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Abstract—We consider the problem of acoustic scene analysis of
multiple sound sources. In our setting, the sound sources are mea-
sured by a single microphone, and a particular source of interest is
also captured by a video camera during a short time interval. The
goal in this paper is to detect the activity of the source of interest
even when the video data are missing, while ignoring the other
sound sources. To address this problem, we propose a kernel-based
algorithm that incorporates the audio–visual data by a combina-
tion of affinity kernels, constructed separately from the audio and
the video data. We introduce a distance measure between data
points that is associated with the source of interest, while reducing
the effect of the other (interfering) sources. Using this distance, we
devise a measure for the presence of the source of interest, which
is naturally extended to time intervals, in which only the audio sig-
nal is available. Experimental results demonstrate the improved
performance of the proposed algorithm compared to competing
approaches implying the significance of the video signal in the
analysis of complex acoustic scenes.

Index Terms—Acoustic scene, audio-visual, data fusion, kernel,
multi-modal, transient noise.

I. INTRODUCTION

AKEY element of automatic systems analyzing sound
scenes is the ability to distinguish between different sound

sources, which are often active simultaneously. In this paper,
we consider sound sources of different types including speech,
stationary and quasi-stationary background noises, as well as
transient interferences, which are abrupt sounds, such as door-
knocks and keyboard taps [1]. The sound sources are measured
by a single microphone. In addition, a particular sound source
is measured by a video camera, which is used as a “spotlight”
to designate the source of interest. Examples of video frames
of sources of interest are presented in Fig. 1, and they include
speech, keyboard tapping and drum beats. The objective in this
work is to detect the time intervals in which the source of in-
terest is active. We consider a challenging setting, where the
audio-visual recording is available only for a short time period,
while in the remainder of the time, only the audio signal, which
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is processed in an online manner, is available. In addition, the
detection is performed in an unsupervised manner, such that we
do not have the true labels of the sources.

Detecting the activity of a source of interest may be very
useful for sound scene analysis. For example, the scene may be
decomposed into its components in a step by step procedure.
At each step, the video camera is pointed at a particular source,
enabling to learn to identify the activity of this particular source
from the complex audio recordings. Pointing the video camera
to a certain source of interest may be seen as an “automatic
focusing” procedure, which is analogous to the human audio
perception guided by visual inputs. Considering the availability
of the video data only in a limited time interval is particularly
practical for simultaneous activity detection of multiple sound
sources. Since, by assumption, the video camera can measure
merely a single sound source at a time, one may gradually and
separately collect video data from each sound source, and, as
we show, use the recording of a particular source for improving
its activity detection even when the video data are no longer
available.

The activity detection of sources of interest may be further
useful for applications such as speech enhancement. Consider
for example the enhancement of speech measured by a single
microphone and a web camera during a voice over IP (VOIP)
conversation in the presence of keyboard taps. A common key
procedure in speech enhancement systems is the accurate de-
tection of the presence of speech and the interferences [2], [3],
which is carried out in this paper by the incorporation of the
video camera. Since collecting the video of speech and the key-
board taps simultaneously is not practical using a single video
camera, the data of these sources are collected one by one during
a short “calibration” time interval, and in testing time intervals
the data (of at least one of them) is missing. Moreover, assuming
that the video data are only partially available, it is beneficial
in real life scenarios such as sudden degradation of the video
signal. For example, the speaker may move his head out of the
video frame during natural speech.

Related problems dealing with the analysis of sound scenes
are audio and audio-visual scene classification and event detec-
tion. Given an audio or audio-visual event, the goal is to assign
it with the most appropriate class selected from a finite set of
classes, where a class of studies assume a monophonic setting in
which only a single audio event is present in each time interval
[4]–[10]. The present work belongs to a recent line of stud-
ies dealing with a polyphonic setting, where multiple sounds
may be active simultaneously [11]–[16]. There are several
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Fig. 1. Examples of video frames of sources of interest. From left to right: speech, drum beats, keyboard-tapping.

significant differences between these studies and the problem
we consider here. First, in event detection, the types of sounds,
i.e., the classes, are assumed to be known in advance. Second,
in contrast to the current work where we use only the recorded
unmarked data, large labeled databases are typically required to
train the classifiers. For example, the authors in [17] reported
that sound event classifiers based on deep neural networks could
not outperform a baseline system based on a Gaussian mixture
model on the DCASE dataset [18], due to the lack of sufficient
amount of training data. Last, the annotation of the datasets
requires significant human effort especially in the polyphonic
case, since each time segment is annotated with multiple labels
according to the multiple sound classes.

