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Abstract—In this paper, we present and study a Bayesian fo-
cusing transformation (BFT) for coherent wideband array pro-
cessing, which takes into account the uncertainty of the direction
of arrivals (DOAs). The Bayesian focusing method minimizes the
mean-square error of the transformation over the probability den-
sity functions (pdfs) of the DOAs, thus achieving improved focusing
accuracy over the entire bandwidth. In order to solve the Bayesian
focusing problem, we derive and utilize a weighted extension of the
wavefield interpolated narrowband generated subspace (WINGS)
focusing transformation. We provide a closed-form expression for
the optimal BFT and extend it to the case of directional sensors.
We then consider a numerical computation scheme of the BFT in
the angular domain. We show that if an angular sampling condi-
tion is satisfied then the angle domain approximation yields the
optimal BFT. We also treat the important issue of robust focused
minimum variance distortionless response (MVDR) beamformer.
We analyze the sensitivity of the focused MVDR to the focusing er-
rors and show that the array gain (AG) is inversely proportional
to the square of the signal-to-noise ratio (SNR) for large values of
the SNR, and highly sensitive to the focusing errors. In order to
reduce this sensitivity we generalize the popular narrowband di-
agonal loaded MVDR to the focused wideband case, referred to
as the Q-loaded focused MVDR wideband beamformer. We derive
a closed-form analytic expression for the AG of the Q-loaded fo-
cused MVDR beamformer which depends on the focusing trans-
formations. A numerical performance evaluation and simulations
demonstrate the advantage of the BFT over that of other focusing
transformations, for multiple source scenarios.

Index Terms—Adaptive, Bayesian, beamforming, focusing,
generalized loading, minimum variance distortionless response
(MVDR), wideband.

I. INTRODUCTION

DAPTIVE beamforming techniques are used to en-
hance the signal-to-interference plus noise ratio in many
applications such as wireless communications, radar, sonar,
acoustics, and seismic sensing. These techniques are effective
in rejecting interference signals whose incident directions of
arrivals (DOAs) on a sensor array differ from that of the desired
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signals [1]. The potential of adaptive beamforming was already
recognized since the early 1960s for the narrowband case. Yet,
in the last two decades, the necessity for wideband adaptive
beamforming increased with the development of third and
fourth generations of wireless communications for mobile sys-
tems as well as ultra-wideband communication systems [2]—[5].
These systems support very high data rate communications
due to their wideband nature combined with their space-time
processing abilities.

Wideband adaptive beamforming techniques can be classified
into two main categories. The first category consists of non-co-
herent beamforming methods implemented either in the time
domain or in the frequency domain. The non-coherent time do-
main techniques utilize multi-tap spatial adaptive filters whose
coefficients are adjusted to suppress the interferences while pre-
serving the desired signal (e.g., [2], [6]-[8]). The non-coherent
frequency domain techniques implement a narrowband adaptive
beamformer in each frequency bin. These methods are com-
putationally expensive, have a slow convergence rate due to a
large number of adaptive coefficients, and are prone to signal
cancellation problems in coherent source scenarios. The second
category consists of coherent methods for wideband adaptive
beamforming which incorporate a focusing procedure for signal
subspace alignment [9]. The focusing procedure involves a pre-
processor implemented as a linear transformation which focuses
the signal subspaces at different frequencies to a single fre-
quency, followed by a narrowband beamformer. The main ben-
efits of the coherent methods are low computational complexity,
the ability to combat the signal cancellation problem [10], [11]
and improved convergence properties (see example in [12]).

Focusing for wideband array processing was originally
proposed and studied for the application of direction finding
(DF) [13] and e.g., [14]-[18]. For example, [16] and [18] car-
ried out a performance analysis of the DOA estimation errors
after focusing, [17] concentrated on robust auto-focusing for
DOA estimation, and in [14] it was shown that signal subspace
transformation (SST) matrices such as the rotational signal
subspace (RSS) transformations provide a sufficient statistic for
maximum-likelihood (ML) estimation of the DOAs. However,
focusing for the purpose of adaptive beamforming is a different
problem with different considerations. An insightful example
demonstrating the difference between the two applications is
given in Section VI, where we show that the array gain (AG)
of the focused adaptive beamformer is inversely proportional
to the variance of the focusing errors. Therefore, the SST and
RSS transformations, which were proved to be optimal for DF
applications in [14] since they provide a sufficient statistic for
ML DOA estimation, are unsuitable for adaptive beamforming,
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since their focusing error is high. Therefore, in this work
we concentrate on focusing matrices which are specifically
designed to minimize the direct focusing error by employing a
priori statistical information, thus expected to yield improved
performance in the adaptive beamforming application.

There are two basic approaches to design focusing matrices.
The first approach, referred to as the directional focusing ap-
proach, consists of methods which require a priori knowledge of
the DOAs using them as focusing directions [9], [13], [19], [20].
The second approach consists of spatial interpolation methods
which focus all angular directions [12], [21], [22] and will be
referred to as the panoramic focusing approach. This approach
is based on the observation that in a wavefield composed of
plane waves, the spatial, and spectral parameters are related,
since plane waves depend on the frequency only through the
product kr. Therefore, a transformation of the array manifold
between frequencies is equivalent to a spatial interpolation of
the array, where the new spatial coordinates are scaled by the
desired frequency ratio. The directional focusing methods the-
oretically achieve relatively low focusing errors but in practice
are highly sensitive to DOA uncertainties. The panoramic fo-
cusing methods do not require any knowledge of DOAs; how-
ever, they typically exhibit higher error levels, since they attempt
to focus all directions simultaneously. Furthermore, the spatial
interpolation process, employed in the panoramic focusing, re-
quires that the array satisfy a spatial sampling condition. For
example, linear equispaces arrays should have a sensor spacing
less than or equal to half a wavelength at the highest frequency
of the processing band. The general sampling conditions for an
array of arbitrary geometry are derived and discussed in [23],
which also treats in detail the interesting circular array as a test
case.

Most of the focusing methods in the academic literature
belong to either the directional approach requiring a priori
knowledge of the DOAs or the panoramic approach where no a
priori knowledge is required. There are a few focusing methods
which attempt to compromise between the directional approach
and the panoramic approach. A numerical method for focusing
within angular sectors is proposed and studied in [18], and
a unitary focusing matrix which incorporates a deterministic
weighting function is derived and studied in [17].

In this paper, we propose an optimal Bayesian approach for
focusing transformation design, which takes into account the
uncertainty of the DOAs by modeling them as random variables
with a given prior statistics. The Bayesian focusing transfor-
mation (BFT) minimizes the mean-square error (MSE) of the
transformation, thus achieving higher focusing accuracy over
the entire bandwidth. The proposed Bayesian focusing transfor-
mation is a compromise between the directional focusing ap-
proach, which requires preliminary DOAs estimates, and the
spatial interpolation-based panoramic focusing approach, which
does not require any DOAs estimates. In fact, BFT is a general-
ization which includes the two approaches as special cases.

