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Multichannel Eigenspace Beamforming in a
Reverberant Noisy Environment With Multiple

Interfering Speech Signals
Shmulik Markovich, Sharon Gannot, Senior Member, IEEE, and Israel Cohen, Senior Member, IEEE

Abstract—In many practical environments we wish to extract
several desired speech signals, which are contaminated by non-
stationary and stationary interfering signals. The desired signals
may also be subject to distortion imposed by the acoustic room
impulse responses (RIRs). In this paper, a linearly constrained
minimum variance (LCMV) beamformer is designed for ex-
tracting the desired signals from multimicrophone measurements.
The beamformer satisfies two sets of linear constraints. One set
is dedicated to maintaining the desired signals, while the other
set is chosen to mitigate both the stationary and nonstationary
interferences. Unlike classical beamformers, which approximate
the RIRs as delay-only filters, we take into account the entire
RIR [or its respective acoustic transfer function (ATF)]. The
LCMV beamformer is then reformulated in a generalized side-
lobe canceler (GSC) structure, consisting of a fixed beamformer
(FBF), blocking matrix (BM), and adaptive noise canceler (ANC).
It is shown that for spatially white noise field, the beamformer
reduces to a FBF, satisfying the constraint sets, without power
minimization. It is shown that the application of the adaptive
ANC contributes to interference reduction, but only when the
constraint sets are not completely satisfied. We show that relative
transfer functions (RTFs), which relate the desired speech sources
and the microphones, and a basis for the interference subspace
suffice for constructing the beamformer. The RTFs are estimated
by applying the generalized eigenvalue decomposition (GEVD)
procedure to the power spectral density (PSD) matrices of the
received signals and the stationary noise. A basis for the interfer-
ence subspace is estimated by collecting eigenvectors, calculated
in segments where nonstationary interfering sources are active
and the desired sources are inactive. The rank of the basis is then
reduced by the application of the orthogonal triangular decom-
position (QRD). This procedure relaxes the common requirement
for nonoverlapping activity periods of the interference sources.
A comprehensive experimental study in both simulated and real
environments demonstrates the performance of the proposed
beamformer.

Index Terms—Array signal processing, interference cancella-
tion, speech enhancement, subspace methods.

I. INTRODUCTION

S PEECH enhancement techniques, utilizing microphone ar-
rays, have attracted the attention of many researchers for

the last 30 years, especially in hands-free communication tasks.
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Usually, the received speech signals are contaminated by inter-
fering sources, such as competing speakers and noise sources,
and also distorted by the reverberating environment. Whereas
single microphone algorithms might show satisfactory results in
noise reduction, they are rendered useless in competing speaker
mitigation task, as they lack the spatial information, or the sta-
tistical diversity used by multimicrophone algorithms. Here we
address the problem of extracting several desired sources in a
reverberant environment containing both nonstationary (com-
peting speakers) and stationary interferences.

Two families of microphone array algorithms can be defined,
namely, the blind source separation (BSS) family and the
beamforming family. BSS aims at separating all the involved
sources, regardless of their attribution to the desired or inter-
fering sources [1]. On the other hand, the beamforming family
of algorithms, concentrate on enhancing the sum of the desired
sources while treating all other signals as interfering sources.
The BSS family of algorithms exploit the independence of
the involved sources. Independent component analysis (ICA)
algorithms [2], [3] are commonly applied for solving the BSS
problem. The ICA algorithms are distinguished by the way the
source independence is imposed. Commonly used techniques
include second-order statistics [4], high-order statistics [5],
and information theoretic-based measures [6]. BSS methods
can also be used in reverberant environments, but they tend to
get very complex (for time domain approaches [7]) or have an
inherent problem of permutation and gain ambiguity [8] (for
frequency domain algorithms [3]).

Our proposed algorithm belongs to the beamformers family
of algorithms. The term beamforming refers to the design of a
spatio–temporal filter. Broadband arrays comprise a set of fil-
ters, applied to each received microphone signal, followed by a
summation operation. The main objective of the beamformer is
to extract a desired signal, impinging on the array from a spe-
cific position, out of noisy measurements thereof. The simplest
structure is the delay-and-sum beamformer, which first com-
pensates for the relative delay between distinct microphone sig-
nals and then sums the steered signal to form a single output.
This beamformer, which is still widely used, can be very ef-
fective in mitigating noncoherent, i.e., spatially white, noise
sources, provided that the number of microphones is relatively
high. However, if the noise source is coherent, the noise reduc-
tion (NR) is strongly dependent on the direction of arrival of
the noise signal. Consequently, the performance of the delay-
and-sum beamformer in reverberant environments is often in-
sufficient. Jan and Flanagan [9] extended the delay-and-sum
concept by introducing the so called filter-and-sum beamformer.
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This structure, designed for multipath environments, namely re-
verberant enclosures, replaces the simpler delay compensator
with a matched filter. The array beam-pattern can generally be
designed to have a specified response. This can be done by
properly setting the values of the multichannel filters’ weights.
Statistically optimal beamformers are designed based on the
statistical properties of the desired and interference signals. In
general, they aim at enhancing the desired signals, while re-
jecting the interfering signals. Several criteria can be applied in
the design of the beamformer, e.g., maximum signal-to-noise
ratio (MSNR), minimum mean-squared error (MMSE), min-
imum variance distortionless response (MVDR) and LCMV. A
summary of several design criteria can be found in [10] and [11].
Cox et al. [12] introduced an improved adaptive beamformer
that maintains a set of linear constraints as well as a quadratic
inequality constraint.

In [13], a multichannel Wiener filter (MWF) technique was
proposed. The MWF produces an MMSE estimate of the de-
sired speech component in one of the microphone signals, hence
simultaneously performing noise reduction and limiting speech
distortion. In addition, the MWF is able to take speech distortion
into account in its optimization criterion, resulting in the speech
distortion weighted multichannel Wiener filter (SDW-MWF)
[14]. In an MVDR beamformer [15], [16], the power of the
output signal is minimized under the constraint that signals ar-
riving from the assumed direction of the desired speech source
are processed without distortion. A widely studied adaptive im-
plementation of this beamformer is the GSC [17]. The standard
GSC consists of a spatial preprocessor, i.e., an FBF and a BM,
combined with a multichannel ANC. The FBF provides a spa-
tial focus on the speech source, creating a so-called speech ref-
erence; the BM steers nulls in the direction of the speech source,
creating so-called noise references, and the multichannel ANC
eliminates the noise components in the speech reference that are
correlated with the noise references. Several researchers (e.g.,
Er and Cantoni [18]) have proposed modifications to the MVDR
for dealing with multiple linear constraints, denoted LCMV.
Their work was motivated by the desire to apply further con-
trol to the array/beamformer beam-pattern, beyond that of a
steer-direction gain constraint. Hence, the LCMV can be ap-
plied to construct a beam-pattern satisfying certain constraints
for a set of directions, while minimizing the array response in all
other directions. Breed and Strauss [19] proved that the LCMV
extension has also an equivalent GSC structure, which decou-
ples the constraining and the minimization operations. The GSC
structure was reformulated in the frequency domain, and ex-
tended to deal with the more complicated general ATFs case
by Affes and Grenier [20] and later by Gannot et al. [21]. The
latter frequency-domain version, which takes into account the
reverberant nature of the enclosure, was nicknamed the Transfer
Function Generalized Sidelobe Canceler (TF-GSC).