The methodology we present is based on obtaining a represen-
tation of the audio-visual signal in which the effect of the inter-
fering sources is reduced. Related studies which are also based
on unsupervised learning of representations of audio-visual sig-
nals were presented in [19]–[24]. In [20], the authors proposed
to use mutual information as a measure of synchronization be-
tween audio and video features assuming the distribution of the
signals follows a Gaussian model. Mutual information was also
exploited in [19], where the authors suggested to map audio
and video signals into domains designed to maximize the mu-
tual information between the modalities. The authors in [21]
proposed to obtain a representation of the audio-visual signal
via a variant of the well-known Canonical Correlation Analysis
(CCA) relying on the sparsity of events occurring simultane-
ously in both modalities. The methods presented in [23], [24]
rely on the incorporation of the audio and the video signals
via a simultaneous factorization of two non-negative matrices –
one for each modality, applying the method to the problem of
speaker diarization. Although the representation in these stud-
ies [19]–[24] is obtained in an unsupervised manner, they have
two main limitations in the setting we consider. First, these rep-
resentations are mainly learned via time-consuming solutions
of optimization problems. Therefore, they are less suitable for
obtaining a representation from a short sequence. Second, in
contrast to this work, they assume that both the audio and the
video modalities are available during the entire time.

We address the problem of the activity detection of the source
of interest from a kernel-based geometric standpoint, in which
the goal is to obtain a representation of the audio-visual data
that respects relations between data points only in terms of
the source of interest. Typical kernel-based geometric methods

are designed for non-linear dimensionality reduction of single-
modal data [25]–[29]. They provide low dimensional repre-
sentations by the eigenvalue decomposition of affinity kernels
aggregating local relations (affinities) between data points. Re-
cent extensions of kernel methods to the multi-modal settings
suggest constructing separate affinity kernels for each modality
(audio and video in our case), and fusing the modalities through
different combinations of the affinity kernels [30]–[43].

A particular data fusion approach, which is based on com-
bining the data via the product of affinity kernels, was recently
studied in [41]–[43]. In [42], we analyzed this fusion scheme
in a discrete setting using graph theory. We viewed the single-
modal affinity kernels and the product of kernels as defining
single and multi-modal graphs, respectively, and studied the ap-
propriate selection of their bandwidth, which are directly related
to the graph connectivity and have a significant influence on the
overall performance. In [41], Lederman and Talmon analyzed
this fusion approach in a continuous setting, in which the affin-
ity kernels are viewed as two diffusion operators, which are
applied in an alternating manner. They showed that modality-
specific factors, i.e., factors which appear only in one of the
modalities, are attenuated by the alternation of steps.

In this paper, we propose an algorithm for the activity detec-
tion of sources of interest based on combining partially available
audio and video signals, recorded over a short time interval. The
algorithm exploits short synchronized sequences of audio and
video signals incorporating the two modalities based on the
method presented in [41], [42], where they are combined via
the product of affinity kernels, constructed separately for each
modality. The incorporation of the video signal improves the
discriminative power of the unified affinity kernel, and it allows
to construct a data-driven distance based on the unified kernel.
This distance preserves relations between data points according
to the source of interest, and it reduces the effect of other sound
sources, which are modality (in our case, audio) specific. Us-
ing this distance, we devise a measure for the presence of the
source of interest, which serves as a proxy for source activation
labels in the absence of actual labels. Then, we show how to
extend this measure to frames in which only the audio signal
is available while preserving the properties of the data-driven
distance. We apply the proposed algorithm to the detection of
different types of sound sources including speech, drum beats
and keyboard tapping, and examine its performance in challeng-
ing scenarios, in which the interferences are of a similar type as
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the source of interest. The proposed algorithm attains improved
performance compared to competing single- and multi-modal
approaches demonstrating a significant contribution of the fu-
sion of partially available audio-visual signals for sound scene
analysis.

The contributions of this paper with respect to our previous
work presented in [42] is as follows. First, we address here the
fusion problem of partially available audio-visual signals in an
online setting in contrast to the batch setting, with fully avail-
able signals, which was considered in [42]. As far as we know,
this paper is the first to demonstrate a successful extension of
the fusion method presented in [41], [42] to partially available
multi-modal signals, i.e., signals measured by sensors of dif-
ferent types (audio and video). In addition, in [42], we have
focused on the graph theoretic analysis of this fusion approach,
and only demonstrated it for the problem of voice activity de-
tection, which is a relatively simple special case of the problem
we consider here. The much wider task of sound source activity
detection, considered in this paper, includes not only different
types of sources and multiple simultaneous interferences, but
also cases where the source of interest and the interferences are
of the same type, e.g., both are speech from different speakers
or taps from different keyboards. Specifically, the activity de-
tection of other sources rather than speech, e.g., keyboard taps,
was not addressed in the literature, to the best of our knowl-
edge. We further note that the analysis of the video signal of the
different types of sources may be considered as different tasks
from a computer vision point of view. For the analysis of speech
signals, for example, complex algorithms are often used to ac-
curately detect and track key-points in the mouth region of the
speaker [44]–[46], and they cannot be directly applied for the
detection of keyboard taps. Moreover, as we show, constructing
a measure of activity based merely on the video signal leads
to poor detection results especially in the detection of sources
other than speech. Yet, the different video signals are handled
in a similar manner by our proposed algorithm for the detection
of the presence of a broad variety of sources of interest.