We derive a closed-form expression for the optimal BFT,
which is based on an extension of the Wavefield Interpolated
Narrowband Generated Subspace (WINGS) method [12].
However, the optimal BFT solution is conceptually and com-
putationally more complex than the simple numerical angle
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domain least squares (LS) solution. We derive an angular
sampling condition and prove that if it is satisfied, then the
numerical angle domain solution is identical to the optimal
BFT, thus justifying the use of a simple practical numerical
solution. We may note that in [24], a unitary Bayesian focusing
scheme for single source focusing was proposed. A discrete
approximate version of the probability function is employed
leading to an approximated discrete solution. The solution pre-
sented in this work is a closed form accurate solution suitable
to the case of multiple sources. In addition, unitary focusing
transformations are less suitable to beamforming applications
since they significantly increase the focusing error, as explained
earlier in this section regarding the SST and RSS focusing
transformations which are also unitary.

After the focusing procedure, one may apply any narrowband
adaptive beamforming algorithm such as the well-known min-
imum variance distortionless response (MVDR) beamformer
[25], which has a better resolution and interference rejection ca-
pabilities than the conventional beamformer, provided that the
array manifold is perfectly known. However, in practice, there
are some inaccuracies due to array calibration errors, DOAs
errors [26], and covariance matrix estimation errors [27]. In
the focused MVDR beamformer, the focusing error also comes
into play and may deteriorate the performance considerably. We
show analytically in Section VI that for high SNR values the AG
is inversely proportional to ogl where o is the focusing error
and consequently highly sensitive to focusing errors. In order to
reduce these sensitivities of the MVDR beamformer, we derive
and employ an extension of the well-known diagonal loading
method for the coherent wideband case. We refer to this solu-
tion as the Q-loading scheme in which we add a scaled matrix Q
to the covariance matrix before inversion, where the Q matrix
depends on the focusing transformation. A comparative perfor-
mance analysis of several focusing schemes combined with the
robust Q-loaded MVDR demonstrates the efficacy of the BFT.

The paper is organized as follows. In Section II, we formulate
the problem of interest. In Section III, we present the Bayesian
focusing approach. Section IV reviews the WINGS method and
a weighted extension is derived and used to solve the Bayesian
focusing problem. In Section V, we examine a numerical com-
putation of the BFT in the angular domain and prove that it is
equal, under certain sampling conditions, to the analytic closed
form solution of the BFT. In Section VI, we analyze the sensi-
tivity of the focused MVDR beamformer to focusing transfor-
mation errors, and derive a robust focused MVDR beamformer
using a generalized-loading scheme. In Section VII, we present
some simulation examples of the BFT focused MVDR beam-
former and compare its performance to other focusing methods.
In Section VIII, we show numerical examples of the sensitivity
of the focused MVDR to focusing transformation errors in high
SNR values. Section IX concludes our work.

II. PROBLEM FORMULATION

Consider an arbitrary array of N sensors sampling a wave-
field generated by P statistically independent wideband
sources, in the presence of additive noise. For simplicity, we
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confine our discussion to the free and far field model. The
signal at the output of the nth sensor can be written as

() = sp(t=Twp) +1a(t), n=1,.,N (1)

p=1

where {sp(t)};;l and {nn(t)}ff:l denote the radiated wide-
band signals and the additive noise processes, respectively. The
parameters {7, } are the delays associated with the signal prop-
agation time from the pth source to the nth sensor. Let { %}il
be the DOAS of the sources, v = 6 in2-D and v = (4, ¢) in 3-D
where 6 is the azimuth angle and ¢ is the elevation angle. For
simplicity, we restrict ourselves to the 2-D case. Each T" seconds
of received data are divided into K snapshots and transformed
to the frequency domain yielding

x(w;) = Ag(wj)sk(w;) + ny(w;)
j=1,2,...0 k=12,... K )

where .J is the total number of frequency bins used for the pro-
cessing. The vectors x(w;), sg(w;) , and ng(w;) denote vec-
tors whose elements are the discrete Fourier coefficients of the
measurements, the unknown signals and the noise, respectively,
at the kth snapshot and at frequency w;. The N x P matrix
Ag(wj) is the direction matrix

Ag(w]’) = [agl(wj),agz(wj),...,agp(wj)]. (3)

The vector ag(w), referred to as the array manifold vector, is the
response of the array to an incident plane wave at frequency w
and DOA 6. For an array comprised of identical omnidirectional
uncoupled sensors in free field, the array manifold vector is

[ag(w)],, = exp {ikrm : é} )

where § = cos 62 + sin 0 denotes a unit vector pointed to-
wards the direction 6, and k& = w/c is the wave number associ-
ated with the frequency w. The vector r,,, marks the coordinates
of the mth sensor. We assume that the noise vectors ny(w;)
and the signal vectors s (w;) are independent samples of a sta-
tionary, zero mean circular complex Gaussian random process,
with unknown covariance matrices o2 (w;)I and R, (w;), re-
spectively. The noise process is assumed to be uncorrelated with
the signal process and the wideband sources are assumed to
share a common bandwidth. Due to the broadband nature of the
sources, using coherent processing is advantageous as discussed
in the previous section. Let T(w,) denote a transformation that
maps the wideband array output from frequency w; to the fo-
cusing frequency wy, so that the signal direction matrices are
aligned across the frequency bandwidth

T(w;)Ag(w;) = Ag(wo) )
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i.e., T(w;) transforms the array manifold from frequencies
{w;} to the focusing frequency wy. Following [10], we may
construct the focused time-domain vector y(n) as

=~ Ag(wp)s(n) + n(n) (6)

where s(n) is the vector of wideband unknown time domain
signals within the focused frequency band [w; : wj], T is the
sampling frequency and n(n) is the transformed noise. We note
that the temporal focused vector y(n) has a narrowband array
manifold while preserving the wideband spectral content of the
signals. This allows the use of any narrowband adaptive beam-
former matched to frequency wy, such as the MVDR beam-
former. In the following, we describe a framework example for
the MVDR adaptive beamformer using the sample matrix inver-
sion (SMI) implementation. Let us first review the non-coherent
wideband MVDR beamformer and then, describe the focused
wideband MVDR beamformer.

A. Non-Coherent Adaptive Beamformer

The non-coherent wideband MVDR—SMI method is im-
plemented in the frequency domain by applying a narrowband
beamformer at each frequency bin (see, e.g., [1]). A discrete
Fourier transform (DFT) is first performed followed by the
computation of the narrowband sample covariance matrix at
each frequency bin

K

R 1

R, (w;) = % >~ xk(wy)xg (w;). )
k=1

The narrowband MVDR—SMI adaptive weight vector is then
computed at each frequency bin as

N

R, ' (w))ag(w;)

all (w;) Rz (w))ag(w;)

®)

Wo(wj) =

The adaptive weights (8) may now be used to perform the actual
beamforming at each frequency bin yielding the non-coherent
adaptive beamformer output, in the frequency domain. Finally,
we note that beamformer (8) is sometimes referred to as the
minimum power distortionless response (MPDR) method (see,
e.g., [1].