Several beamforming algorithms based on subspace methods
were developed. Ephraim and Van Trees [22] considered the
single-microphone scenario. The eigenvalue decomposition
(EVD) of the noisy speech correlation matrix is used to deter-
mine the signal and noise subspaces. Each of the eigenvalues of
the signal subspaces is then processed to obtain the minimum
distorted speech signal under a permissible level of residual
noise at the output. Hu and Loizou [23] extended this method

to deal with the colored noise case by using the GEVD rather
than the EVD as in the white noise case. Gazor et al. [24]
propose to use a beamformer based on the MVDR criterion
and implemented as a GSC to enhance a narrowband signal
contaminated by additive noise and received by multiple sen-
sors. Under the assumption that the direction of arrival (DOA)
entirely determines the transfer function relating the source and
the microphones, it is shown that determining the signal sub-
space suffices for the construction of the algorithm. An efficient
DOA tracking system, based on the Projection Approximation
Subspace Tracking (PASTd) algorithm [25] is derived. An
extension to the wide-band case is presented by the same
authors [26]. However, the demand for a delay-only impulse
response is still not relaxed. Affes and Grenier [20] apply the
PASTd algorithm to enhance speech signal contaminated by
spatially white noise, where arbitrary ATFs relate the speaker
and the microphone array. The algorithm proves to be efficient
in a simplified trading-room scenario, where the direct to rever-
berant ratio (DRR) is relatively high and the reverberation time
relatively low. Doclo and Moonen [27] extend the structure to
deal with the more complicated colored noise case by using
the generalized singular value decomposition (GSVD) of the
received data matrix. Warsitz et al. [28] propose to replace the
BM in [21]. They use a new BM based on the GEVD of the
received microphone data, providing an indirect estimation of
the ATFs relating the desired speaker and the microphones.

Affes et al. [29] extend the structure presented in [24] to deal
with the multisource case. The constructed multisource GSC,
which enables multiple target tracking, is based on the PASTd
algorithm and on constraining the estimated steering vector to
the array manifold. Asano et al. [30] address the problem of
enhancing multiple speech sources in a non-reverberant envi-
ronment. The Multiple Signal Classification (MUSIC) method,
proposed by Schmidt [31], is utilized to estimate the number of
sources and their respective steering vectors. The noise compo-
nents are reduced by manipulating the generalized eigenvalues
of the data matrix. Based on the subspace estimator, a LCMV
beamformer is constructed. The LCMV constraints set consists
of two subsets: one for maintaining the desired sources and the
second for mitigating the interference sources. Benesty et al.
[32] also address beamforming structures for multiple input sig-
nals. In their contribution, derived in the time-domain, the mi-
crophone array is treated as a multiple-input–multiple-output
(MIMO) system. In their experimental study, it is assumed that
the filters relating the sources and the microphones are a priori
known, or alternatively, that the sources are not active simul-
taneously. Reuven et al. [33] deal with the scenario in which
one desired source and one competing speech source coexist
in noisy and reverberant environment. The resulting algorithm,
denoted Dual source Transfer Function Generalized Sidelobe
Canceler (DTF-GSC) is tailored to the specific problem of two
sources and cannot be easily generalized to the multiple desired
and interference sources.

In this paper, we propose a novel beamforming technique,
aiming at the extraction of multiple desired speech sources,
while attenuating several interfering sources (both stationary
and nonstationary) in a reverberant environment. The resulting
LCMV beamformer is first reformulated in a GSC structure.
It is shown that in the spatially white sensor noise case only
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the FBF branch is active. The ANC branch contributes to the
interference reduction only when the constraints set is not ac-
curately estimated. We derive a practical method for estimating
all components of the eigenspace-based beamformer.

We first show that the desired signals’ RTFs (defined as the
ratio between ATFs which relate the speech sources and the mi-
crophones) and a basis of the interference subspace suffice for
the construction of the beamformer. The RTFs of the desired
signals are estimated by applying the GEVD procedure to the
received signals’ PSD matrix and the stationary noise PSD ma-
trix. A basis spanning the interference subspace is estimated
by collecting eigenvectors, calculated in segments in which the
nonstationary signals are active and the desired signals are inac-
tive. A novel method, based on the QRD, of reducing the rank
of interference subspace is derived. This procedure relaxes the
common requirement for nonoverlapping activity periods of the
interference signals.

The structure of the paper is as follows. In Section II the
problem of extracting multiple desired sources contaminated
by multiple interference in a reverberant environment is intro-
duced. In Section III, the multiple constrained LCMV beam-
former is presented and stated in a GSC structure. In Section IV,
we describe a novel method for estimating the interferences’
subspace as well as a GEVD-based method for estimating the
RTFs of the desired sources. The entire algorithm is summarized
in Section V. In Section VI, we present a typical test scenario,
discuss some implementation considerations of the algorithm,
and show experimental results for both a simulated room and a
real conference room scenarios. We draw some conclusions and
summarize our work in Section VII.

II. PROBLEM FORMULATION

Consider the general problem of extracting desired
sources, contaminated by stationary interfering sources
and nonstationary sources. The signals are received by

sensors arranged in an arbitrary array. Each of the involved
signals undergo filtering by the RIR before being picked up by
the microphones. The reverberation effect can be modeled by
a finite-impulse response (FIR) filter operating on the sources.
The signal received by the th sensor is given by

(1)

where , , and
are the desired sources, the sta-

tionary and nonstationary interfering sources in the room,
respectively. We define , , and to be the
linear time invariant (LTI) RIRs relating the desired sources,
the interfering sources, and each sensor , respectively.
is the sensor noise. is transformed into the short-time

Fourier transform (STFT) domain with a rectangular window
of length , yielding

(2)

where is the frame number and is the frequency index. The
assumption that the window length is much larger than the RIR
length ensures the multiplicative transfer function (MTF) ap-
proximation [34] validness.