The remainder of the paper is organized as follows. In
Section II, we formulate the problem. In Section III, we pro-
pose an algorithm for activity detection of sources of interest,
and present experimental results demonstrating its improved
performance in Section IV.

II. PROBLEM FORMULATION

Consider a complex acoustic scene comprising multiple
sound sources, such as speech, different types of transients
and background noises, which may be active simultaneously.
The acoustic scene is measured by a single microphone, and
the measured signal is processed in frames. Let a1 ,a2 , ...,aN

be a feature representation of a sequence of N frames, where
an ∈ RPa is the nth time frame, and Pa is the number of fea-
tures, which are described in Section IV. Assuming R + 1 audio
sources, denoted by s1 , s2 , ..., sR , s̃, the audio signal is viewed
as an unknown (possibly) non-linear mapping f of the sources:

an = f(sa
1 , sa

2 , ..., sa
R , s̃).

The acoustic scene is also captured by a video camera, which is
used as a “spotlight” that designates the source s̃ whose presence
we would like to detect. We term the source s̃ “the source of
interest” and consider all other R sources as interferences. Let
v1 ,v2 , ...,vL be a sequence of L video frames, wherevn ∈ RPv

is a features representation of the nth frame. We consider a set-
ting, in which the video signal is available only in a subset of the
time interval of the audio signal, i.e., L < N . The sequence of
the video frames is aligned to the audio sequence a1 ,a2 , ...,aL

by a proper selection of the frame length and the overlap of the
audio signal as described in Section IV. The video signal may
also contain interfering sources, so that the video signal is seen
as an unknown mapping g of the sources:

vn = g(sv
1 , sv

2 , ..., sv
Q , s̃),

where we assume Q interfering source, sv
1 , sv

2 , ..., sv
Q

1. For ex-
ample, when the camera is pointed at the face of a speaker,
head movements are considered interferences since they are not
directly related to the production of speech. The only source
measured by both the video camera and the microphone is the
source of interest such that all other sources are assumed modal-
ity specific, an assumption that we use in Section III to construct
a measure of the presence of the source of interest.

Let H0 , H1 be hypotheses of the absence and the presence
of the source of interest s̃, respectively, and let 1n be the corre-
sponding indicator of the nth frame, given by:

1n =

{
1, n ∈ H1

0, n ∈ H0

}
. (1)

The goal in this paper is to detect the presence of the source of
interest, while ignoring all other sources, i.e., to estimate 1n in
(1). Specifically, we focus on estimating the indicator 1n in time
intervals, in which the video signal is missing, i.e., n ∈ [L +
1, L + 2, ..., N ], and consider an online setting, where these
frames are processed sequentially. We note that we consider
an entirely unsupervised process of the estimation of 1n in (1)
such that even for the interval 1, 2, ..., L we do not have labels
indicating the presence of the sources.

III. KERNEL-BASED DETECTION OF THE SOURCE OF INTEREST

A. Audio-Visual Fusion via a Product of Affinity Kernels

We exploit the audio-visual data to construct a measure of the
presence of the source of interest by fusing the data via a product
of affinity kernels constructed separately for each modality. Let
Ka ∈ RL×L be an affinity kernel constructed from the sequence
of audio frames a1 ,a2 , ...,aL such that its (n,m)th entry is
given by:

Ka
n,m = exp

[
−‖an − am‖2

2 /εa
]
, (2)

where ‖·‖2 is the L2 distance, and εa is the kernel bandwidth,
a parameter whose selection we studied in [42]. The affinity
kernel has an interpretation of a graph on the data, which we
term the audio graph, whose nodes are the data points {an},

1Throughout this paper, a and v denote audio and video, respectively.
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and the weight of the edge between node n and node m is given
by Ka

n,m . Let Da ∈ RL×L be a diagonal matrix, whose nth
element on the diagonal, denoted by Da

n,n , is given by:

Da
n,n =

L∑
m=1

Ka
n,m . (3)

The matrix Da is often referred to as the degree matrix, when the
affinity function Ka

n,m consists of binary values, so that Da
n,n is

the number of vertices connected to vertex n. Here, we use the
inverse of Da to normalize the rows of Ka constructing a row
stochastic matrix Ma ∈ RL×L by:

Ma = (Da)−1 Ka . (4)

The row stochastic matrix Ma defines a Markov chain on the
graph such that its (n,m)th entry, denoted by Ma

n,m , represents
the probability of transition from node n to node m in a single
step. These transition probabilities incorporate information on
the inter-relations between the samples/nodes. For example, in
many manifold learning and kernel-based techniques, such as
[29], they are used, via the eigenvalue decomposition, to obtain
a global representation of the data.