B. Coherent Focused Adaptive Beamformer

The MVDR-SMI focused adaptive beamformer may be
simply implemented as a narrowband adaptive beamformer
operating on the temporal focused data vector y(n)(6) whose
focused sample covariance matrix is constructed by

- 1
R] = Vo ZYk(n)YkH(n)' (€)
k,n
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The focused coherent adaptive beamformer MVDR weight
vector is simply computed in the time domain by

(fif) - ag(wp)

af!(wo) (RE) " as(un)

W, = (10)

where wy is the focusing frequency and f stands for focused
beamformer.

In this paper, we are interested in finding a focusing trans-
formation T(w;) which can handle DOA uncertainties while
achieving the minimal mean-square focusing error at the true
DOA:s. To this end, we use a Bayesian approach employing a
statistical model where the DOAs {6, }/_, are modeled as statis-
tically independent random variables. We then define and solve
the Bayesian focusing problem for wideband arrays.

III. BAYESIAN FOCUSING TRANSFORMATION (BFT)

In this section, we consider the case of DOAs uncertain-
ties. We use a Bayesian model in order to define the optimal
minimum mean square error (MMSE) focusing transformation
Tgrr(w;) as the solution to the following minimization
problem:

Tprr(w;) = argmin By { | Ag(wo) — T(w;) Ag(wj)[} }

T (w;)

Y
where wy is the focusing frequency, ||-||  denotes the Frobe-
nious norm, and Fy {-} denotes the expectation over the statis-
tical distribution of the DOA vector . Assuming {6;}"_, are
statistically independent random variables, it can be proved that

Eo {1180 wo) — T(w;) Ao w11} }

s

= / df;...d0p fgl(el)---fép(é’p)'
9:;—ﬂ
P
2
> llasi(wo) = T(wj)ag:(w;)l|
=1

™

P
- / 46 lJag (1) — Tw;)ag(w;)|> S fo, (6) (12)
=1

O=—m

where ||-|| is the Euclidian norm and fy,(#) denote the proba-
bility density functions (pdfs) of the :th DOA. Defining

P
P2(0) £ fa.(6) (13)
=1

and substituting (13) into the right-hand side of (12) yields the
following integral to be minimized:

Tprr(w))

/ 46 |p(8) (g () — T(w;)ag(w;)) 2. (14)

= arg min
T (wj)
o

1285

Note that (14) is a generalized form which includes many
focusing schemes as private cases. It reduces to the panoramic
focusing scheme, e.g., WINGS [12] by taking a uniform dis-
tribution, i.e., p(§) = 1. Taking p(8) = >, 6(0 — 0;) yields
the directional focusing matrices originally proposed by Hung
and Kaveh [9], which focus at discrete angles taken to be the

P
preliminary estimates of the DOAs {91} . Note also that in

(14) one may use either the a priori pdfs of the DOAs as fy, (6),
or the a posteriori pdfs, estimated from the received data. The
first approach yields a data independent transformation, while
the second approach requires estimation of the conditional pdfs
from the data yielding a data dependent transformation. The
reader can refer to [28] where a time progressing algorithm
employing the a posteriori pdfs was proposed. In Section IV,
we derive a closed form expression for the BFT solving (14),
utilizing a weighted extension of the WINGS [12] focusing
method.

IV. BFT AS A WEIGHTED EXTENSION OF THE WINGS

In this section, we first review the main points of the WINGS,
then we develop a weighted extension of the WINGS, for the
2-D case, which incorporates an arbitrary angular weighting
function p(#). Finally, we use the closed form expression of the
weighted WINGS extension to solve (14).

A. Wings

The WINGS focusing method [12] is based on the wave-
field modeling formalism [23] according to which, the output
of almost any array x(w) of arbitrary geometry can be
written as a product of array geometry dependent part and
wavefield dependent part, i.e., x(w) = G(w)®(w) where
Gw) = [...,g-1(w),go(w),g1(w),...] is the array sam-
pling matrix which is independent of the wavefield and 9(w)
is the coefficient vector representing the wavefield. The vector
¥ (w) contains the orthogonal decomposition coefficients of
the wavefield function ¥ (w, r) [23] where ¥ (w, r) is a Fourier
component of the temporal wavefield function W(¢,r) and
satisfies the source free Helmholtz equation:

(V> + &%) ¥(w,r) = 0. (15)
Since we assumed a far field scenario, we can write the wave-
field as a linear combination of plane waves

U(w,r) = /d&n(&)eﬂ”é (16)
®

where 7() € Ly(©) is the radiation density in the direction 6.
We can define H as the Hilbert space of allowed wavefields of
the form (16) with n(#) € L2(©) and it can be shown that there
exist an isomorphism between H and Lo(©). Each column in
the sampling matrix G(w) is the array response to a basis func-
tion belongs to an orthogonal basis set in H and depends only
in the array geometry. Using the wavefield modeling formalism,
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Fig. 1. Example of a Bessel function behavior as a function of its order. The
asterisk indicates the order n. used in our simulations.

the steering vector can be expressed in terms of its orthogonal
decomposition

ag(w) =Y ga(w)h}(6) (17a)

gn(w) :/ag(w)hn(ﬁ)dﬁ (17b)

(C]

where ©® = [—m, 7| is the manifold of possible DOAs and
{hn(8)},— . is an orthogonal basis set in Ly(©). In 2-D, we
use the Fourier basis, i.e., h,(d) = (1/v27)e ™%, 0 € O.
Inserting expression (4) into (17b) yields for the 2-D case and
omnidirectional and uncoupled sensors

G (1) = / ekt (9)dd

e
= V2r (i) T (K )e ™m0 (18)
where (6,,,7,) designate the polar coordinates of the mth
sensor, and .J,,(kr) denotes the Bessel function of the first
kind. We should point out that although G(w) has an infinite
number of columns, we can see from (18) that there is an
effective cutoff for n > KkmaxTmax, Where kmax’max denotes
the maximal value of kr for the given geometry and bandwidth,
since for n > kr, the Bessel function .J,, (kr) decreases faster
than exponentially to zero [29]. Let n. be defined by
| Jn (EmaxTmax )| < €, forn > n. (19)
for some small ¢ of our choice. In Fig. 1, a graphic descrip-
tion of a Bessel function’s behavior as a function of its order
is presented for ka5 max = 31.4 suitable to a linear array of
N = 20 sensors and spectrum between Fj,, = 1200 Hz and
Fhignh = 1800 Hz. One can see that for this example, a selected
truncation order n. = 1.5k maxTmax = 50 yieldinge = 2.4e—6
is justified, and will be used in our simulations.
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A quantitative evaluation of the error caused by the Bessel
function’s truncation is given in [23]. It proves that by this
choice, the truncation error is negligible in comparison to other
errors caused by the focusing operation, which are treated later
in this work. From now on, we use the truncated version of the
sampling matrix G(w) which is now an N x (2n. + 1) matrix.