The received signals in (2) can be formulated in a vector no-
tation

(3)

where

Assuming the desired speech signals, the interference and the
noise signals to be uncorrelated, the received signals’ correla-
tion matrix is given by

(4)
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where

where is the conjugate-transpose operation, and is
a square matrix with the vector in brackets on its main diagonal.

is the sensor noise correlation matrix usually assumed
to be spatially white, i.e., where
is the identity matrix.

III. PROPOSED METHOD

In this section, the proposed algorithm is derived. First, the
LCMV beamformer is introduced and reformulated in a GSC
structure.1 In the following subsections, we define a set of con-
straints used for extracting the desired sources and mitigating
the interference sources. Then we replace the constraints set by
an equivalent set which can be more easily estimated. Finally,
we relax our constraint for extracting the exact input signals, as
transmitted by the sources, and replace it by the extraction of
the desired speech components at an arbitrarily chosen micro-
phone. The outcome of the latter, a modified constraints set, will
constitute a feasible system.

A. LCMV Beamformer and the GSC Formulation

A beamformer is a system realized by processing each of the
sensor signals by the filters and summing the
outputs. The beamformer output is given by

(5)

where

(6)

The filters are set to satisfy the LCMV criterion with multiple
constraints

(7)

where

(8)

is the constraints set. The well-known solution to (7) is given by
[10]

(9)

1The authors wish to express their gratitude to Dr. E. Habets for the fruitful
discussions and for his assistance in clarifying the GSC formulation.

Fig. 1. Proposed LCMV beamformer reformulated in a GSC structure.

The LCMV can be implemented using the GSC formulation
[19]. In this structure, the filter set can be split to two
orthogonal components [10], one in the constraint plane and the
other in the orthogonal subspace

(10)

where is the projection matrix to the “null” subspace,
denoted BM, i.e., . is the FBF satis-
fying the constraints set, is orthogonal to , and

is a set of ANC filters adjusted to obtain the (uncon-
strained) minimization. In the original GSC structure, the filters

are calculated adaptively using the Least Mean Squares
(LMS) algorithm.

Using [10] the FBF is given by

(11)

The BM can be determined as the projection matrix to the null
subspace of the column-space of

(12)
and a closed-form (Wiener) solution for is

(13)

A block diagram of the GSC structure is depicted in Fig. 1. The
GSC comprises three blocks. The FBF is responsible for the
alignment of the desired sources and the BM blocks the direc-
tional signals. The output of the BM, denoted is then
processed by the ANC filters for further reduction of
the residual interference signals at the output. More details re-
garding each block of the GSC blocks will be given in the sub-
sequent subsections for the various definitions of the constraints
set.
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B. Constraints Set

We start with the straightforward approach, in which the
beam-pattern is constrained to cancel out all interfering sources
while maintaining all desired sources (for each frequency bin).
Note, that unlike the DTF-GSC approach [33], the stationary
noise sources are treated similarly to the interference (nonsta-
tionary) sources. We therefore define the following constraints.
For each desired source we apply the constraint

(14)

For each interfering source, both stationary and nonstationary,
and , we apply

(15)

and

(16)

Define the total number of signals in
the environment (including the desired sources, stationary in-
terference signals, and the nonstationary interference signals).
Assuming the column-space of is linearly independent
(i.e., the ATFs are linearly independent), it is obvious that for
the solution in (9) to exist we require that the number of mi-
crophones will be greater or equal the number of constraints,
namely . It is also understood that whenever the con-
straints contradict each other, the desired signal constraints will
be preferred.

Summarizing, we have a constraint matrix

(17)

and a desired response vector

(18)

Under these definitions, and using (3) and (11), the FBF output
is given by

(19)

Using (13) and (4) the ANC filters are given by

(20)

Hence, using we have

(21)

Now, using (11) we have

(22)

For the spatially white sensor noise case,
, the ANC filters simplifies to

(23)

Using once more the projection identity ,
we finally conclude that . Hence, the lower branch
of the GSC beamformer has no contribution to the output signal
in this case, and the LCMV simplifies to the FBF beamformer,
i.e., no minimization of the output power is performed.

The LCMV beamformer output is therefore given by (19).
It comprises a sum of two terms: the first is the sum of all the
desired sources and the second is the response of the array to
the sensor noise.

C. Equivalent Constraints Set

The matrix in (17) comprises the ATFs relating the
sources and the microphones , , and .
Hence, the solution given in (11) requires an estimate of the
various filters. Obtaining such estimates might be a cumbersome
task in practical scenarios, where it is usually required that the
sources are not active simultaneously (see, e.g., [32]). We will
show now that the actual ATFs of the interfering sources can
be replaced by the basis vectors spanning the same interference
subspace, without sacrificing the accuracy of the solution.

Let

(24)

be the number of interferences, both stationary and nonsta-
tionary, in the environment. For conciseness we assume that
the ATFs of the interfering sources are linearly independent
at each frequency bin, and define to be any
basis2 that spans the column space of the interfering sources

. Hence, the following identity
holds:

(25)

where is comprised of the projection coefficients
of the original ATFs on the basis vectors. When the ATFs as-
sociated with the interference signals are linearly independent,

is an invertible matrix.

2If this linear independency assumption does not hold, the rank of the basis
can be smaller than� in several frequency bins. In this contribution, we assume
the interference subspace to be full rank.
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Define

(26)

where is a identity matrix. Multiplication by

of both sides of the original constraints set in (8),
with the definitions (17), (18), yields

(27)

Starting with the left-hand side of (27) we have

where the equivalent constraint matrix is defined as

(28)

For the right-hand side of (27) we have

Hence, it is shown that that satisfies the original con-
straints set also satisfies the equivalent
constraints set

(29)

Since the constraints are satisfied by the FBF branch, and since
the original LCMV beamformer and the LCMV beamformer
with the equivalent constraints set are derived similarly, it is also
guaranteed that in the later structure becomes zero for the
spatially white sensor noise case.

D. Modified Constraints Set

Both the original and equivalent constraints sets in (17) and
(28) respectively, require estimates of the desired sources ATFs

. Estimating these ATFs might be a cumbersome task,

due to the large order of the respective RIRs. In the current sec-
tion we relax our requirement for a distortionless beamformer
[as depicted in the definition of in (18)] and replace it by con-
straining the output signal to be comprised of the desired speech
components at an arbitrarily chosen microphone.

Define a modified vector of desired responses

where microphone #1 was arbitrarily chosen as the reference
microphone. The modified FBF satisfying the modified re-

sponse is then given by

(30)

Indeed, using the equivalence between the column subspaces of
and , the FBF output is now given by

(31)

as expected from the modified constraint response. As men-
tioned before, estimating the desired signal ATFs is a cumber-
some task. Nevertheless, in Section IV we will show that a prac-
tical method for estimating the RTF can be derived. We will
therefore reformulate in the sequel the constraints set in terms
of the RTFs.