The data from the two modalities are combined by the con-
struction of the matrix M ∈ RL×L , which incorporates the data
from the two modalities via the product of kernels:

M = MaMv , (5)

where Mv ∈ RL×L is a row stochastic matrix constructed
from the video signal, similarly to Ma according to (2)-(3).
The matrix M is also row stochastic, so it defines an audio-
visual graph, whose nodes correspond to the pairs of frames
(a1 ,v1) , (a2 ,v2) , ..., (aL ,vL ). According to (5), the (n,m)th
entry of M is explicitly given by:

Mn,m =
L∑

l=1

Ma
n,lM

v
l,m .

Therefore, it may be interpreted as the probability of transition-
ing from node n to node m in two steps: first from node n to
node l in the audio graph and then from node l to node m in the
video graph. In the same sense, Lederman and Talmon showed
in [41] that the continuous counterpart of M is a diffusion oper-
ator employing two diffusion steps, one for each modality. They
showed that such alternating diffusion steps attenuate the view
specific factors, which are defined as interferences in our case.
In SubSection III-B, we provide more insight on this result by
describing the relation between the product of kernels and the
diffusion distance [29], which in turn motivates us to build a
measure for the presence of the source of interest as we describe
in SubSection III-C.

B. Diffusion Distance

Let d (n,m) be the diffusion distance between frame n and
frame m, given by [41]:

d (n,m) =

√√√√ N∑
l=1

(Mn,l − Mm,l)
2 . (6)

According to (6), the distance between frame n and frame m is
roughly given by a collection of transition probabilities in one
step between the frames. Note that d (n,m) is an unnormalized
spacial case of the more general diffusion distance, presented
in [29], comprising transition probabilities between frames in
multiple steps. Since the distance between a pair of frames
takes into account other frames in the set, the diffusion distance
respects the geometry of the data and is considered robust to
noise [29]. In addition, in the multi-modal setting we consider
here, the diffusion distance is constructed from the matrix M,
so that it measures distances between frames according to both
the audio and the video sources, sa

1 , sa
2 , ..., sa

R , sv
1 , sv

2 , ..., sv
Q , s̃.

The diffusion distance may be rewritten in terms of a distance
between two vectors corresponding to frame n and frame m.
Specifically, let hn ∈ RL be a vector corresponding to frame n,
given by:

hn = MT h0
n ,

where T denotes transpose, and h0
n ∈ RL is an indicator vector

whose nth element equals one and all other elements equal zero.
Accordingly, the diffusion distance d (n,m) in (6) is given by:

d (n,m) = ‖hn − hm‖2 . (7)

The use of the product of kernels for the fusion of the audio
and the video signals is motivated by [41, Th. 5], presented in
the continuous domain, implying on the existence of equivalent
functions to hn and hm , which are merely functions of the
source of interest s̃. Namely, on the one hand, the diffusion
distance is a data driven distance that can be explicitly calculated
for each pair of frames according to (6). On the other hand, it
is equivalent to a distance between implicit functions, which
are functions of merely the source of interest, so that it allows
measuring distances between data points in terms of the source
of interest only, while ignoring all other sources, which are
modality-specific by assumption. For more details, we refer the
readers to [41].

C. Detection of the Presence of the Source of Interest

The proposed measure of the presence of sources of interest
is constructed from the eigenvalue decomposition of the matrix
M in (5). Since the matrix M is row stochastic, it has an all ones
eigenvector corresponding to the eigenvalue 1, which is ignored
since it does not contain information. Let φ1 ,φ2 , ...,φL−1 and
λ1 , λ2 , ..., λL−1 be the eigenvectors (excluding the trivial) and
the corresponding eigenvalues of M, respectively. The motiva-
tion to use the eigenvalue decomposition of M for the detection
of the presence of the source of interest stems directly from its
relation to the diffusion distance [29], [41]:

d (n,m) =

√√√√ N∑
l=1

λl (φl(n) − φl(m))2 , (8)

where φl(n) is the nth entry of φl . The expression in (8) implies
that the eigenvectors of the kernel product M may be used
as new coordinates of the data samples representing them in
terms of the source of interest. Since in this study we are only
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interested in the estimation of a single indicator, we use only
the leading eigenvector φ1 . Specifically, we propose to estimate
the indicator of the source of interest in frame n ∈ [1, 2, ..., L],
1n in (1), by:

1̂n =

{
1 ; φ1(n) > τ

0 ; otherwise

}
, (9)

where τ is a threshold value. We note that the leading eigenvector
is of length L as the number of the frames from which it is
constructed, such that its nth entry corresponds to the nth data
point. The leading eigenvector of a row stochastic matrix is
often used in the literature for clustering since it solves the well-
known normalized cut problem; specifically, the nth data point
is assigned to one of two possible clusters according to the sign
of the corresponding nth entry of the leading eigenvector [47].
In our case, the leading eigenvector of the unified affinity kernel
M clusters the signal according to the presence of the source of
interest, and indeed, as we show in Section IV, high values of
the entries of this eigenvector correspond to frames, in which
the source of interest is active, while low values are obtained for
inactive frames. In addition, we use the leading eigenvector as a
continuous measure, such that thresholding allows us to control
the trade-off between correct detection and false alarm rates.
For example, low threshold values should be set in applications
where high detection rates are required at the expense of higher
rates of false alarms; when no addition information is available
on the signal or the application at hand, the threshold may be set
to zero to cluster the signal according to the sign of the entries
as proposed in [47].

