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Abstract—In this paper, we introduce cross-multiplicative
transfer function (CMTF) approximation for modeling linear
systems in the short-time Fourier transform (STFT) domain. We
assume that the transfer function can be represented by cross-mul-
tiplicative terms between distinct subbands. We investigate the
influence of cross-terms on a system identifier implemented in the
STFT domain and derive analytical relations between the noise
level, data length, and number of cross-multiplicative terms, which
are useful for system identification. As more data becomes avail-
able or as the noise level decreases, additional cross-terms should
be considered and estimated to attain the minimal mean-square
error (mse). A substantial improvement in performance is then
achieved over the conventional multiplicative transfer function
(MTF) approximation. Furthermore, we derive explicit expres-
sions for the transient and steady-state mse performances obtained
by adaptively estimating the cross-terms. As more cross-terms are
estimated, a lower steady-state mse is achieved, but the algorithm
then suffers from slower convergence. Experimental results vali-
date the theoretical derivations and demonstrate the effectiveness
of the proposed approach as applied to acoustic echo cancellation.

Index Terms—Multiplicative transfer function (MTF),
short-time Fourier transform (STFT), subband adaptive fil-
tering, system identification.

I. INTRODUCTION

I DENTIFYING linear time-invariant (LTI) systems in the
short-time Fourier transform (STFT) domain has been

studied extensively and is of major importance in many appli-
cations [1]–[7]. LTI system representation in the STFT domain
generally requires crossband filters between subbands [1], [8].
To avoid the crossband filters, a multiplicative transfer function
(MTF) approximation is often employed (e.g., [2], [5]). This
approximation relies on the assumption that the support of the
STFT analysis window is sufficiently large compared to the
duration of the system impulse response, and that the transfer
function of the system can be modeled as multiplicative. As
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the length of the analysis window increases, the MTF approx-
imation becomes more accurate. However, the length of the
input signal that can be employed for the system identification
is usually finite to enable tracking during time variations of the
system. Hence, as the length of the analysis window increases,
fewer observations in each frequency bin become available.

Recently, we have investigated the influence of the analysis
window length on the performance of a system identifier that
relies on the MTF approximation [9]. We showed that the min-
imum mean-square error (mse) attainable under this approxi-
mation can be decomposed into two error terms. The first term,
attributable to using a finite-support analysis window, is mono-
tonically decreasing as a function of the window length, while
the second term is a consequence of restricting the length of
the input signal and is monotonically increasing as a function
of the window length. Therefore, system identification perfor-
mance does not necessarily improve by increasing the length of
the analysis window. The signal-to-noise ratio (SNR) and the
input signal length determine the optimal length of the window.
We showed that as the SNR or input signal length decreases, a
shorter analysis window should be used.

In this paper, we introduce cross-multiplicative transfer
function (CMTF) approximation in the STFT domain. The
transfer function of the system is represented by cross-mul-
tiplicative terms between distinct subbands, and data from
adjacent frequency bins is used for the system identification.
Two identification schemes are introduced: One is an offline
scheme in the STFT domain based on the least-squares (LS)
criterion for estimating the CMTF coefficients. In the second
scheme, the cross-terms are estimated adaptively using the
least-mean-square (LMS) algorithm [10]. We analyze the
performances of both schemes and derive explicit expressions
for the obtainable minimum mse (mmse). The analysis reveals
important relations between the noise level, data length, and
number of cross-multiplicative terms, which are useful for
system identification. As more data becomes available or as the
noise level decreases, additional cross-terms should be consid-
ered and estimated to attain the mmse. In this case, a substantial
improvement in performance is achieved over the conventional
MTF approximation. For every data length and noise level
there exists an optimal number of useful cross-multiplicative
terms, so increasing the number of estimated cross-terms does
not necessarily imply a lower mse. Note that similar results
have been obtained in the context of system identification with
crossband filters [1].
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Fig. 1. System identification in the STFT domain. The unknown system h(n) is modeled by the block Ĥ in the STFT domain.