It is easily verified that the modified desired response is re-
lated to the original desired response (18) by

where

and

Now, a beamformer having the modified beam-pattern should
satisfy the modified constraints set

Hence,
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Define

(32)

where

(33)

with

(34)

defined as the RTF with respect to microphone #1.
Finally, the modified FBF is given by

(35)

and its corresponding output is therefore given by

(36)

The modified beamformer output therefore comprises the sum
of the desired sources as measured at the reference microphone
(arbitrarily chosen as microphone #1) and the sensor noise
contribution. It is easily verified that , the projection
matrix to the modified constraint matrix , also satisfies

(see similar arguments in [33]) and hence
the ANC branch becomes zero for the spatially white sensor
noise, yielding .

E. Residual Noise Cancellation

It was shown in the previous subsection that the proposed
LCMV beamformer can be formulated in a GSC structure. Note
a profound difference between the proposed method and the al-
gorithms presented in [21] and [33]. While the purpose of the
ANC in both the TF-GSC and DTF-GSC structures is to elimi-
nate the stationary-directional noise source passing through the
BM, in the proposed structure all directional signals, including
the stationary directional noise signal, are treated by the FBF
branch and the ANC does not contribute to the interference can-
cellation, when the sensor noise is spatially white.

However, in non-ideal scenarios the ANC branch has a sig-
nificant contribution to the overall performance of the proposed
beamformer. The proposed method requires an estimate of the
RTFs relating each of the desired sources and the microphones,
and a basis that spans the ATFs relating each of the interfering
source and the microphones. As these quantities are not known,
we use instead estimates thereof. The estimation procedure will
be discussed in Section IV. In case no estimation errors occur,
the BM outputs consist of solely the sensor noise. When the
sensor noise is spatially white, the ANC filters converge to 0, as
discussed in Section III-B.

Due to inevitable estimation errors, the constraints set is not
exactly satisfied, resulting in leakage of residual interference
signals (as well as residual desired sources) to the blocking ma-
trix output, as well as desired signal distortion. These residual
signals do not exhibit spatial-whiteness anymore, therefore en-
abling the ANC filters to contribute to the noise and interference
cancellation.

The adaptation rule of the ANC filters is derived in
[21] and is presented in Alg. 1. We note however, that as both
the desired sources and the interference sources are expected
to leak through the BM, mis-convergence of the filters can be
avoided by adapting only when the desired sources are
inactive. This necessitates the application of an activity detector
for the desired sources.

A comparison between the TF-GSC algorithm and the pro-
posed method in the single desired source scenario can be found
in [35].

IV. ESTIMATION OF THE CONSTRAINTS MATRIX

In the previous sections, we have shown that knowledge of
the RTFs related to the desired sources and a basis that spans
the subspace of the interfering sources suffice for implementing
the beamforming algorithm. This section is dedicated to the esti-
mation procedure necessary to acquire this knowledge. We start
by making some restrictive assumptions regarding the activity
of the sources. First, we assume that there are time segments for
which none of the nonstationary sources is active. These seg-
ments are used for estimating the stationary noise PSD. Second,
we assume that there are time segments in which all the desired
sources are inactive. These segments are used for estimating
the interfering sources subspace (with arbitrary activity pattern).
Third, we assume that for every desired source, there is at least
one time segment when it is the only nonstationary source ac-
tive. These segments are used for estimating the RTFs of the de-
sired sources. These assumptions, although restrictive, can be
met in realistic scenarios, for which double talk only rarely oc-
curs. A possible way to extract the activity information can be a
video signal acquired in parallel to the sound acquisition. In this
contribution, it is however assumed that the number of desired
sources and their activity pattern is available.

In the rest of this section, we discuss the subspace estima-
tion procedure. The RTF estimation procedure can be regarded,
in this aspect, as a multisource, colored-noise extension of the
single source subspace estimation method proposed by Affes
and Grenier [20]. We further assume that the various filters are
slowly time-varying filters, i.e., .

A. Interferences Subspace Estimation

Let , be a set of frames for which all
desired sources are inactive. For every segment we estimate
the subspace spanned by the active interferences (both sta-
tionary and nonstationary). Let be a PSD estimate
at the interference-only frame . Using the EVD we have

. Interference-only segments
consist of both directional interference and noise components
and spatially white sensor noise. Hence, the larger eigenvalues
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Fig. 2. Eigenvalues of an interference-only segment as a function of the
frequency bin (solid thin lines). Eigenvalues that do not meet the thresholds
��� (thick black horizontal line) and �� ��� (thick black curve) are
depicted in grey and discarded from the interference signal subspace.

can be attributed to the coherent signals while the lower eigen-
values to the spatially white signals.

Define two values and . All eigenvec-
tors corresponding to eigenvalues that are more than
below the largest eigenvalue or not higher than above
the lowest eigenvalue, are regarded as sensor noise eigenvec-
tors and are therefore discarded from the interference signal
subspace. Assuming that the number of sensors is larger than
the number of directional sources, the lowest eigenvalue level
will correspond to the sensor noise variance . The procedure
is demonstrated in Fig. 2 for the 11-microphone test scenario
presented in Section VI. A segment which comprises three di-
rectional sources (one stationary and two nonstationary inter-
ferences) is analyzed using the EVD by 11-microphone array
(i.e., the dimensions of the multisensor correlation matrix is
11 11). The eigenvalue level as a function of the frequency
bin is depicted in the figure. The thick black horizontal line de-
picts threshold and the thick black curve depicts the
threshold . All eigenvalues that do not meet the thresh-
olds, depicted as gray lines in the figure, are discarded from
the interference signal subspace. The number of the remaining
eigenvalues as a function of the frequency bin, that are used for
the interference subspace, is depicted in Fig. 3. It can be seen
from the figure that in most frequency bins the algorithm cor-
rectly identified the three directional sources. Most of the erro-
neous reading are found in the lower frequency band, where the
directivity of the array is low, and in the upper frequency band,
where the signals’ power is low. The use of two thresholds is
shown to increase the robustness of the procedure.

We denote the eigenvectors that passed the thresholds as
, and their corresponding eigenvalues as . This

procedure is repeated for each segment ; .
These vectors should span the basis of the entire interference
subspace

Fig. 3. Number of major eigenvalues, as a function of the frequency bin, that
are used for constructing the interference subspace.

defined in (25). To guarantee that the eigenvectors
that are common to more than one segment are

not counted more than once they should be collected by the
union operator

(37)

where is an estimate for the interference subspace basis
assumed to be time-invariant in the observation period.