The WINGS focusing transformation T(w,) minimizes e,
the L, norm of the focusing error eg(w;) over all possible di-
rections

1 ™
g2 5 [ @lew®

(20)
O=—m
where
eg(w]-) = ag(’wo) — T(’U)j)(—lg(ﬂ/j) VH (21)
Using (17a), the error can be expressed as
es(w;) = [G(wo) — T(w;)G(w;)] he (22)

where the vector hy contains the basis functions {h,(6)} as
its elements which comprise a complete and orthogonal basis
set over Lo(0). Thus, one may consider (22) to be the orthog-
onal decomposition of the error vector eg (w]- ). We can use Para-
seval’s identity and derive the equivalent least-square (LS) min-
imization problem

1
&% = & 1G(wo) = T(w))G(w;)[ (23)
The WINGS focusing matrix minimizing (23) is given by
Twinas(w;) = G(wo) G (w;) 24)

where G denotes the pseudo-inverse of G.

B. Weighted Wings

In this section, we extend the WINGS minimization problem
(20) to incorporate an arbitrary angular weighting function
p(6), which will be used later on to solve the Bayesian focusing
problem (14). Let £; be the weighted L, norm of the focusing
error eg(w;)

& = [ l0)eatur) P
o
= [ 10O @a(0) = Tl wy)I. 25)
(S}

In order to find the transformation minimizing (25) let us find
C(w), the orthogonal decomposition of the product p(6)ag(w)

™

| 00 (@atw), a6

O=—m

[C(w)],..., = (26)
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Let p(6) = >, pnhn(8) be the orthogonal decomposition of
the angular weighting function p(#), then substituting (17a) into
(26) we may write

™

Cwl,, = |

9:;—ﬂ !

0> pphp(0) > G (w)hif(6)hn(6)

= ppGu(w) / dBh,, (0)h, ()} (6). (27)
Pl :

O=—m

In the 2-D case h,,(6) are the Fourier functions and

™

1
d6h,,(0)h,(0)h](0) = —bn1p_ 28
[ A OO 6) = —=buis B
O=—m
which yields the following convolution expression:
1
[Cw)]n = Eip:pme,n,+p<w)- (29)

We now insert into (25) the orthogonal decomposition
p(@)ag(w) = C(w)hy and get the following minimiza-
tion integral

1
&2 =

2= [ 1t - Tyl o)

O=—m

Using Parseval’s identity we get

3D

. 1 2
& = 7 llC(wo) = T(w;)C(w;)]|Iy -
Thus, the weighted WINGS transformation minimizing £; is
given by the LS solution minimizing (31)

T(w;) = C(wo)C' (w;). (32)
Since (25) has exactly the same form as (14), we get the closed
form expression for the MMSE optimal BFT

Tirr(w;) = C(wo, p(A))CT (w;, p(6)) (33)

where p(f) is given by (13).

C. Directional Sensors and Empirically Calibrated Arrays

In this section, we provide a useful extension of BFT and
WINGS focusing for the case of directional sensors and em-
pirically calibrated arrays. Let d™(f) denote the directivity
pattern of the mnth, which may be known a priori or empirically
measured, and let us define the directional array manifold
[@s(w)],, = d™(0)[ag(w)],,. One can verify that the matrix
C(w) in the BFT solution (33) is now given by C(w), the or-
thogonal decomposition of weighted directional array manifold
p(8)s(w)

[C(w)], = \/% zp: Pl G, (W), (34)
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where {,EIT} are the Fourier coefficients of the composite
weighting function p™(f) = p(#)d™(f) incorporating the
sensor directivity function.

The optimal BFT solution (33) based on the weighted
WINGS and the wavefield formalism is computationally
complex. In Section V, we examine an efficient numerical
computation of the BFT performed in the angular domain. We
also prove that under certain sampling conditions the numerical
computation yields the accurate BFT transformation.

V. BFT COMPUTATION IN THE ANGULAR DOMAIN

In this section, we address the numerical approximate compu-
tation of the BFT in the angular domain. The numerical solution
can be derived simply by a discrete sum approximation of the
integral in (14), obtained by sampling the angular variable

TéFT(wj)
L—1

= affg(fun;nz l1p(82) (@6, (wo) — T (w;)ag, (w;)|1*-

(35)

The BFT approximation is computed as the LS solution of (35)
in the angle domain. We will show that if an angular sampling
condition is satisfied then the angle domain approximation (35)
is equal to the optimal BFT computed by the weighted WINGS
transformation (33).

The following claim links the sampling matrix G(w) defined
by (17b) to the sampled array manifold matrix via the DFT re-
lationship.

1) Claim 1: Let Ar(w) be the N x L matrix constructed
by sampling the array manifold ag(w) at §; = (2 /L), | =
0,1,...,L —1.If L > [,, where [, is the row length of G(w),
then, for the 2-D case, A, (w) and G(w) are related by the I, x L
DFT matrix Fp,

[XL(TU) ::(}(lU)I?L
(;(10) ::IAJ;(IU>I?;{

(36a)
(36b)

where [Fr] = (1/y/2m)el2mmn/L),

Proof: For L > 1, the DFT analysis (36a) is simply the ma-
trix formulation of (17a) for the 2-D case. The proof for (36b) re-
sults from applying the well-known condition for frequency do-
main sampling and reconstruction of finite length discrete time
signals, see, e.g., [30]. The DFT synthesis (36b) is valid only if
L>1,. O

Note that I, is equal to (2n. + 1), where n. is the effective
cutoff index of G defined using the wavefield formalism by (19).
For example if we choose n. = 1.5kmax"max We get the condi-
tion L > 3kmaxTmax + 1.

In a similar manner we can write a second claim linking the
weighted array manifold vector p(6;)ag, (w) to its orthogonal
decomposition matrix C(w) defined by (26) via the DFT rela-
tionship.

2) Claim 2: Let A? (w) be the N x L matrix whose Ith
column is the weighted array manifold vector p(6;)ag, (w)
where 6, = (2n/L)l,l = 0,1,...,L — 1.If L > 1., where [,
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is the row length of C(w), then, for the 2-D case, A (w) and
C(w) are related by the [. x L DFT matrix F,

Af(w) = Cw)F,
C(w) = A2 (w)FY.