The main contribution of this work is a derivation of an ex-
plicit convergence analysis of the CMTF approximation, which
includes the MTF approach as a special case. We derive explicit
expressions for the transient and steady-state mse in frequency
bins for white Gaussian processes. At the beginning of the adap-
tation process, the length of the data is short, and only a few
cross-terms should be estimated, whereas as more data become
available more cross-terms can be used to achieve the mmse.
Consequently, the MTF approach is associated with faster con-
vergence, but suffers from higher steady-state mse. Estimation
of additional cross-terms results in a lower convergence rate, but
improves the steady-state mse with a small increase in compu-
tational cost. Experimental results with white Gaussian signals
and real speech signals validate the theoretical results derived in
this work, and demonstrate the relations between the number of
useful cross-terms and transient and steady-state mse.

This paper is organized as follows. In Section II, we introduce
the CMTF approximation for system identification in the STFT
domain. In Section III, we consider offline estimation of the
cross-terms, and derive an explicit expression for the attainable
mmse. In Section IV, we present an adaptive implementation of
the CMTF estimation and analyze the transient and steady-state
mse in subbands. Finally, in Section V, we present experimental
results which verify the theoretical derivations.

II. CMTF APPROXIMATION

In this section, we introduce an CMTF approximation for
system identification in the STFT domain. Throughout this
work, unless explicitly noted, the summation indexes range
from to .

Let an input and output of an unknown LTI system
be related by

(1)

where represents the impulse response of the system,
is an additive noise signal, is the signal component in the

system output, and denotes convolution. The STFT of is
given by [11]

(2)

where

(3)

denotes a translated and modulated window function, is a
real-valued analysis window of length is the frame index,

represents the frequency-bin index
is the translation factor, and denotes complex conjugation. A
system identifier operating in the STFT domain is illustrated in
Fig. 1, where the unknown system is modeled in the STFT
domain by a block . Applying the STFT to , we have in
the time–frequency domain [1]

(4)

The signal component in the system output is related to its input
in the STFT domain through crossband filters

(5)

where denotes a crossband filter of length from fre-
quency bin to frequency bin . The crossband filters depend
on both the system impulse response and the STFT param-
eters. The widely used MTF approximation [9] avoids cross-
band filters by assuming that the analysis window is long
and smooth relative to the impulse response so that is
approximately constant over the duration of . In this case,

, and consequently (5) reduces to
[12]

(6)
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where and is
the length of . Note that the MTF approximation (6)
approximates the time-domain linear convolution in (1) by a
circular convolution of the input signal’s th frame and the
system impulse response, using a frequency-bin product of the
corresponding discrete Fourier transforms (DFTs). In the limit,
for an infinitly long analysis window, the linear convolution
would be exactly multiplicative in the frequency domain. This
approximation is employed in some block frequency-domain
methods, which attempt to estimate the unknown system in
the frequency domain using block updating techniques (e.g.,
[13]–[16]).

Due to the finite length of the input signal, the MTF approx-
imation results in insufficient accuracy of the system estimate,
even for a long analysis window. This inaccuracy is attributable
to the fact that fewer observations become available in each fre-
quency band [9]. Furthermore, the exact STFT representation of
the system in (5) implies that the drawback of the MTF approx-
imation may be related to ignoring cross-terms between sub-
bands. Using data from adjacent frequency bins and including
cross-multiplicative terms between distinct subbands, we may
improve the system estimate accuracy without significantly in-
creasing the computational cost.

Specifically, let be a cross-term from frequency bin
to frequency bin and let be approximated by
cross-terms around frequency bin , i.e.,

(7)

Note that for , (7) reduces to the MTF approximation (6).
Equation (7) represents the CMTF approximation for modeling
an LTI system in the STFT domain.

III. OFFLINE SYSTEM IDENTIFICATION

In this section, we consider an offline scheme for estimating
the CMTF coefficients using an LS optimization criterion for
each frequency bin and derive an explicit expression for the ob-
tainable mmse.

Let

(8)

denote a finite-length time-trajectory of for frequency bin
, and let the vectors , and be defined similarly. Then,

(4) can be written in vector form as

(9)

Let and let

(10)

denote cross-terms for frequency bin . Then, the CMTF
approximation (7) can be written in vector form as

(11)

The LS estimate of is therefore given by

(12)

where we assume that is not singular. Substituting (12)
into (11), we obtain an estimate of the desired signal in the STFT
domain, using cross-terms.

A. MSE Analysis

We now derive an explicit expression for the mmse in the
STFT domain. To make the analysis mathematically tractable
we assume that and are zero-mean white Gaussian
signals with variances and , respectively, and that they are
statistically independent. The Gaussian assumption of the corre-
sponding STFT signals underlies the design of many speech-en-
hancement systems [17] and can be justified by a version of the
central limit theorem [18,Th. 4.4.2 ]. The following mse anal-
ysis is closely related to that derived in [1], and the reader is
referred to there for further details.