Unfortunately, due to arbitrary activity of sources and estima-
tion errors, eigenvectors that correspond to the same source can
be manifested as a different eigenvector in each segment. These
differences can unnecessarily inflate the number of estimated in-
terference sources. Erroneous rank estimation is one of causes
to the well-known desired signal cancellation phenomenon in
beamformer structures, since desired signal components may be
included in the null subspace. The union operator can be imple-
mented in many ways. Here we chose to use the QRD.

Consider the following QRD of the subspace spanned by the
major eigenvectors (weighted in respect to their eigenvalues)
obtained by the previous procedure:

(38)
where is a unitary matrix, is an upper triangular ma-
trix with decreasing diagonal absolute values, is a permu-
tation matrix, and is a square root operation performed on
each of the diagonal elements.

All vectors in that correspond to values on the diagonal
of that are lower than below their largest value,
or less then above their lowest value are not counted as
basis vectors of the directional interference subspace. The col-
lection of all vectors passing the designated thresholds, consti-
tutes , the estimate of the interference subspace basis.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on July 14, 2009 at 05:51 from IEEE Xplore.  Restrictions apply.



MARKOVICH et al.: MULTICHANNEL EIGENSPACE BEAMFORMING IN A REVERBERANT NOISY ENVIRONMENT 1079

TABLE I
PROJECTION COEFFICIENTS OF THE INTERFERENCES’ ATFS ON THE ESTIMATED BASIS AT DIFFERENT TIME SEGMENTS

AND THE CORRESPONDING BASIS OBTAINED BY THE QRD-BASED UNION PROCEDURE

The reduction of the interference subspace rank using the
QRD is further demonstrated in Table I. Consider three seg-
ments for which one stationary and two nonstationary sources
may be active (see detailed description of the test scenario in
the sequel). We do not require any particular activity pattern
for these sources during the considered three segments. In the
first segment, only one eigenvector passed the thresholds, in the
second segment, two eigenvectors passed the thresholds, and in
the third segment three major eigenvectors were identified. In
the columns of Table I associated with , , we de-
pict the absolute value of the inner product between the normal-
ized ATFs of each of the interference signals and the estimated
eigenvector. The rotation of the eigenvectors from segment to
segment is manifested by the different projections. This phe-
nomenon can be attributed to the nonstationarity of the sources
(in particular the sources can change their activity state across
segments) and to estimation errors.

Define a subspace spanned by the identified eigenvectors.
The value depicts the norm of the projection of the nor-
malized ATF, associated with the row, and the null subspace
orthogonal to . Low level of indicates that the ATF in
the corresponding row can be modeled by the basis. Therefore,
it is evident that only can be modeled by the basis iden-
tified in the first segment, both and can be modeled
in the second segment, and all three ATFs, i.e., , and

, are modeled by the basis estimated in the third segment.
Note, however, that as can be deduced from the different projec-
tions, the identified eigenvectors are different in each segment.
Hence, without any subspace reduction procedure, six eigenvec-
tors would have been identified, unnecessarily inflating the in-
terference subspace rank. The last column of Table I depicts the
basis obtained by the QRD. The reduced subspace, comprised
of only three eigenvectors, can model all interference ATFs, as
evident from the low level of associated with all ATFs. This
reduced basis is in general different from the eigenvectors iden-
tified in each of the three segments, but still spans the interfer-
ence subspace (consisting of the three designated sources).

The novel procedure relaxes the widely used requirement
for nonoverlapping activity periods of the distinct interference
sources. Moreover, since several segments are collected, the
procedure tends to be more robust than methods that rely on
PSD estimates obtained by only one segment.

B. Desired Sources RTF Estimation

Consider time frames for which only the stationary sources
are active and estimate the corresponding PSD matrix:

(39)

Assume that there exists a segment during which the
only active nonstationary signal is the th desired source

. The corresponding PSD matrix will then
satisfy

(40)

Now, applying the GEVD to and the stationary-noise
PSD matrix we have

(41)

The generalized eigenvectors corresponding to the generalized
eigenvalues with values other than 1 span the desired sources
subspace. Since we assumed that only source is active in seg-
ment , this eigenvector corresponds to a scaled version of
the source ATF. To prove this relation for the single eigen-
vector case, let correspond the largest eigenvalue at seg-
ment and its corresponding eigenvector. Substituting

as defined in (40) in the left-hand side of (41) yields

therefore

and finally

Hence, the desired signal ATF is a scaled and rotated
version of the eigenvector (with eigenvalue other than 1).
As we are interested in the RTFs rather than the entire ATFs the
scaling ambiguity can be resolved by the following normaliza-
tion:

(42)

where is the first component of the vector corresponding
to the reference microphone (arbitrarily chosen to be the first
microphone).
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We repeat this estimation procedure for each desired source
. The value of is a design parameter of the

algorithm.

V. ALGORITHM SUMMARY

The entire algorithm is summarized in Algorithm 1. The al-
gorithm is implemented almost entirely in the STFT domain,
using a rectangular analysis window of length , and a
shorter rectangular synthesis window, resulting in the overlap
and save procedure [36], avoiding any cyclic convolution ef-
fects. The PSD of the stationary interferences and the desired
sources is estimated using the Welch method, with a Hamming
window of length applied to each segment, and

overlap between segments. However, since
only lower frequency resolution is required, we wrapped each
segment to length before the application of the DFT op-
eration. The interference subspace is estimated from a

length segment. The overlap between segments is de-
noted OVRLP. The resulting beamformer estimate is tapered by
a Hamming window resulting in a smooth filter in the coefficient
range . The parameters used for the simulation are
given in Table II.

Algorithm 1 Summary of the proposed LCMV beamformer
implemented as a GSC.

1) Output signal:

2) FBF with modified constraints set:

where

are the RTFs in respect to microphone #1.
3) Reference signals:

where

4) Update filters:

5) Estimation:
a) Estimate the stationary noise PSD using Welch

method:
b) Estimate time-invariant desired sources RTFs

Using GEVD and normalization:

i)

ii)
.

c) Interferences subspace:
QRD factorization of eigen-spaces

where for time
segment .

VI. EXPERIMENTAL STUDY

A. Test Scenario

The proposed algorithm was tested both in simulated and real
room environments with five directional signals, namely two
(male and female) desired speech sources, two (other male and
female) speakers as competing speech signals, and a stationary
speech-like noise drawn from NOISEX-92 [37] database. We
used different set of signals for the simulated and real environ-
ments.