Two additional properties make the leading eigenvector φ1
particularly useful for the detection of sources of interest; first,
it is constructed in a data-driven manner, so that the indicator
of the presence of the source of interest, 1̂n in (9), is estimated
without any other information. Specifically, the true labels of
the presence of the source of interest are not required.

Second, the eigenvector may be extended to frames L + 1,
L + 2, ..., N even though they comprise only audio data
[43], [48], as we describe next. Given a new frame an , n ∈
[L + 1, L + 2, ..., N ], we use the nyström method [49] to ob-
tain a new entry of φ1 corresponding to frame n, which is
denoted by φ1 (n):

φ1 (n) =
1
λ1

L∑
m=1

Mn,m φ1 (m) . (10)

By (5), (10) can be rewritten as:

φ1 (n) =
1
λ1

L∑
m=1

L∑
l=1

Ma
n,lM

v
l,m φ1 (m) �

L∑
l=1

Ma
n,lθ(l),

(11)
where θ(l) = 1

λ1

∑L
m=1 Mv

l,m φ1 (m). The right term in (11)
implies that given a new frame n, the extension requires only
the audio frame an since the term θ (l), which comprises the
video (and the audio) data, is calculated based only on frames
1, 2, ..., L.

At this point, we note that the matrices Ma and Mv are
similar to symmetric matrices, so that their eigenvectors are
guaranteed to be real-valued [29], which is not the case for M.

Algorithm 1: Detection of the presence of the source of
interest

1: Obtain the first L pairs of frames {an ,vn}L
n=1

2: Calculate the affinity kernels Ka and Kv according
to (2)

3: Calculate the row stochastic matrices Ma and Mv

according to (3)–(4)
4: Fuse the data via the product of kernels, i.e., compute

M according to (5)
5: Obtain the leading eigenvector φ1

Extension to frames L + 1, L + 2, ...
6: for n = L + 1, L + 2, ... do
7: Obtain the audio frame an

8: Calculate affinities to frames 1, 2, ..., L:
{

Ma
n,l

}L

l=1
9: Calculate the new entry of the eigenvector φ1(n)

using (11)
10: if φ1(n) > τ then
11: 1̂n = 1
12: else
13: 1̂n = 0
14: end if
15: end for

One solution for this problem is to use the singular value de-
composition of M, which is shown by Lindenbaum et al. in [40]
to provide another variant of the diffusion distance. Yet, we use
in this study the leading eigenvector instead of, e.g., the leading
singular vector, since (i) the leading eigenvector indeed appears
real-valued in all our experiments, (ii) it may be extended to new
incoming frames using the nyström method, and (iii) it provides
better detection results. We summarize the proposed algorithm
for the detection of the presence of the source of interest in
Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

To evaluate the performance of the proposed algorithm we use
audio and audio-visual recordings2 of different types of sound
sources including speech, different types of noise and transients,
which are synthetically added (in the audio modality) to simulate
complex audio scenes with multiple sources. Each recording is
divided into two parts of equal lengths such that the first part
comprises both the audio and the video, and the second part
comprises only the audio. The second part of the recordings
with the missing video data is processed in an online manner
and is used for the evaluation of the algorithm.

Each recording is a sequence of 90–120 s length, sampled
by the video camera at 25–30 fps. The audio signal is sampled
at 8 kHz and processed in frames with 50% overlap, where the
frame length is set to ∼630 samples such that the audio frames
are aligned with the video frames. To evaluate the performance

2The audio and audio-visual recordings are available at https://davidov312.
github.io/ADMrefSet/
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of the proposed method, we use the clean audio recording of the
source of interest. We set the ground truth for the true presence
of the source of interest by comparing the energy of the clean
signal to a threshold whose value is set to 1% of the maximal en-
ergy value in the sequence. The source of interest is considered
present in frames with energy value above this threshold value.
In this challenging type of ground truth setting, transitions be-
tween the presence and the absence of the source of interest may
occur in the resolution of tens of ms.