The (normalized) mse is defined as

(13)

where , and . Substituting
(12) into (13), the mse can be expressed as

(14)

where is the identity matrix of size . Equation (14) can
be rewritten as

(15)

where

(16)

(17)

Let denote the crossband filter from frequency bin to
frequency bin

(18)
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and let denote a column-stack concatenation of the filters

(19)

In addition, let us assume that is variance-ergodic and that
the length of the time-trajectories is sufficiently large, so that

. Accordingly,
using the fourth-order moment factoring theorem for zero-mean
complex Gaussian samples [19] and following a similar anal-
ysis to that given in [1], we obtain an explicit expression for

as follows:

(20)

where

(21)

(22)

and denotes the SNR. Equations (20)–(22) represent
the mmse obtained by using LS estimates of cross-terms.
The mmse is a monotonically decreasing function of .
Furthermore, it is easy to verify from (21) and (22) that

for low SNR, and for high SNR.
Hence, and must intersect at a certain SNR
value, denoted by . That is, for SNR values higher than

, a lower mse can be achieved by estimating
cross-terms rather than only cross-terms. Em-

ploying the conventional MTF approximation (i.e., ignoring all
the cross-terms), yields the minimal mse only when the SNR
is lower than . The SNR intersection point , ob-
tained by requiring that , is given by

(23)

where

(24)

Since is inversely proportional to , the number of
cross-terms that should be estimated in order to achieve the
mmse increases as we increase . Note that we implicitly as-
sume that during frames the system impulse response does
not change, and the estimated cross-terms are updated every
frames. Therefore, in case time variations in the system are slow,
we can increase and correspondingly increase the number of
estimated cross-terms to achieve a lower mse. These relations
indicate that for a given power and length of the input signal,
there exists an optimal number of estimated cross-terms that

achieves the minimal mse. Note that similar mse behavior was
demonstrated in the context of system identification with cross-
band filters [1].

B. Computational Complexity

The computational complexity of the proposed ap-
proach requires the solution of LS normal equations

[see (12)] for each frequency bin.
This results in arithmetic
operations when using the Cholesky decomposition [20]. Com-
puting the desired signal estimate (11) results in an additional

arithmetic operations. Assuming is sufficiently
large and neglecting the computations required for the forward
and inverse STFTs, the complexity associated with the CMTF
approach is given by

(25)

We observe that the computational complexity obtained by
using the CMTF approximation is times larger
than that obtained by using the MTF approximation. However,
incorporating cross-terms into the system model may yield
lower mse for stronger and longer input signals.

IV. ADAPTIVE SYSTEM IDENTIFICATION

In this section, we adaptively update the cross-terms in fre-
quency bins by the LMS algorithm [10] and derive explicit ex-
pressions for the transient and steady-state mse in subbands.

Let be an estimate of using adaptive cross-
terms around the frequency bin , i.e.,

(26)

where is an adaptive cross-term that represents
an estimate of the CMTF at frame index (recall
that due to periodicity of the frequency bins, the summa-
tion index is related to frequency bin ). Let

denote
adaptive cross-terms at the th frequency bin, and let

be the input data
vector corresponding to . Then, the estimated desired
signal from (26) can be rewritten as

(27)

The adaptive cross-terms are updated using the LMS
algorithm as

(28)

where

(29)

is the error signal in the th frequency bin, is defined in
(4), and is a step-size. Let be a vector containing the first
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element in each of the crossband filters around the th
frequency bin, i.e.,

(30)

In addition, let be the last
elements of the crossband filter [as defined in

(18)], let , and let
. Then, defining

(31)

as the misalignment vector and substituting (4), (5), and (27)
into (29), the error signal can be written as

(32)

where , and are the column-stack concate-
nations of , and

, respectively, and
and . Substituting (32) into (28), the LMS
update equation can be expressed as

(33)

where is the identity matrix.

A. MSE Analysis

We proceed with the mean-square analysis of the adaptation
algorithm under the assumptions made in Section III-A. The
analysis relies on the common assumption that is inde-
pendent of (e.g., [21], [22]).