(37a)
(37b)

The row-length of C(w) can be evaluated from the convolution
(29) as the sum 2n. +n,, where n,, is the number of the Fourier
coefficients {p,, } of the angular weighting function p().
One can easily verify that TL ...(w;) solving (35) is given
by
« . . T
Ther(w;) = Af (wo) (Af(w)) . (38)
The following theorem links the numerical angle domain
approximate transformation defined above to the optimal BFT
computed by the weighted WINGS solution (33).
_ Theorem: The LS angle domain BFT approximation
TL .7 (w;) minimizing (35) is equal to the optimal BFT,
T gpr(w;) minimizing (25) if
L >2n. +n,. (39)
Proof: If L > 2n. + n, we can use claim 2 and substitute
(37b) into (33) and using (38) we get

Tprr(w;) = C(wo, p(9))CT (w;, p(9))

. . T

Af (wo)Ff! (A% (w)FF)
- T

7 (wo) (Af (wy))

gFT (w;).

Il
=

= (40)
]
This theoretic result is useful since it justifies a simple

straightforward angle-domain LS computation of the BFT

using (38) without loss of accuracy. Note that the angular
sampling condition on L is based on the wavefield formalism
and the sampling matrix representation of a given array.

For the case of directional sensors, one can verify
that condition (39) is still valid with n, replaced by

i, = max {length({p}})} the maximal length of the Fourier

coefficients of the composite weighting function p" (6).

In Sections VI-IX, we proceed to conducting an analytic and
simulative performance analysis of the focused MVDR beam-
former as a function of the various focusing transformations. We
first analyze the sensitivity of the focused MVDR to focusing
errors and present a robust loaded form for the focused MVDR
beamformer.

VI. Q-LoADED MVDR FOCUSED BEAMFORMER

In this section, we treat the issue of robust wideband focused
MVDR beamforming. In the focused MVDR, the focusing er-
rors often cause a significant deterioration at high SNR values
(see simulation examples in the numerical Section VII). In the
following, we attempt to provide some insight to the perfor-
mance degradation in high SNR due to focusing errors, by an-
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alytically studying the single-source case for single frequency
focusing.

A. Sensitivity of the Focused MVDR Beamformer to Focusing
Errors

In this section, we examine the effect of the focusing errors
introduces by focusing from frequency w; to frequency wy for
a single source with single frequency focusing. We statistically
model the focusing error and show analytically how the AG de-
creases as the SNR increases in the presence of focusing errors.
The following analysis is based on modeling the focusing errors
as small random independent complex perturbations of the array
gains of the focused steering vector. A similar model has been
used in [31], in order to analyze the sensitivity of the MVDR to
amplitude and phase errors of the sensors. Let us write the mth
element of the focused array manifold vector from frequency
wj to wo as

[T(wj)as(wo)],, =ap,,, (wo, w;)

= [ag(wo)l,,, (1 + Agm(w;))  (41)

where [ag(wyp)],, is defined by (4), and Ag,,(w;) represents
a zero-mean circular complex Gaussian gain error of the mth
sensor. We assume that the random gain errors are independent
from sensor to sensor and have the same variance Ug(w]')

o2w;) 2 B [[Agm(w)f], m=1,...N @
The focused data vector at frequency w; is given by
x! (wj) = s(wj)af (wo, wy) + T(w;)n(wy)  (43)

where s(w;) is the desired signal component at frequency w;,
and n(w,) is the additive noise at frequency w,. For the sake
of simplicity we assume T(w;) to be unitary, then under the
model assumptions in Section II the focused covariance matrix
R (w;,wo) is given by

R (w;, wo) = o2 (w;)a (wo, wj) (ag (wo, wi) ™ + o7 (w;)1
(44)
where 02(w,) is the power of the desired signal at w;. The
weight vector of the focused MVDR beamformer is given by
f (R (w;,wo)) ™ *ag (wo)

w! = . (45)
" all (wo) (R (wj, wo)) ~ag(wo)

Following [31] it can be shown that the output AG of the focused
MVDR beamformer is given by
N + 03
(1+ (N =1)026)? 4+ (N = 1)(N + 02)02¢2
ENS1LN>02>0 1
§2No2(1+o2)

AG =

(46)

where ¢ is the input SNR. In Section VIII, we will examine the
quality of (46) by comparing it to the analytic AG which will be
derived in the Appendix. Equation (46) indicates that the output
AG is inversely proportional to ¢2 for ¢ > 1 and inversely pro-
portional to ¢7(1 4 o) for N > land N > o2 > 0, ie.,

g
the AG is highly sensitive to the focusing errors. These results
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stress the importance of using a robust MVDR scheme for the
focused beamformer in addition to minimizing the focusing er-
rors at the desired DOAs. We now proceed to present an ex-
tension of the narrowband robust MVDR beamformer to the fo-
cused wideband case using a generalized loading scheme, which
brings into account the focusing transformations.

B. Robust MVDR Focused Beamformer by Q-Loading

In practice, due to array calibration errors and inaccurate
knowledge of the source direction, it is often the case that the
performance of the MVDR beamformer may deteriorate below
that of the conventional beamformer [26]. Furthermore, the
MVDR-SMI implementation is sensitive to estimation errors in
the sample covariance matrix [27]. One of the popular methods
to improve the robustness of the MVDR beamformer is the
diagonal loading scheme [1], [27], [32], [33]. It is derived
by imposing an additional quadratic constraint either on the
Euclidian norm of the weight vector itself or on its difference
from the nominal weight vector which is equivalent to limiting
the white noise array gain. In this section we extend the popular
well known diagonal loading scheme to the focused wideband
MVDR. We note that many effective loading schemes exist in
the literature, e.g., [19], [34], which may also be extended to
the wideband case in a similar manner.

In the case of the focused beamformer, the output noise power
is given by

o2 =ai(whH ( (47)

Sl

J
EJHWHWmOw£
=1

where we assumed for simplicity that the noise spectrum is
frequency independent, i.e., o2(w) = o2, and w} is defined
by (10). Limiting the white noise gain yields the following
quadratic constraint

(whQw) < T, (48)
where
1 J
Q2 5 l; T(w)TH (w;) (49)

and Ty is a design parameter. Note, that for the case of uni-
tary focusing transformations, Q is reduced to the unit matrix
and the lower bound for 7|, reduces to the white noise gain of
the conventional beamformer. We can see from (47) that in the
general case the focusing transformations lead to spatially non-
white noise. As the noise covariance is known up to a posi-
tive scaling factor, then one may apply a prewhitening trans-
formation, e.g., [1], and proceed with the conventional diagonal
loading technique. Equivalently, one can verify that the robust
focused MVDR weight vector satisfying (48) is given by

(R +5Q) ™" ag(wo)
afl (wo) (R}; + /3Q>_ ag(wo)

where [ is the Lagrange multiplier which is determined so that
the quadratic constraint (48) is satisfied. Since (48) is a mono-
tonic decreasing function of 3, any iterative scheme may be used

wiel =

(50)
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to find 3 [1]. Note that in (50) the loading term 5Q is a non-di-
agonal matrix, thus, for the focused MVDR case we use the no-
tation Q-loading.