In the simulated room scenario the image method [38]
was used to generate the RIR using the simulator in [39]. All
the signals were then convolved with the
corresponding time-invariant RIRs. The microphone signals

; were finally obtained by summing
up the contributions of all directional sources with an additional
uncorrelated sensor noise. The level of all desired sources is
equal. The desired signal to sensor noise ratio was set to 41 dB
(this ratio determines ). The relative power between the
desired sources and all interference sources is depicted in the
simulation results in Tables III and IV.

In the real room scenario, each of the signals was played by
a loudspeaker located in a reverberant room (each signal was
played by a different loudspeaker) and captured by an array of

microphones. The signals were finally constructed by
summing up all recorded microphone signals with a gain related
to the desired input SIR.

For evaluating the performance of the proposed algorithm, we
applied the algorithms in two phases. In the first phase, the algo-
rithm (the LCMV beamformer including the ANC) was applied
to an input signal, comprised of the sum of the desired speakers,
the competing speakers, and the stationary noise (with gains in
accordance with the respective SIR). In this phase, the algo-
rithm was allowed to adapt yielding , the actual algorithm
output. In the second phase, the beamformer was not updated.
Instead, a copy of the coefficients, obtained in the first phase,
was used as the weights. As the coefficients are time varying
(due to the application of the ANC), we used in each time instant
the corresponding copy of the coefficients. The spatial filter was
then applied to each of the unmixed sources.
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TABLE II
PARAMETERS USED BY THE SUBSPACE BEAMFORMER ALGORITHM

TABLE III
SIR IN dB FOR THE FBF OUTPUT AND THE TOTAL LCMV OUTPUT AND SPEECH DISTORTION MEASURES (SSNR AND LSD IN dB) BETWEEN THE DESIRED

SOURCE COMPONENT RECEIVED BY MICROPHONE #1 AND RESPECTIVE COMPONENT AT THE LCMV OUTPUT. EIGHT MICROPHONE ARRAY, TWO DESIRED

SPEAKERS, TWO INTERFERING SPEAKERS, AND ONE STATIONARY NOISE WITH VARIOUS REVERBERATION LEVELS

Denote by , ; , the de-
sired signals components at the beamformer output and the
total output (including the ANC), respectively, ,

; the corresponding nonstationary
interference components, , ;
the stationary interference components, and ,

the sensor noise component at the beamformer and

total output respectively. The entire test procedure is depicted
in Fig. 4.

One quality measure used for evaluating the performance of
the proposed algorithm is the improvement in the SIR level.
Since, generally, there are several desired sources and interfer-
ence sources we will use all pairs of SIR for quantifying the
performance. The SIR of desired signal relative to the nonsta-
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TABLE IV
SIR IN dB FOR THE FBF OUTPUT AND THE TOTAL LCMV OUTPUT AND SPEECH DISTORTION MEASURES (SSNR AND LSD IN dB) BETWEEN THE DESIRED

SOURCE COMPONENT RECEIVED BY MICROPHONE #1 AND RESPECTIVE COMPONENT AT THE LCMV OUTPUT. ELEVEN MICROPHONE ARRAY, TWO DESIRED

SPEAKERS, TWO INTERFERING SPEAKERS, AND ONE STATIONARY NOISE WITH VARIOUS REVERBERATION LEVELS

Fig. 4. Test procedure for evaluating the performance of the algorithm.

tionary signal as measured on microphone is defined as
follows:

SIR dB

Similarly, the input SIR of the desired signal relative to the
stationary signal

SIR dB

These quantities are compared with the corresponding FBF and
total outputs SIR

SIR dB

SIR dB

SIR dB

SIR dB

For evaluating the distortion imposed on the desired source
we also calculated the segmental signal-to-noise ratio (SSNR)
and log spectral distortion (LSD) distortion measures relating
each desired source component at microphone
#1, namely , and its corresponding component at the
output, namely .

B. Simulated Environment

The algorithm was tested in the simulated room environment
using recorded speech utterances, made in a quiet room [40].
The RIRs were simulated with a modified version [39] of Allen
and Berkley’s image method [38] with various reverberation
levels ranging between 150–300 ms. The simulated environ-
ment was a m m m room. A nonuniform linear array
consisting of 11 microphones with inter-microphone distances
ranging from 5 cm to 10 cm was used for one set of experi-
ments, and an eight-microphone subset of the same array was
used for the second set of experiments. The microphone array
and the various sources positions are depicted in Fig. 5(a). A
typical RIR relating a source and one of the microphones is de-
picted in Fig. 5(c). The SIR improvements, as a function of the
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Fig. 5. Room configuration and the corresponding typical RIR for simulated and real scenarios. (a) Simulated room configuration. (b) Real room configuration.
(c) A typical simulated RIR. (d) A typical measured RIR.

reverberation time , obtained by the FBF branch and by the
LCMV beamformer are depicted in Table III for the eight-mi-
crophone case and in Table IV for the 11–microphone case. The
SSNR and the LSD distortion measures are also depicted for
each source. Since the desired sources RTF are estimated when
the competing speech signals are inactive, their relative power
has no influence on the obtained performance, and is therefore
kept fixed during the simulations.

The results in the Tables were obtained using the second
phase of the test procedure described in Section VI-A. It is
shown that on average the beamformer can gain approximately
11-dB SIR improvement for the stationary interference in the
eight-microphone case (15 dB for 11-microphone case), and
approximately 13-dB SIR improvement for the nonstationary
interference in the eight-microphone case (15 dB for 11-micro-
phone case).

The SSNR and LSD distortion measures depict that only low
distortion is imposed on the desired sources. This result is sub-
jectively verified by the assessment of the sonograms in Fig. 6.
It can be easily verified that the interference signals are signifi-
cantly attenuated while the desired sources remain almost undis-

torted. Speech samples demonstrating the performance of the
proposed algorithm can be downloaded from [40].

C. Real Environment

In the real room environment we used as the directional sig-
nals four speakers drawn from the TIMIT [41] database and the
speech-like noise described above. The performance was eval-
uated using real medium-size conference room equipped with
furniture, book shelves, a large meeting table, chairs and other
standard items. The room dimensions are m m m. A
linear nonuniform array consisting of eight omnidirectional mi-
crophones (AKG CK32) was used to pick up the sound signals
(with the same configuration as in the simulated environment).
The various sources were played separately from point loud-
speakers (FOSTEX 6301BX). The algorithm’s input was con-
structed by summing up all components contributions and addi-
tional, spatially white, computer-generated sensor noise signals.
The source-microphone constellation is depicted in Fig. 5(b).
The RIR and the respective reverberation time were estimated
using the WinMLS2004 software (a product of Morset Sound
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Fig. 6. Sonograms and waveforms for the simulated room scenario depicting the algorithm’s SIR improvement. (a) Microphone #1 signal. (b) Algorithm’s output.