1) Transient Performance: The transient mse is defined by

(34)

Using the whiteness property of the input signal, and substi-
tuting (32) into (34), the mse can be expressed as

(35)

In order to find an explicit expression for the transient mse, a
recursive formula for is required. From (33), we
obtain

(36)

Using the independence assumption, and the fourth-order mo-
ment factoring theorem for zero-mean complex Gaussian sam-
ples, the first term on the right side of (36) can be expressed as
(see Appendix A)

(37)

The evaluation of the last three terms in (36) is straightforward,
and they can be expressed as

(38a)

(38b)

(38c)

Substituting (37) and (38) into (36), we have an explicit recur-
sive expression for

(39)

where

(40)

(41)

Equations (35) and (39)–(41) represent the mse behavior in the
th frequency bin using adaptive cross-terms.
2) Stability: It is easy to verify from (35) and (39) that a

sufficient condition for mse convergence is that ,
which results in the following condition on the step-size :

(42)

The upper bound of is inversely proportional to , and as the
number of cross-terms increases, a lower step-size value should
be utilized, which may result in slower convergence. An optimal
step-size that results in the fastest convergence for each is
obtained by differentiating with respect to , which yields

(43)

By substituting (43) into (40), we obtain

(44)

Expectedly, we have , which indicates
that faster convergence is achieved by decreasing .

3) Steady-State Performance: We proceed with analyzing
the steady-state performance of the adaptive algorithm. Let us
first consider the mean convergence of the misalignment vector
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. From (33), and by using the whiteness property of ,
it is easy to verify that ; hence

(45)

where is defined in (30). This indicates that the adaptive
cross-terms converge in the mean to the first element in the cor-
responding crossband filters. Substituting (45) for in (35),
we find the minimum mse obtainable in the th frequency bin:

(46)

Now, substituting (46) into (35), the steady-state mse can be
expressed as

(47)

Provided that satisfies (42), such that the mean-square conver-
gence of the algorithm is guaranteed, the steady-state solution
of (39) is given by

(48)

Substituting (40) and (41) into (48), we obtain an explicit ex-
pression for . Accordingly, (47) can be written,
after some manipulations, as

(49)

Equations (46) and (49) provide an explicit expression for the
steady-state mse in frequency-bins. Note that implicitly
depends on (it is actually a decreasing function of ), and
therefore the influence of the number of estimated cross-terms
on the steady-state mse is not clear from (49). However,
since a smaller step-size is used for larger [see (42)], a lower
steady-state mse is expected as we increase the number of esti-
mated cross-terms.

B. Computational Complexity

The adaptation formula given in (28) requires com-
plex multiplications, complex additions, and one com-
plex subtraction to compute the error signal. Note that each
arithmetic operation is not carried out every input sample, but
once for every input samples, where denotes the decimation
factor of the STFT representation. Thus, the adaptation process
requires arithmetic operations for every input sam-
ples. Moreover, computing the desired signal estimate in (26)
results in an additional arithmetic operations. Hence, the
proposed adaptive approach requires arithmetic opera-
tions for every input samples and each frequency bin. When
compared to the MTF approach , the proposed ap-
proach involves an increase of only 8 arithmetic operations
for every input samples and every frequency bin.

C. Discussion

The expressions derived for the analysis of offline and adap-
tive schemes (Sections III and IV) are related to the problem of

model-order selection, where in our case the model order is de-
termined by the number of estimated cross-multiplicative terms.
Selecting the optimal model complexity for a given data set is
a fundamental problem in many system identification applica-
tions [23]–[29], and many criteria have been proposed for this
purpose. The Akaike information criterion (AIC) [28] and the
minimum description length (MDL) [29] are among the most
popular choices. Generally, the estimation error can be decom-
posed into two terms: a bias term, which is monotonically de-
creasing as a function of the model order, and a variance term,
which is respectively monotonically increasing. The optimal
model order is affected by the level of noise in the data and the
length of the observable data. As the SNR increases or as more
data is employable, the optimal model complexity increases,
and correspondingly additional cross-terms can be estimated to
achieve lower mse. At the beginning of the adaptation process,
the length of the data is short, and only a few cross-terms are es-
timated. As the adaptation process proceeds, more data can be
used, additional cross-terms can be estimated, and lower mse
can be achieved. These points will be demonstrated in the next
section.