For the representation of the audio signal, we use the Mel-
Frequency Cepstral Coefficients (MFCC), which are calculated
by filtering the audio signal in the domain of the power spectra
with a bank of the perceptually meaningful Mel-scale filters.
The MFCC representation is given by the coefficients of the
discrete cosine transform (DCT) applied to the log of the out-
puts of the filters. The MFCCs represent the spectrum of the
signal in a compact form, and they are widely used in a variety
of audio processing applications [50]–[52]. We use a Matlab
implementation of the MFCCs, taken from [53], and set the
number of coefficients to 24. We found in our experiments that
the performance of our method is not sensitive to the particu-
lar number of coefficients. In addition, we set the number of
filters to 90. We empirically found that the optimal number of
filters depends on the type of the source of interest. When the
source of interest has a more abrupt nature, e.g., keyboard taps,
a larger number of filters should be used, and for more “station-
ary” signals, such as speech, a lower number of filters provide
better performance. Since we do not assume in this study that
the type of the source of interest is known, we use 90 filters,
which is an intermediate value providing good performance for
all types of sources of interest. In this context, we note that using
a higher sampling rate than 8 kHz has a negligible effect on the
performance.

In addition, we note that the effect of the feature selection
process on the accuracy of the activity detection implies that
their proper selection may lead to further improvement of the
proposed algorithm. One approach, which we leave to a fu-
ture study, would be to learn the features from the data, e.g.,
using deep learning methods based on unsupervised learning
procedures such as deep belief networks [54]. However, such
procedures should be applied offline, and since the type of the
sources and interferences are not known in advance, a large
database of sounds should be exploited.

The video signals have resolutions in the range of 328 × 184
to 640 × 480 pixels, and they are represented by motion vec-
tors. We use a Matlab implementation of Lucas - Kanade method
[55], [56] (vision.OpticalFlow Matlab system object) to estimate
the motion of non-overlapping blocks of 10× 10 pixels between
pairs of consecutive frames. Then, we concatenate the absolute
values of the motion in each block into vectors. The feature
representation of frame n, (an ,vn ), is given by the concatena-
tion of the motion vectors and the MFCCs in frames n − 1, n
and n + 1, respectively. The use of data from three consecutive
frames for the representation of the audio-visual signal allows
for the incorporation of temporal information into the proposed
algorithm, which is not taken into account in the construction
of the affinity kernels Ma and Mv .

Before turning to the experimental results, we note that rather
than extending the eigenvector φ1 to a frame l, for which the
video data is missing according to (11), a more computationally
efficient extension is obtained by:

φ1 (l) =
L∑

m=1

Ma
l,m φ1 (m) , (12)

The extension in (12) may be seen as a weighted interpolation of
the measure of the presence of the source of interest based only
on the audio signal, which is the one available for new incoming
frames. Specifically, since Ma is a row stochastic matrix, the
“weights” Ma

l,m sum to one, and the more similar frame al to a
certain frame am , m ∈ 1, 2, ..., L, the higher the corresponding
weight Ma

l,m is. In addition, we found in our experiments that the
extension in (12) provides better results, so it is the one used in
the reported results. In this context, we note that the eigenvalue
decomposition assigns an arbitrary sign to the eigenvectors. We
assume that the correct sign of the eigenvector φ1 is known,
and that high entry values correspond to frames in which the
source of interest is present; in practice, the sign may be chosen
such that a negative sign is assigned to entries of the eigenvector
corresponding to frames, in which all audio sources are absent,
i.e., silent frames.

Since the proposed approach is evaluated for frames in which
the video data is missing, we compare it to an approach, which is
based only on the audio data, in order to highlight the contribu-
tion of the video signal. Specifically, we compare the proposed
method to its single modal variant, in which only the audio sig-
nal is exploited in frames 1, 2, ..., L for the construction of the
measure of the presence of the source of interest; namely, the
leading eigenvector of the matrix Ma is used to construct
the measure. The single modal approach may be seen as an unsu-
pervised variant of the method presented in [57], which is based
on using eigenvectors of an affinity kernel for speech detection.

In addition, we compare the proposed algorithm to the Canon-
ical Correlation Analysis (CCA) method, which is denoted by
“CCA” in the plots, and to the method presented in [19]. The
methods are based on obtaining representations of the the au-
dio and the video signals by mapping them to new domains, in
which the correlation and the mutual information between the
modalities is maximized, respectively. The method presented in
[19] is denoted in the plots by MMI (maximization of mutual
information).

We also present the performance of a variant of the proposed
algorithm based only on the video signal. This approach cannot
be used in practice in the setting we consider since it requires the
availability of the video signal in the evaluated time intervals,
in which it is assumed missing. Still, the performance of the
approach based only on the video data is presented to further gain
insight into the contribution of the fusion procedure between the
audio and the video data for the activity detection of the source
of interest.

