
using the MTF approach, even when the large support assump-
tion is not valid [see Fig. 10(a)].

VIII. CONCLUSION

We have derived explicit relations between the attainable
mmse in subbands and the power and length of the input signal
for a system identifier implemented in the STFT domain. We
showed that the mmse is achieved by using a variable number
of crossband filters, determined by the power ratio between the
input signal and the additive noise signal, and by the effective
length of input signal that can be used for the system identifi-
cation. Generally, the number of crossband filters that should
be utilized in the system identifier is larger for stronger and
longer input signals. Accordingly, during fast time variations
in the system, shorter segments of the input signal can be

employed, and consequently less crossband filters are useful.
However, when the time variations in the system become
slower, additional crossband filters can be incorporated into
the system identifier and lower mse is attainable. Furthermore,
each subband may be characterized by a different power ratio
between the input signal and the additive noise signal. Hence, a
different number of crossband filters may be employed in each
subband.

The strategy of controlling the number of crossband filters
is related to and can be combined with step-size control imple-
mented in adaptive echo cancellation algorithms, e.g., [44], [45].
Step-size control is designed for faster tracking during abrupt
variations in the system, while not compromising for higher
mse when the system is time invariant. Therefore, joint con-
trol of step-size and the number of crossband filters may fur-
ther enhance the performance of adaptive echo cancellation al-
gorithms.

APPENDIX I
DERIVATION OF (7)

Using (1) and (6), the STFT of can be written as

(65)

Substituting (3) into (65), we obtain

(66)

where

(67)
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may be interpreted as the STFT of using a composite anal-
ysis window . Substituting (2) and
(4) into (67), we obtain

(68)

where denotes convolution with respect to the time index ,
and

(69)

From (68), depends on rather than on and
separately. Substituting (68) into (66), we obtain (7)–(9).

APPENDIX II
DERIVATION OF (39)

Using the whiteness property of , the th term of

given in (38) can be derived as

(70)

Therefore, is nonzero only if
and

. Those conditions can be rewritten as

(71)

and

(72)
Substituting (71) into (72), we obtain

(73)

However, recall that , ,
then it is easy to verify from (71) that

(74)

From (73) and (74) we conclude that , so (71) reduces to
and we obtain (39).

APPENDIX III
DERIVATION OF (41)

The th term of from (40) can be written as

(75)

By using the fourth-order moment factoring theorem for zero-
mean complex Gaussian samples [34], (75) can be rewritten as

(76)

Using the whiteness property of , we can write (76) as

(77)

where

(78)

and

(79)

Recall that ranges from 0 to , and that and
range from 0 to (although for fixed , and values

only values of and contribute), (78) reduces to

(80)
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We now proceed with expanding . It is easy to verify
from (79) that and satisfy and

, therefore . In addition, satisfies
both

(81)

and

(82)

where (82) can be rewritten as

(83)
Writing as , we obtain

(84)

From (84), one value of , at the most, contributes to for a
fixed value of . Therefore, we can bound the range of , such
that values outside this range will not contribute to . Since

, we can use (84) to obtain

(85)

Now, since the size of is , should also range
from 0 to and therefore, (85) reduces to

(86)

Finally, since is independent of both and , it can be written
as

(87)

where
. Substituting (80)

and (87) into (77), and writing the result in a vector form yields
(41).
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