V. EXPERIMENTAL RESULTS

In this section, we present two experiments to demonstrate
the theoretical results. The first examines the proposed approach
under white Gaussian signals, whereas the second experiment is
carried out in an acoustic echo cancellation scenario using real
speech signals. The performance of both offline and adaptive
schemes are evaluated, and a comparison is made with the con-
ventional fullband approach. The evaluation includes objective
quality measures, a subjective study of temporal waveforms, and
informal listening tests. For the adaptive system identification,
we use the normalized LMS (NLMS) algorithm [10] for up-
dating the cross-terms,1 instead of the LMS algorithm that was
used for the analysis. That is, the update formula (28) is now
modified to

(50)

where . In the following experiments, we use a Ham-
ming synthesis window of length with 50% overlap (i.e.,

), and a corresponding minimum-energy analysis window
that satisfies the completeness condition [30]. The sample rate
is 16 kHz.

A. Performance Evaluation for White Gaussian Input Signals

In the first experiment, we examine the system identifier
performance in the STFT domain for white Gaussian signals.
The input signal and the additive noise signal
are uncorrelated zero-mean white Gaussian processes with
variances and , respectively. The lengths of the signals
are 3 s. We model the impulse response as a nonstationary
stochastic process with an exponential decay envelope, i.e.,

, where is the unit step function,
is a unit-variance zero-mean white Gaussian noise, and

1The LMS algorithm is used in Section IV in order to make the mean-square
analysis mathematically tractable. Most adaptive filtering applications, however,
employ the NLMS algorithm, and it is used here for performance demonstration.
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Fig. 2. MSE curves as a function of the SNR using LS estimates of the cross-
terms (offline scheme), for white Gaussian signals of length 3 s.

TABLE I
AVERAGE RUNNING TIME IN TERMS OF CPU FOR SEVERAL K VALUES,

OBTAINED USING LS ESTIMATES OF THE CROSS-TERMS.
THE LENGTH OF THE INPUT SIGNAL IS 3 S

is the decay exponent. In the following, we use . To
maintain the large analysis-window support assumption, which
the CMTF approximation relies on, the length of the impulse
response is chosen to be eight times shorter than the length of
the analysis window ( and ). Fig. 2 shows
the mse curves , obtained by the offline scheme using
(13), as a function of the SNR. The cross-terms are estimated
using the LS criterion [see (12)]. The results confirm that as
the SNR increases, the number of cross-terms that should be
estimated to achieve the minimal mse increases. We observe
that when the SNR is lower than 20 dB, the conventional
MTF approximation yields the minimal mse. For
higher SNR values, the estimation of five cross-terms per
frequency-bin enables a substantial improvement
of 10 dB in the mse. Similar results are obtained for longer
signals, with the only difference being that the intersection
points of the mse curves move toward lower SNR values [as
expected from (23)]. The complexity of the proposed approach
is evaluated by computing the central processing unit (CPU)
running time2 of the LS estimation process for each . The
average running time in terms of CPU seconds is summarized
in Table I. We observe, as expected from (25), that the running
time of the proposed approach increases as more cross-terms
are estimated. For instance, the process of estimating five

2The simulations were all performed under MATLAB; v.7.2, on a Pentium
IV 2.2-GHz PC with 1 GB of RAM, running Microsoft Windows XP v.2002.

Fig. 3. Transient mse curves, obtained by adaptively updating the cross-terms
via (50), for white Gaussian signals of length 12 s and SNR = 30 dB.

TABLE II
AVERAGE RUNNING TIME IN TERMS OF CPU FOR SEVERAL K VALUES

AS OBTAINED BY ADAPTIVELY UPDATING THE CROSS-TERMS.
THE LENGTH OF THE INPUT SIGNAL IS 12 S

cross-terms is approximately four times slower than
that of the MTF approach.

Fig. 3 shows the transient mse curves for frequency bin
and SNR of 30 dB, as obtained by adaptively updating

the cross-terms using (50). The length of the signals is 12 s,
and the results are averaged over 1000 independent runs. Since
the step-size should be inversely proportional to to ensure
convergence [see (42) and (43)], we choose .
The results confirm that as more data is employed in the adap-
tation process, a lower mse is obtained by estimating additional
cross-terms. Clearly, as increases, a lower steady-state mse

is achieved; however, the algorithm then suffers from
slower convergence. The conventional MTF approach yields
faster convergence, but higher steady-state mse. Table II shows
the average running times in terms of CPU seconds, as obtained
by the adaptive scheme. Expectedly, higher running time is ob-
tained by increasing (see Section IV-B). However, in contrast
to the offline scheme (Table I), the additional computational cost
of estimating more cross-terms is small in the adaptive scheme.
Including five cross-terms , for instance, decreases the
steady-state mse by approximately 11 dB, with only a small in-
crease of 10% in computational complexity, when compared to
the MTF approach .