B. Activity Detection of Speech Sources

In the first experiment, we consider speech as the source
of interest. We use an audio-visual dataset, which we
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Fig. 2. Qualitative assessment of the proposed algorithm for the activity detection of the source of interest. Source of interest: speech. Interfering source:
door-knock transients with SIR 1. (Top) Time domain, trajectory of the leading eigenvector - black solid line, true SOI (speech) - orange squares, true interferences
(transients) - gray stars, a variant of the proposed method based only on the audio signal with a threshold set for 80% correct detection rate - red asterisks, proposed
algorithm with a threshold set for 80% correct detection rate- blue circles. (Bottom) Spectrogram of the input signal.

presented in [58] comprising 11 sequences of different speakers
recorded via a smartphone. We synthetically add different types
of noise and transients taken from a free online corpus [59], with
different SNRs and with different source of interest to interfer-
ences ratios (SIR). Specifically, we define the SIR as the ra-
tio between the maximal amplitudes of the source of interest
and the interferences (transients in this case) such that the SIR
equals one when they have the same maximal amplitudes. We
find this type of normalization based on the maximal ampli-
tude more suitable than, e.g., using the power of the signals,
due to the abrupt nature of the transients and it was previ-
ously used in [1]. The video signal comprises the face of the
speaker, and it may comprise slight head and mouth movements
in time intervals, in which speech, i.e., the source of interest, is
absent.

An example of the detection of speech in the presence of
door-knocks is presented in Fig. 2, where at the bottom of the
figure we plot the spectrogram of the signal demonstrating the
similar spectrum of the different audio sources, i.e., speech and
the transients. In Fig. 2 at the top, we plot (black solid line)
the proposed measure for the presence of the source of interest,
φ1(l), which is normalized to the range of [0, 1] for the ease of
presentation. Due to the normalization, it can also be viewed as
the probability of the presence of the source of interest. It may be
seen in Fig. 2 that the proposed measure properly provides high
values in time intervals, in which the source of interest (speech)
is indeed present. We compare the proposed approach with the
audio-based approach to gain insight on the contribution of the
video signal in the calibration set. We set the threshold value τ
in (9) to provide 80% correct detection rate and compare their

false alarms. It can be seen in Fig. 2 that the method based only
on the audio signal provides more false alarms, e.g., around the
12th and the 17th sec.

We further evaluate the performance of the proposed method
in Fig. 3 in the form of Receiver Operating Characteristic (ROC)
curves, which are plots of the probability of detection versus the
probability of false alarm. The curves are obtained by changing
the threshold value τ in (9) over the value range of the measure
of the presence of the source of interest φ1 . The higher the curve,
i.e., the larger the Area Under the Curve (AUC), the better the
performance of the corresponding method are. The AUC values
are reported in the legend box for each method.

It may be seen in Fig. 3 that the proposed algorithm for
the detection of sources of interest outperforms the competing
methods. Specifically, the inferior performance of the variant
based only on audio implies that using the video signal, the
proposed algorithm indeed learns a measure of the presence
of the source of interest, in which the effect of the interfering
source is reduced, even though the video signal is missing in
the evaluated time intervals. Therefore, the video signal allows
for the analysis of the audio scene by properly distinguishing
the sound source at which the video camera is pointed from all
other sources.

The method based only on the video signal provides sig-
nificantly inferior results to the proposed algorithm, which
demonstrates that the video signal alone cannot provide accurate
activity detection of the source of interest, even though it does
not measure other sound sources in the scene. One reason for
the inferior results is that the video signal may comprise visual
cues which are not directly related to the source of interest, such
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Fig. 3. Probability of detection vs probability of false alarm. Source of interest:
speech. Interfering sources: (a) door-knock transients with SIR 1, (b) babble
noise with 0 dB SNR and scissors transient with SIR 1.

as head movements of the speaker, which are seen as interfering
sources.

In this context, we note that in a setting where both the audio
and the video signals are available for a new incoming frame,
the extension in (11) does not use the incoming video frame
and its incorporation is an open problem, which we leave for a
future study. Yet, we examine in our experiments a straightfor-
ward solution based on building the extension weights in (12)
relying on similarities between unified audio-visual feature vec-
tors constructed via the concatenation of the audio and the video
features. Since we found that this alternative does not improve
the detection scores, the corresponding results were discarded.

Moreover, we note that in [42], [60] we considered the fusion
of audio-visual data using the product of kernels for speech de-
tection. We showed that it provides better detection scores com-
pared to alternative fusion schemes and the methods presented
in [58], [61]. However, in [42], [60], we considered a batch
setting, where the audio-visual data is available in advance; in
contrast, here, we consider an online setting, in which only the
audio data is available in the evaluated time intervals. In addi-
tion, in [42], we considered a cropped region of the mouth of the
speaker as the video signal, assuming that accurate detection of
the mouth region is required as a preprocessing stage. Instead,
in this study we use the whole video recording including the

face of the speaker, which pose a challenge since, e.g., move-
ments of the head of the speaker may degrade the detection.
Fig. 3 demonstrates that the proposed algorithm significantly
outperform the alternative approaches.