Fig. 7. Sonograms and waveforms for the real room scenario depicting the algorithm’s SIR improvement. (a) Microphone #1 signal. (b) Algorithm’s output.

Development). A typical RIR, having ms, is depicted
in Fig. 5(d).

In Fig. 7 sonograms of the input signal and the algorithm’s
output are depicted. The input SIR was 6 dB. A total SIR im-
provement of 15.28 dB was obtained for the interfering speakers
and 16.23 dB for the stationary noise. The ANC contributed
1.32 dB for the competing speakers, and 3.15 dB for the sta-
tionary noise.

VII. CONCLUSION

We have addressed the problem of extracting several desired
sources in a reverberant environment contaminated by both non-
stationary (competing speakers) and stationary interferences.
The LCMV beamformer (implemented as a GSC structure) was
designed to satisfy a set of constraints for the desired and inter-
ference sources. A novel and practical method for estimating the
interference subspace was presented. The ANC branch is iden-
tically zero for perfect estimate of the constraints set. However,
for erroneous estimate of the constraint matrix the ANC branch
significantly contributes to the interference reduction, while im-
posing only minor additional distortion on the desired signals.

Unlike common GSC structures, we chose to block all direc-
tional signals, including the stationary noise signals, by the BM.

By treating the stationary sources as directional signals we ob-
tained deeper nulls [35], which do not suffer from fluctuations
caused by the adaptive process. In time varying environments,
however, different adaptive forms may be used.

A two-phase offline procedure was applied. First, the test
scene (comprising the desired and interference sources) was an-
alyzed using few seconds of data for each source. Then, the BF
was applied to the entire data. The proposed estimation methods
assume that the RIRs are time-invariant, and hence this version
of the algorithm can only be applied to time-invariant scenarios.
Recursive estimation methods for time-varying environments is
a topic of ongoing research.

Experimental results in both simulated and real environments
have demonstrated that the proposed method can be applied to
extracting several desired sources from a combination of mul-
tiple sources in a complicated acoustic environment.

REFERENCES

[1] J. Cardoso, “Blind signal separation: Statistical principles,” Proc.
IEEE, vol. 86, no. 10, pp. 2009–2025, Oct. 1998.

[2] P. Comon, “Independent component analysis: A new concept?,” Signal
Process., vol. 36, no. 3, pp. 287–314, Apr. 1994.

[3] L. Parra and C. Spence, “Convolutive blind separation of non-sta-
tionary sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp.
320–327, May 2000.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on July 14, 2009 at 05:51 from IEEE Xplore.  Restrictions apply.



MARKOVICH et al.: MULTICHANNEL EIGENSPACE BEAMFORMING IN A REVERBERANT NOISY ENVIRONMENT 1085

[4] L. Molgedey and H. G. Schuster, “Separation of a mixture of indepen-
dent signals using time delayed correlations,” Phys. Rev. Lett., vol. 72,
no. 23, pp. 3634–3637, Jun. 1994.

[5] J. F. Cardoso, “Eigen-structure of the 4th-order cumulant tensor with
application to the blind source separation problem,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 1989, pp.
2109–2112.

[6] S. Amari, A. Chichocki, and H. H. Yang, “Blind signal separation and
extraction: Neural and information theoretic approaches,” in Unsuper-
vised Adaptive Filtering. New York: Wiley, 2000, vol. I, pp. 63–138.

[7] H. Wu and J. Principe, “A unifying criterion for blind source separa-
tion and decorrelation: Simultaneous diagonalization of correlation
matrices,” in Proc. IEEE Workshop Neural Netw. Signal Process.
(NNSP), Sep. 1997, pp. 496–508.

[8] M. Z. Ikram and D. R. Morgan, “Exploring permutation inconsistency
in blind separation of speech signals in a reverberant environment,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Jun.
2000, vol. 2, pp. 1041–1044.

[9] E. Jan and J. Flanagan, “Microphone arrays for speech processing,”
in Proc. Int. Symp. Signals, Syst., Electron. (ISSSE), Oct. 1995, pp.
373–376.

[10] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile
approach to spatial filtering,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 5, no. 2, pp. 4–24, Apr. 1988.

[11] S. Gannot and I. Cohen, “Adaptive Beamforming and Postfitering,”
in Springer Handbook of Speech Processing. New York: Springer,
2007, pp. 199–228.

[12] H. Cox, R. Zeskind, and M. Owen, “Robust adaptive beamforming,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-35, no. 10,
pp. 1365–1376, Oct. 1987.

[13] S. Doclo and M. Moonen, “GSVD-based optimal filtering for single
and multimicrophone speech enhancement,” IEEE Trans. Signal
Process., vol. 50, no. 9, pp. 2230–2244, 2002.

[14] A. Spriet, M. Moonen, and J. Wouters, “Spatially pre-processed speech
distortion weighted multi-channel Wiener filtering for noise reduction,”
Signal Process., vol. 84, no. 12, pp. 2367–2387, 2004.

[15] J. Capon, “High-resolution frequency-wavenumber spectrum anal-
ysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[16] O. Frost, “An algorithm for linearly constrained adaptive array pro-
cessing,” Proc. IEEE, vol. 60, no. 8, pp. 926–935, Aug. 1972.

[17] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly con-
strained adaptive beamforming,” IEEE Trans. Antennas Propag., vol.
30, no. 1, pp. 27–34, Jan. 1982.

[18] M. Er and A. Cantoni, “Derivative constraints for broad-band element
space antenna array processors,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-31, no. 6, pp. 1378–1393, Dec. 1983.

[19] B. R. Breed and J. Strauss, “A short proof of the equivalence of LCMV
and GSC beamforming,” IEEE Signal Process. Lett., vol. 9, no. 6, pp.
168–169, Jun. 2002.

[20] S. Affes and Y. Grenier, “A signal subspace tracking algorithm for
microphone array processing of speech,” IEEE Trans. Speech Audio
Process., vol. 5, no. 5, pp. 425–437, Sep. 1997.

[21] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech,” Signal
Process., vol. 49, no. 8, pp. 1614–1626, Aug. 2001.

[22] Y. Ephraim and H. Van Trees, “A signal subspace approach for speech
enhancement,” IEEE Trans. Speech Audio Process., vol. 3, no. 4, pp.
251–266, Jul. 1995.

[23] Y. Hu and P. Loizou, “A generalized subspace approach for enhancing
speech corrupted by colored noise,” IEEE Trans. Speech Audio
Process., vol. 11, no. 4, pp. 334–341, Jul. 2003.