B. Acoustic Echo Cancellation Application

In the second experiment, we demonstrate the proposed
approach in an acoustic echo cancellation application [31]–[33]
using real speech signals. The experimental setup is depicted in
Fig. 4. We use an ordinary office with a reverberation time
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Fig. 4. Experimental setup. A speakerphone (Phoenix Audio DUET Executive
Conference Speakerphone) is connected to a laptop using its USB interface.
Another speakerphone without its cover shows the placement of the built-in mi-
crophone and loudspeaker.

of about 100 ms. The measured acoustic signals are recorded by
a DUET conference speakerphone, Phoenix Audio Technolo-
gies, which includes an omnidirectional microphone near the
loudspeaker (more features of the DUET product are available
at: http://phnxaudio.com.mytempweb.com/?tabid=62). The
far-end signal is played through the speakerphone’s built-in
loudspeaker, and received together with the near-end signal by
the speakerphone’s built-in microphone. The small distance
between the loudspeaker and the microphone yields relatively
high SNR values, which may justify the estimation of more
cross-terms. Employing the MTF approximation in this case,
and ignoring all the cross-terms, may result in insufficient echo
reduction. It is worth noting that estimation of crossband filters
[1], rather than CMTF, may be even more advantageous, but
estimation of crossband filters results in a significant increase
in computational complexity. In this experiment, the signals are
sampled at 16 kHz. A far-end speech signal is generated
by the loudspeaker and received by the microphone as an echo
signal together with a near-end speech signal and local
noise [collectively denoted by ]. The distance between
the near-end source and the microphone is 1 m. According to
the room reverberation time, the effective length of the echo
path is 100 ms, i.e., . We use a synthesis window
of length 200 ms (corresponding to ), which is
twice the length of the echo path. The influence of the window
length on the performance is investigated in the sequel (see
Section V-C). A commonly used quality measure for evaluating
the performance of acoustic echo cancellers (AECs) is the
echo-return loss enhancement (ERLE), defined in dB by

ERLE (51)

where

(52)

is the error signal, and is the inverse STFT of the esti-
mated echo signal using cross-terms in each frequency
bin.

TABLE III
ECHO-RETURN LOSS ENHANCEMENT (ERLE) FOR SEVERAL K VALUES

AND VARIOUS ANALYSIS WINDOW LENGTHS (N). THE EFFECTIVE

LENGTH OF THE ECHO PATH IS N = 1600

Fig. 5(a)–(c) show the far-end signal, near-end signal, and mi-
crophone signal, respectively. Note that a double-talk situation
(simultaneously active far-end and near-end speakers) occurs
between 4.65 and 6.1 s (indicated by two vertical dotted lines).
Since such a situation may cause divergence of the adaptive al-
gorithm, a double-talk detector (DTD) is usually employed to
detect near-end signal and freeze the adaptation [34], [35]. Since
the design of a DTD is beyond the scope of this paper, we man-
ually choose the periods where double-talk occurs and freeze
the adaptation in these intervals. Fig. 5(d)–(g) show the error
signal obtained by using and , respectively,
where the cross-terms are adaptively updated by the NLMS al-
gorithm using a step-size . The performance
of a conventional fullband AEC, where the echo signal is esti-
mated in the time domain [33], is also evaluated [see Fig. 5(h)].
The NLMS algorithm is used for the fullband approach with a
step-size value of 0.01 to insure stability.