In Sections VII-IX, we conduct a numerical performance
analysis of the AG of the Q-loaded MVDR focused beamformer
based on Monte Carlo simulations and the asymptotic expres-
sion (61) (see the Appendix). We compare the analytic AG to
the simulative AG based on Monte Carlo runs of the SMI im-
plementation. We compare the performance of various focusing
methods and study their dependence on the accuracy of the fo-
cusing transformation.

VII. NUMERICAL STUDY FOR THE CASE OF DOAS

UNCERTAINTIES

In this section, we conduct a numerical study of the fo-
cusing errors and of the AG of the Q-loaded MVDR focused
beamformer in the presence of DOAs uncertainties. We com-
pare the performance of three focusing transformations: BFT
representing the Bayesian focusing approach, WINGS repre-
senting the panoramic focusing approach and the Wang—Kaveh
Focusing Transformation (WKFT) [13] representing the di-
rectional focusing approach, which focuses a discrete set of
preliminary DOA estimates. We evaluate the analytic AG given
by (61) and compare it to the simulative AG based on Monte
Carlo simulations of the MVDR-SMI focused beamformer. In
our first example, we take two circular complex Gaussian wide-
band acoustic sources propagating towards a linear array of
N = 20 sensors in velocity of 1500 m/s. The simulation results
were obtained by averaging over 100 independent Monte Carlo
runs. We simulate the actual DOA errors as Gaussian random
variables with a standard deviation on the order of half the 3 dB
beamwidth. The mean DOAs vector is = [70°,105°], where
90° is the broadside direction, and the desired signal is the one
arriving from 105°. The signal-to-interference ratio (SIR) is set
at a fixed value of —20 dB. The bandwidth of the sources is
600 Hz taken around f. = 1500 Hz and the spectrum is taken
to be flat in the relevant bandwidth. The sampling frequency
is 4800 Hz and the focusing frequency is fo = 1500 Hz. The
observation time 7" is taken as 10 seconds and divided into
K = 46 snapshots. Each snapshot of data is transformed to the
frequency domain using an FFT of 1024 bins yielding J = 129
frequency bins in the relevant bandwidth. The spacing between
two adjacent sensors is d = Apin/2, where A, corresponds
to the highest frequency of the bandwidth. Note that in array
processing applications D/c < 1/B should be used (see, e.g.,
[35]) to determine whether the narrowband assumption can be
applied, where D is the array length, c is the signal velocity
and B is the signal bandwidth. The parameters used in our
examples indicate wideband scenario. For the BFT, we take
the weighting function p?(6) (13), to be a sum of Gaussian
densities centered around the presumed DOAs

1 ( (0 — 91)2)
ex _——
\/271'0% P 20%
1 (6 — 62)*
+,\/27r0§ P <_ 203 Gb

p*(0) =
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Fig. 2. Weighting function p? () taken for the BFT.
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Fig. 3. Squared focusing transformation error versus frequency for BFT,
WINGS, and WKFT for the case of two sources and DOAs uncertainties.

where 6, and 0, are the presumed DOAs of the sources. 01 =
1.27 and 02 = 1.25 are the standard deviations, approximately
on the order of a quarter of the 3-dB beamwidth of the array
at #, and 05, respectively. Fig. 2 illustrates the weighting func-
tion, p?(f), taken for the BFT. In the WKFT method we add 2
auxiliary directions for each assumed DOA in order to increase
the robustness to DOAs uncertainties. The auxiliary directions
were added at a quarter of the 3-dB beamwidth from the pre-
sumed DOAs.

In order to compute the BFT transformation in the angular
domain as discussed in Section V, we sample the steering matrix
Ai(w) (37a) at L = 2n. + n, = 3kmaxTmax + 1, points. We
take n, = 259 since the Fourier coefficients of p(¢) beyond this
value have magnitude smaller than 1e — 6. Thus, n. = 32, and
L = 355. Since the LS fit may be performed only in sectors
around the presumed DOAs, we actually took only L =22
points covering two sectors of 10 degrees each.

Let us first examine the focusing errors for the various
focusing methods. Fig. 3 shows the squared focusing error
||e,9(wj)||2 (21) versus frequency, averaged over 100 Monte
Carlo runs and summed over all the true source directions,
for the BFT, WINGS, and WKFT methods. It can be seen
that the BFT method has the lowest focusing error along the
entire bandwidth. In the WINGS method, we see that large
errors occur at frequencies below the focusing frequency. This
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Fig. 5. Average squared focusing error in the desired source direction versus
sensor index for BFT, WINGS, and WKFT for the case of two sources and DOA
uncertainties.

is expected since WINGS is an interpolation based focusing
method, in which focusing is equivalent to spatial interpolation
[22] of the array. Interpolating from a low frequency to a
higher one, is equivalent to extrapolating the array beyond its
physical length, thus, yielding high focusing errors. One can
reduce the WINGS transformation error by focusing to the
lowest frequency of the bandwidth. However, this will reduce
the effective aperture of the focused array, thus reducing the
spatial resolution of the array. In the literature there are several
papers dealing with the issue of choosing the optimal focusing
frequency (e.g., [36], [37]).

Fig. 4 shows the squared focusing error versus azimuth at
f = 1350 Hz for the BFT, WINGS, and WKFT methods with
DOA errors of approximately 3 degrees for each source. The
true DOAs are marked by diamonds. It can be seen that the
WINGS method has a roughly equi-ripple focusing error for
all the directions. This is expected because WINGS is an in-
terpolated based focusing method which does not depends on
the DOAs. Both BFT and WKFT have a high focusing error far
from the assumed DOAs, and a low focusing error close to the
assumed DOAs. It can be seen that BFT is significantly more ro-
bust to DOA uncertainties since they have a low focusing error
over a wider range of angles.
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Fig. 6. Array gain versus SNR for BFT, WINGS, and WKFT for the case of two sources with DOA uncertainties. (a) With Q-loading, and (b) without Q-loading.

Fig. 5 shows the focusing error for each element along
the array in the desired source direction, averaged over the
entire bandwidth, for the BFT, WINGS, and WKFT focusing
methods, for a DOA error of approximately 3 degrees. We can
see that BFT has the smallest focusing error along the array
while WKFT has the largest errors. We can also see that the
error of the BFT and WINGS methods increases significantly
towards the edges of the array. This increase is due to the
fact that both methods are based on spatial interpolation of
the array, which requires extrapolating the array beyond its
physical length, thus causing increasing errors at the edges of
the array.