[24] S. Gazor, S. Affes, and Y. Grenier, “Robust adaptive beamforming
via target tracking,” IEEE Trans. Signal Process., vol. 44, no. 6, pp.
1589–1593, Jun. 1996.

[25] B. Yang, “Projection approximation subspace tracking,” IEEE Trans.
Signal Process., vol. 43, no. 1, pp. 95–107, Jan. 1995.

[26] S. Gazor, S. Affes, and Y. Grenier, “Wideband multi-source beam-
forming with adaptive array location calibration and direction finding,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
May 1995, vol. 3, pp. 1904–1907.

[27] S. Doclo and M. Moonen, “Combined frequency-domain derever-
beration and noise reduction technique for multi-microphone speech
enhancement,” in Proc. Int. Workshop Acoust. Echo Noise Control
(IWAENC), Darmstadt, Germany, Sep. 2001, pp. 31–34.

[28] E. Warsitz, A. Krueger, and R. Haeb-Umbach, “Speech enhancement
with a new generalized eigenvector blocking matrix for application
in generalized sidelobe canceler,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Apr. 2008, pp. 73–76.

[29] S. Affes, S. Gazor, and Y. Grenier, “An algorithm for multi-source
beamforming and multi-target tracking,” IEEE Trans. Signal Process.,
vol. 44, no. 6, pp. 1512–1522, Jun. 1996.

[30] F. Asano, S. Hayamizu, T. Yamada, and S. Nakamura, “Speech en-
hancement based on the subspace method,” IEEE Trans. Speech Audio
Process., vol. 8, no. 5, pp. 497–507, Sep. 2000.

[31] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar.
1986.

[32] J. Benesty, J. Chen, Y. Huang, and J. Dmochowski, “On microphone-
array beamforming from a MIMO acoustic signal processing perspec-
tive,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 3, pp.
1053–1065, Mar. 2007.

[33] G. Reuven, S. Gannot, and I. Cohen, “Dual-source transfer-function
generalized sidelobe canceler,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 16, no. 4, pp. 711–727, May 2008.

[34] Y. Avargel and I. Cohen, “System identification in the short-time
Fourier transform domain with crossband filtering,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 4, pp. 1305–1319, May
2007.

[35] S. Markovich, S. Gannot, and I. Cohen, “A comparison between al-
ternative beamforming strategies for interference cancellation in noisy
and reverberant environment,” in Proc. 25th Conv. Israeli Chapter
IEEE, Eilat, Israel, Dec. 2008, pp. 203–207.

[36] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE
Signal Process. Mag., vol. 9, no. 1, pp. 14–37, Jan. 1992.

[37] A. Varga and H. J. M. Steeneken, “Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to study
the effect of additive noise on speech recognition systems,” Speech
Commun., vol. 12, no. 3, pp. 247–251, Jul. 1993.

[38] J. Allen and D. Berkley, “Image method for efficiently simulating
small-room acoustics,” J. Acoust. Soc. Amer., vol. 65, no. 4, pp.
943–950, Apr. 1979.

[39] E. Habets, “Room Impulse Response (RIR) Generator,” Jul. 2006 [On-
line]. Available: http://home.tiscali.nl/ehabets/rir_generator.html

[40] S. Gannot, Audio Sample Files. Sep. 2008 [Online]. Available: http://
www.biu.ac.il/~gannot

[41] J. S. Garofolo, Getting Started With the DARPA TIMIT CD-ROM:
An Acoustic Phonetic Continuous Speech Database National Institute
of Standards and Technology (NIST), Gaithersburg, MD, 1988, Tech.
Rep., (prototype as of December 1988).

Shmulik Markovich received the B.Sc. (cum laude)
and M.Sc. degrees in electrical engineering from the
Technion—Israel Institute of Technology, Haifa, Is-
rael, in 2002 and 2008, respectively.

His research interests include statistical signal pro-
cessing and speech enhancement using microphone
arrays.

Sharon Gannot (S’92–M’01–SM’06) received the
B.Sc. degree (summa cum laude) from the Tech-
nion—Israel Institute of Technology, Haifa, Israel, in
1986 and the M.Sc. (cum laude) and Ph.D. degrees
from Tel-Aviv University, Tel-Aviv, Israel, in 1995
and 2000, respectively, all in electrical engineering.

In 2001, he held a postdoctoral position at the
Department of Electrical Engineering (SISTA), K.U.
Leuven, Belgium. From 2002 to 2003, he held a
research and teaching position at the Faculty of
Electrical Engineering, Technion—Israel Institute of

Technology, Haifa, Israel. Currently, he is a Senior Lecturer at the School of
Engineering, Bar-Ilan University, Ramat-Gan, Israel. He is an Associate Editor
of the EURASIP Journal of Applied Signal Processing, an Editor of two special
issues on “Multi-Microphone Speech Processing” of the same journal, a Guest
Editor of ELSEVIER Speech Communication Journal and a reviewer of many
IEEE journals and conferences.

Dr. Gannot is a member of the Technical and Steering committee of the Inter-
national Workshop on Acoustic Echo and Noise Control (IWAENC) since 2005
and general co-chair of IWAENC 2010 to be held at Tel-Aviv, Israel. His re-
search interests include parameter estimation, statistical signal processing, and
speech processing using either single- or multi-microphone arrays.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on July 14, 2009 at 05:51 from IEEE Xplore.  Restrictions apply.



1086 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 6, AUGUST 2009

Israel Cohen (M’01–SM’03) received the B.Sc.
(summa cum laude), M.Sc., and Ph.D. degrees in
electrical engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 1990, 1993,
and 1998, respectively.

From 1990 to 1998, he was a Research Scientist
with RAFAEL Research Laboratories, Haifa, Israel
Ministry of Defense. From 1998 to 2001, he was a
Postdoctoral Research Associate with the Computer
Science Department, Yale University, New Haven,
CT. In 2001, he joined the Electrical Engineering

Department, Technion, where he is currently an Associate Professor. His
research interests are statistical signal processing, analysis and modeling of
acoustic signals, speech enhancement, noise estimation, microphone arrays,
source localization, blind source separation, system identification, and adaptive
filtering. He was a Guest Editor of a special issue of the EURASIP Journal
on Advances in Signal Processing on “Advances in Multimicrophone Speech
Processing” and a special issue of the EURASIP Speech Communication
Journal on “Speech Enhancement.” He is a coeditor of the Multichannel
Speech Processing section of the Springer Handbook of Speech Processing
(Springer, 2007).

Dr. Cohen received in 2005 and 2006 the Technion Excellent Lecturer
Awards. He served as Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING and the IEEE SIGNAL PROCESSING

LETTERS.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on July 14, 2009 at 05:51 from IEEE Xplore.  Restrictions apply.