Table III shows the ERLE values computed after conver-
gence of the adaptive algorithms for various window lengths:

, and (the influence of the anal-
ysis window length on the performance will be addressed
in Section V-C). Clearly, the proposed CMTF approach is
considerably more advantageous, in terms of ERLE, than the
conventional MTF approach. For example when ,
a substantial increase of 4.5 dB in the ERLE is obtained by
estimating only 3 cross-terms ( , whereas an additional
1.9-dB increase is achieved by including five cross-terms

. We observe from Fig. 5 that at the beginning of
the adaptation, the convergence rate is slower for larger ,
which initially results in higher error. The slower convergence
is attributable to the relatively small step-size forced by esti-
mating more cross-terms [see (42)]. However, as the adaptation
proceeds, a smaller error is attained as more cross-terms are
estimated. The results indicate that the optimal number of
cross-terms that should be estimated in order to achieve the
maximal ERLE is 5 . It is worth noting, however, that
a higher ERLE could be achieved for , if the adaptation
process was longer. Subjective listening tests confirm that the
proposed CMTF approach achieves a perceptual improvement
in speech quality over the conventional MTF approach (audio
files are available online [36]).

A comparison of the proposed approach with the fullband
approach indicates that the latter achieves the maximal ERLE
value (see Table III), and its convergence rate is inferior only to
the MTF approach. However, the high ERLE value is achieved
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Fig. 5. Speech waveforms and error signals e (n), obtained by adaptively updating the cross-terms via (50). A double-talk situation is indicated by vertical
dotted lines. (a) Far-end signal. (b) Near-end signal. (c) Microphone signal. (d)—(h) Error signals for K = 0 (MTF approximation), K = 1; K = 2;K = 4, and
the conventional fullband approach, respectively. The length of the analysis window is twice the length of the echo path (N = 2N ).

at the expense of a substantial increase in computational com-
plexity. Specifically for , running time measurements
indicate that the fullband approach is approximately 33 times
slower (233 s) than the proposed approach (7 s). Moreover, note
that the performance improvement achieved by the fullband ap-
proach is not very significant (2.3 dB for , when
compared to ), so that one can alternatively employ the
CMTF approach with five cross-terms to achieve com-
putational efficiency. It should be noted that the relatively slow
convergence of the proposed CMTF approach is a consequence
of using a very long analysis window, which reduces the up-
date rate of the adaptive cross-terms (assuming that the rela-
tive overlap between consecutive windows is retained). Due to
the long echo path impulse response, a relatively long window
is necessary to maintain the large support assumption. In fact,
the CMTF approach (for any ) would suffer from slow con-
vergence and bad tracking capabilities whenever the unknown
system impulse response is long. As a result, applications like
relative transfer function (RTF) identification [2], in which the
unknown impulse response is much shorter, might be more suit-
able for using the CMTF approximation.

It is worthwhile noting that the relatively small ERLE values
obtained by both fullband and subband approaches, may be
attributable to the nonlinearity introduced by the loudspeaker
and its amplifier. Estimating the overall nonlinear system by
the LTI model in (1) yields a model mismatch that degrades
the system estimate accuracy. Several techniques for nonlinear

acoustic echo cancellation have been proposed (e.g., [37],
[38]). However, combining such techniques with the CMTF
approximation is beyond the scope of this paper.

C. Influence of the Analysis Window Length

Next, we investigate the influence of the STFT analysis
window length on the CMTF performance. We repeated
the last experiment with various window lengths and computed
the ERLE for each (see Table III). As expected, the per-
formance of the CMTF approach can be generally improved
by using a longer analysis window. This is because CMTF
heavily relies on the assumption of a long analysis window
compared to the length of the system impulse response. Note
that the fullband approach outperforms the proposed approach
in terms of steady-state ERLE, even for a long analysis window

. We observe that as the window length increases,
fewer cross-terms should be estimated to achieve the maximal
ERLE. For instance, when the length of the window is equal
to that of the impulse response , nine cross-terms
should be estimated , whereas when the window length
is increased by a factor of 4 , the maximal ERLE is
achieved with the estimation of only three cross-terms .
Further increasing the window length would ultimately make
the MTF approach a preferable choice, with no cross-terms.
This phenomenon is due to the fact that by increasing the
analysis window length while retaining the relative overlap
between consecutive windows (i.e., the ratio is fixed),
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TABLE IV
ECHO-RETURN LOSS ENHANCEMENT (ERLE) FOR SEVERAL K VALUES, IN

THE PRESENCE OF NARROWBAND NOISE UNDER VARIOUS SNR CONDITIONS

fewer observations in each frequency bin are available, which
increases the variance of the system estimate. Thus, the optimal
model order decreases, and correspondingly fewer cross-terms
need to be estimated to achieve higher ERLE.