Let us now evaluate the performance of the Q-loaded
SMI-MVDR beamformer for the various focusing schemes. For
Q-loading, we set the quadratic constraint value at Ty = 0.25
which is five times the norm of the conventional beamformer.
In Fig. 6(a) and (b), we plot the asymptotic and the simulative
AG versus SNR for BFT, WINGS, and WKFT focusing for
the coherent MVDR with and without Q-loading, respectively.
The superior performance of the BFT over that of the WINGS
and WKFT in both analytic and simulative curves, is expected
due to its low focusing error. The performance difference
is very large in the analytic AG curves and increases with
SNR; however, the simulative curves exhibit a smaller yet still
significant performance difference. We note that the difference
between the analytic and simulative AG is due to the fact that
the analytic calculation uses the asymptotic focused covariance
matrix (53) while the simulation uses its estimated sample
covariance matrix (9) averaged over K = 46 snapshots.

Comparing Fig. 6(a) and (b) we can observe the improvement
of the AG due to Q-loading of the covariance matrix. We see that
the Q-loading effectively reduces the sensitivity of the MVDR
beamformer to the focusing errors of the various methods as
well as to the SMI estimation errors and DOA uncertainties. In
Fig. 7, the AG versus ISR is plotted for an SNR value of 40 dB,
we see that the BFT exhibits superior performance for all SIR
values.

Let us now examine a single source example. In
Fig. 8(a) and (b), we plot the asymptotic and the simula-
tive AG versus SNR for BFT, WINGS, and WKFT methods for
the single-source case with DOA uncertainties for the MVDR
focused beamformer with and without Q-loading, respectively.
First, we note the significant improvement in the AG achieved
by the Q-loading. Without Q-loading the AG decreases to
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Fig. 7. Array gain versus ISR for SNR = 40 dB, two sources with DOA
uncertainties and using Q-loading.

values below —40 dB, while with Q-loading we observe a
slight decrease in the AG for mid range SNR values. However,
as the SNR increases the Q-loading term becomes significant
and the AG converges to a steady value, which depends on
the focusing errors. The comparison of the performance of the
different focussing methods for the single-source case given in
Fig. 8 shows a significant advantage of the BFT over that of
WINGS; however, the WKFT exhibits superior performance
than both BFT and WINGS. We see in the low and mid SNR
range that WKFT has a moderate advantage over the BFT in the
simulative curve. From both Fig. 8(a) and (b), it can be seen that
WKEFT achieves an AG about 1 dB higher than that of the BFT
in the region of the low SNR values. The reason for this is that
in both BFT and WINGS, the beamwidth is wider than that of
the WKFT as can be seen in Fig. 9(a) where the beampatterns
of all the methods are plotted for the single-source case and for
a low SNR value of —10 dB. To understand this phenomena,
we examine in Fig. 9(b) the corresponding magnitudes of the
adaptive coefficients vector. In BFT and WINGS which are
considered to be interpolation based methods, it can be seen
that the “effective” array is reduced to only 16 sensors while
the physical array was 20 sensors. Since the single source AG is
roughly 10log;, IV, we get a difference of approximately 1 dB
in the AG. This reduction in the AG decreases as the relative
processed bandwidth is decreased.

The results presented in this section demonstrated a signifi-
cant performance improvement of the BFT over the WINGS and
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WKEFT focusing methods in multisource scenarios with DOAs
uncertainties. However, in the single-source case, WKFT ex-
hibits better performance than that of the BFT and WINGS,
since panoramic focusing methods based on spatial interpola-
tion tend to have a wider beamwidth which reduces the AG. This
appears to be a tradeoff between the panoramic and the direc-
tional focusing approaches. However, the AG loss is moderate
and it reduces as the relative bandwidth is decreased. We also
showed the effectiveness of Q-loading introduced in Section VI
in improving the robustness of the focused MVDR beamformer
in handling focusing errors and SMI implementation errors.
An eminent point arising from Figs. 6(b) and 8(b) is the degra-
dation in the performance of the focused MVDR as the SNR
increases. In Section VIII, we investigate this degradation fur-
ther showing that it occurs mainly due to the focusing error in
the desired source direction, we also examine the quality of ap-
proximation (46) by comparing it to the analytic AG (61).

VIII. SENSITIVITY OF FOCUSED UNLOADED MVDR
BEAMFORMER TO TRANSFORMATION ACCURACY

In this section, we investigate the sensitivity of the focused
MVDR to focusing errors. We will concentrate on the single-
source case whose DOA is assumed to be known perfectly, and
we will also compare the sensitivity predicted by approximation
(46) to that of the analytic AG (61).

Fig. 10 shows the analytic and simulative AG versus SNR
of WINGS, and BFT, for the single-source case with perfect
knowledge of the DOA without Q-loading. The source DOA is
taken to be # = 105°. The simulative curves are very similar to
those of the previous section. The BFT method achieves better
performance due to its low focusing error; however, its simula-
tive AG decreases at high SNR. We observe that the analytic and
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Fig. 10. Simulative and analytic array gain versus SNR, for the WINGS and
BFT methods, for the single-source case with perfect knowledge of the DOA,
without Q-loading.

simulative performance of WINGS is severely degraded at high
SNR values. The fact that the degradation in the single-source
case is very similar to that of the multi-source case indicates that
the performance is mainly sensitive to the focusing errors in the
desired source DOA, and less sensitive to the focusing errors in
the interferences DOAs.

In Section VI, we developed an analytic expression to the ap-
proximated AG (46) for a single source with a single frequency
which indicates that the output AG is inversely proportional to
&2 for € > 1. Figs. 11(a) and 12(a) compare the analytic (61)
and approximated (46) AG of the BFT and WINGS methods for
the case of single frequency focusing. Fig. 11(a) shows the case
of downward focusing from f = 1710 Hz to a lower frequency
fo = 1500 Hz, and Fig. 12(a) shows the case of upward focusing
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focusing error of WINGS versus sensor index.

from f = 1240 Hz to fo = 1500 Hz. Figs. 11(b) and (c) and
12(b) and (c) plot the corresponding focusing errors. We can see
from Fig. 11(a) that for downward focusing, we get a relatively
good fit of the analytic (61) and the approximated (46) AG, es-
pecially in the WINGS method. The AG begin decreasing at a
rate of 1/&2 from ¢ ~ 20 dB for the BFT and from ¢ ~ —10 dB
for the WINGS. The relatively small and roughly uniform error
in Fig. 11(b) and (c) justifies the good fit of (46) and (61) in
this case. In Fig. 12(a), we see a significant difference between
the analytic and approximated AG for upward focusing. This is

due to the highly non uniform distribution of the focusing er-
rors across the array for both BFT and WINGS methods, as il-
lustrated in Fig. 12(b) and (c). In this case the statistical model
assumptions are not valid and the approximated AG (46) may
not be used. However we note that also in this case we observe
a rate decay of 1/£2 in the WINGS as predicted by (46).