D. Performance Evaluation Under Presence of Narrowband
Noise Signal

In the third experiment, we demonstrate the effectiveness of
the proposed approach over the fullband approach in the pres-
ence of a narrowband noise signal. The noise signal is generated
using a white Gaussian signal to excite a bandpass filter with
bandwidth of 150 Hz and a center frequency of 7.8 kHz. The re-
sulting narrowband noise signal is then added to the microphone
signal , and the experiment described in Section V-B is re-
peated under various SNR conditions. Table IV shows the ERLE
obtained for SNR values of 5, 0, 5, and 10 dB, and for anal-
ysis window of length . Clearly, as the SNR increases,
the performance of the proposed approach, as well as that of
the fullband approach, is generally improved. We observe that
the performance degradation of the proposed CMTF approach,
when compared to the noiseless scenario (see Table III), is less
substantial than that of the fullband approach. Moreover, when
considering low SNR values, the CMTF approach outperforms
the fullband approach. For instance, for 5 dB SNR, incorpo-
rating five cross-terms enables an increase of 3.2 dB
in the ERLE relative to that achieved by the fullband approach.
This is attributable to the fact that the noise is present in only a
few frequency bins. By using the proposed approach, the system
estimate is degraded only in these particular frequency bins, and
the overall estimate is less affected by the noise. In the fullband
approach, however, the estimation is carried out in the time do-
main, so the influence of the noise is much more devastating.
This experiment shows that for narrowband noise, the ERLE and
computational efficiency can be improved by using the proposed
CMTF approach, compared to using the fullband approach.

VI. CONCLUSION

We have introduced an CMTF approximation for identifying
an LTI system in the STFT domain. The cross-terms in each
frequency bin are estimated either offline by using the LS cri-
terion, or adaptively by using the LMS (or NLMS) algorithm.
We have derived explicit relations between the attainable mmse

and the power and length of the input signal. We showed that
the number of cross-terms that should be utilized in the system
identifier is larger for stronger and longer input signals. Conse-
quently, for high SNR values and longer input signals, the pro-
posed CMTF approach outperforms the conventional MTF ap-
proximation. This improvement is due to the fact that data from
adjacent frequency-bins becomes more reliable and may be ben-
eficially utilized for the system identification.

In addition, we have analyzed the transient and steady-state
mse performances obtained by adaptively estimating the
cross-terms. We showed that the MTF approximation yields
faster convergence, but also results in higher steady-state mse.
As the adaptation process proceeds, more data is employable,
and lower mse is achieved by estimating additional cross-terms.
Accordingly, during rapid time variations of the system, fewer
cross-terms are useful. However, when the system time varia-
tions become slower, additional cross-terms can be incorporated
into the system identifier and lower mse is attainable.

Experimental results corresponding to an acoustic echo can-
cellation scenario have demonstrated the advantage of the pro-
posed approach. It is shown that a substantial improvement is
achieved over the MTF approximation without significantly in-
creasing the computational cost. Moreover, compared to the
conventional fullband approach, the proposed approach yields
a substantial decrease in computational complexity with only
a slight degradation in performance. Furthermore, for additive
narrowband noise, the CMTF approach outperforms the full-
band approach. It should be noted that for reasons of conver-
gence rate, applications that involve short impulse responses
(e.g., identification of speech source coupling between sensors
[39]) are more suitable for using the CMTF approximation due
to the requirement of a large STFT analysis-window support.

Adaptive control of cross-terms is related to filter-length
control [40]–[44]. Filter-length control algorithms dynamically
adjust the number of filter taps and provide a balance between
complexity, convergence rate and steady-state performance.
By employing filter-length control techniques, an algorithm
for adaptively controlling the number of cross-terms may
be developed for both faster convergence rate and smaller
steady-state mse. This may further improve the performance in
many applications that employ the MTF approximation.

APPENDIX A
DERIVATION OF (37)

Using the independence assumption of and , the
first term on the right of (36) can be expressed as

(53)

where

(54)

and

(55)
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Using the whiteness property of reduces to

(56)

where is the identity matrix of size .
The th term of in (55) can be written as

(57)

where the index sums over integer values for which the sub-
scripts of are defined. By using the fourth-order moment fac-
toring theorem for zero-mean complex Gaussian samples [[19],
p. 90], (57) can be rewritten as

(58)

where by using the whiteness property of , we obtain

(59)

Since ranges from 0 to in (57) reduces to

(60)

Substituting (56) and (60) into (53) yields (37).
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