From both Figs. 6(a) and 8(a) it can be seen that the Q-loaded
focused beamformer achieves a superior performance over that
of the unloaded focused beamformer, yet, performance degra-
dation is still exist in the Q-loaded case. In [38], we propose an



1294

alternative robust method for focused wideband MVDR beam-
forming. The proposed method is based on the general-rank
MVDR [39] which bring into account the focusing transforma-
tions in the optimization function, thus effectively reducing the
sensitivity of the MVDR to focusing errors. Simulation results
in [38] demonstrated an additional improvement with respect to
the Q-loaded focused MVDR beamformer.

IX. CONCLUSION

We proposed and investigated a Bayesian approach for fo-
cusing transformation design, which takes into account the sta-
tistical uncertainties in the DOAs during the focusing process.
The Bayesian focusing approach is a compromise between the
directional focusing approach which requires a priori knowl-
edge of the DOAs, and the panoramic focusing approach which
employs spatial interpolation in order to focus all directions.
The solution to the Bayesian focusing problem yields an optimal
MMSE focusing transformation and consequently an improved
focused beamformer with better AG. We derived a closed-form
expression for the BFT based on the weighted WINGS focusing
transformation and provide an extension for directional sensors
and empirically calibrated arrays. We examined the use of a
simple and computationally efficient LS approximation in the
angle domain and derived an angular sampling condition. We
proved that the angle domain approximation is identical to the
optimal BFT if the sampling condition is satisfied. We note that
the angular sampling condition is derived from the wavefield
modeling representation of the array and depends on the max-
imal spatial frequency component ky,,x7max fOr an array in free
field.

We studied the sensitivity of the focused beamformer to fo-
cusing errors, especially at high SNR values. We analyzed this
sensitivity and derived an analytic approximated expression for
the AG as a function of the input SNR ¢ and the focusing errors
which are approximated as random errors across the array with a
given variance. We showed that, under this assumption, the AG
is approximately inversely proportional to £2 for £ > 1 and in-
versely proportional to 02 (14-07) for N 3> 1and N > o7 > 0.
We also showed that the high sensitivity of the focused beam-
former to focusing errors mainly results from the focusing errors
in the desired source direction.

We treated the important issue of reducing the beamformers’
sensitivity to focusing errors, and other modeling errors. We
extended the narrowband diagonal loading scheme to a gen-
eralized Q-loading scheme for the focused wideband MVDR
beamformer, which employs a generalized transformation-de-
pendent loading of the covariance matrix, thus taking into ac-
count the focusing process. We note that the Q-loaded MVDR
beamformer is a transformation-dependent process, which may
be applied after any arbitrary focusing scheme for robust fo-
cused beamforming. In the numerical section we demonstrated
the significant improvement in the robustness of the focused
MVDR beamformer due to Q-loading.

To evaluate the performance of the proposed BFT method
and several other focusing methods we derived an analytic ex-
pression of the asymptotic AG for the SMI-implementation of
the focused Q-loaded MVDR beamformer. Simulation results
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have illustrated the superiority of the proposed BFT method, for
the multisource case with DOA uncertainties, over that of the
WINGS and WKEFT focusing methods. This improvement is at-
tributed to the low focusing error of the BFT across the entire
bandwidth, which yields more accurate focused data. However,
in the single-source case, WKFT exhibits better performance
than that of the BFT and WINGS, since panoramic focusing
methods based on spatial interpolation tend to have a wider
beamwidth which moderately reduces the AG. The AG loss is
expected to decrease as the relative bandwidth is decreased.

APPENDIX
ANALYTIC ARRAY GAIN OF THE MVDR
FOCUSED BEAMFORMER

In this appendix, we derive an analytic expression for the AG
of the Q-loaded MVDR focused beamformer (50) as a func-
tion of the focusing transformations. The focusing process intro-
duces a frequency dependent transformation error which affects
the performance of the MVDR focused beamformer. The ana-
Iytic AG will be used to evaluate the performance of the focused
beamformer for the various focusing methods. The expression
developed here is the asymptotic limit to the performance since
it involves the asymptotic covariance matrix of the data. The
model assumptions are specified in Section II. For the sake of
simplicity we also assume that the sources are uncorrelated and
that the desired source direction is known. The covariance ma-
trix of the received focused data vector y(n) (6) is given by

R! =E {yi(n)yi (n)}

J
:E{ T () ()T
j,l=1

2,

x (T (wp)xp (wy ) et T )2 } (52)

For a large enough observation interval, different frequencies
become statistically independent, and (52) becomes

R/ T(w;)E {x(w;)xg (w;)} T (w;)

~.
Il
-

Il
\MM

T(w;)Ra (w;) T (w;). (53)

~
Il
-

(1>
\'M%

Let s1(t) be the desired signal propagating from 64, let P, , P;,
P, be the power of the desired signal, the interferences signals,
and the noise, respectively, then

(54)



BUCRIS et al.: BAYESIAN FOCUSING FOR COHERENT WIDEBAND BEAMFORMING 1295
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afl (wo)(RL)™ 2 o2 (wj)ay, (wj)(ag, (w;)# | (RE) tag, (wo)
= (61)

(Rf)~1ay, (wo) - SINR,

where azp (w;), p = 1,2,... P is the power density of the pth

source at frequency w;. Let us define
aj (w;) = T(w;)ag(w;) (55)
to be the focused steering vector in direction  and frequency
wij.
Let also Ps, out, Pi_out> Pn_out denote the output power of

the desired signal, the interferences, and the noise, respectively,
then one can see that

J - 2
Poyow =Y 0% (w)) | (wh") el (wp)|  6)
j=1
P oJ 2
QL
Prow = 3302 (w)) | (wh") " af (wp)| 67
p=2j=1
H
Pn_out = (ng’QL)
J
X Zag(wj)T(ijH(w]) ngQL (58)
j=1

where W£]’QL is the Q-loaded focused MVDR weight vector at
direction 6

(R + Q) *ag, (wo)
all (wo)(RY + BQ)~'ag, (wo)
Defining the SINR;,,, SINR, to be the signal-to-interference-

plus-noise ratio (SINR) at the input and output of the beam-
former, respectively

FLQL _
Wp O =

(59)

P,
SINR;, = —1 —
PS ou
SINRyu; = Lout (60)

Pi_out + Pn_out

then, the AG is the ratio between SINR,,+ and SINR;,,. Substi-
tuting (59) into (56)—(58), yields (61), shown at the top of the
page, where
RI =R +4Q (62)
and
R/ (w)) = o (w;)T(w;) T (w;) (63)

is the focused noise covariance matrix.

In order to calculate R using (53), R, (w,) should be eval-
uated as

P
R, (w;) =Y 02 (w;)ag, (wo)ag (wo) + o7 (w;)L.  (64)

p=1
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