We summarize the AUC scores of the different methods in
the detection of speech in Table I (a-c) for different SIR levels.
Table I comprises also the statistics of the activity of the differ-
ent sources including the total number of the tested frames; the
number of frames comprising the source of interest; the number
of frames comprising the interferences; and those containing
both of them. The statistics of the interfering sources account
for the transients and speech but not for the stationary noise
since the latter appears in all of the frames. We note that speech
is a different type of sound compared to the interfering sources
such as (quasi-) stationary babble noise or, e.g., the abrupt vary-
ing door-knocks. We further present in Table I the performance
of the methods in the detection of speech in the presence of
another (interfering) speech source. The challenge in the detec-
tion of the source of interest in such a scenario is emphasized
by the degradation of the performance of all methods. Still, the
proposed method provides improved performance compared to
all other methods.

C. Activity Detection of Transient Sources

We proceed with the demonstration of the performance of
the proposed algorithm for other acoustic scenes with different
sources of interest. In Figs. 4 and 5, we use an
audio-visual recording of drum beats and 7 audio-visual
recordings of keyboard-taps, respectively, all taken from
YouTube. The recordings of keyboard taps comprise different
keyboards recorded from different angles. The corresponding
audio sources are pre-filtered by the algorithm proposed in [2]
to reduce stationary noise. As an interfering source in these ex-
periments, we use, in addition to transients, speech signals taken
from TIMIT database [62].

We note that the detection of the presence of these types
of sources is significantly more challenging than speech activ-
ity detection. First, the sources of interest are present in very
short time intervals of up to a single frame such that incorporat-
ing temporal information is not useful. Second, the audio scene
comprises speech, which is a complex and a non-stationary inter-
fering source spanning large ranges of amplitude and frequency
values. Third, as far as we know, the detection of the presence
of such sources is not studied in the literature in the setting we
consider here, where the only available prior information is a
short unmarked audio-visual recording. Last, the video signal
of the different types of the sources, e.g., speech and keyboard
taps, visually differs from each other as demonstrated in Fig. 1.

Fig. 4 demonstrates the accurate detection of drum beats in
the presence of interfering speech. We consider the drum beats
as an example of challenging audio-visual cues with complex
relations between the audio and the video modalities. Specif-
ically, the video features capture mainly the movement of the
drumsticks; these cues are not equivalent to the production of
sound, since sounds occur only in very short time intervals, when
the sticks hit the drums, while the sticks move also before and
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TABLE I
(A)–(C) AUC SCORES

Interfering sources Audio Video CCA MMI Proposed

Door-knock transients 0.79 0.71 0.59 0.67 0.94
Babble noise with 0 dB SNR, scissors transient 0.73 0.71 0.56 0.57 0.85
Speech, babble noise with 20 dB SNR, door-knock transients 0.74 0.71 0.54 0.58 0.79

(a)

Interfering sources Audio Video CCA MMI Proposed

Door-knock transients 0.91 0.71 0.53 0.85 0.95
Babble noise with 0 dB SNR, scissors transient 0.75 0.71 0.54 0.63 0.87
Speech, babble noise with 20 dB SNR, door-knock transients 0.79 0.71 0.54 0.61 0.86

(b)

Interfering sources Audio Video CCA MMI Proposed

Door-knock transients 0.69 0.71 0.56 0.66 0.89
Babble noise with 0 dB SNR, scissors transient 0.67 0.71 0.53 0.58 0.83
Speech, babble noise with 20 dB SNR, door-knock transients 0.68 0.71 0.56 0.61 0.73

(c)

Interfering sources Number of Number of frames containing both
interfering frames the source of interest and interferences

Door-knock transients 4778 (29%) 1578 (9%)
Babble noise with 0 dB SNR, scissors transient 8043 (43%) 2429 (15%)
Speech, babble noise with 20 dB SNR, door-knock transients 8781 (53%) 2891 (17%)

(d)

Source of interest: speech. SIR: (a) 1, (b) 2, (c) 0.5. Number of tested frames: 16665. Number of frames containing the source
of interest: 5560 (33%). (d) Statistics on the activity of the interferences.

Fig. 4. Qualitative assessment of the proposed algorithm for the activity detection of the source of interest. Source of interest: drum beats. Interfering source:
speech with SIR 2. (Top) Time domain, trajectory of the leading eigenvector - black solid line, true SOI (drum beats) - orange squares, true interferences (speech)-
gray stars, a variant of the proposed method based only on the audio signal with a threshold set for 80% correct detection rate - red asterisks, proposed algorithm
with a threshold set for 80% correct detection rate- blue circles. (Bottom) Spectrogram of the input signal.
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Fig. 5. Probability of detection vs probability of false alarm. Source of interest:
keyboard taps. Interfering source: speech with SIR 2.

after these events. We observe that the proposed measure for the
detection of the source of interest indeed provides high peaks
in time frames, in which the drum beats indeed produce sound,
since in these frames the source of interest is active simultane-
ously in both modalities. We further observe that the source of
interest may be present for short time intervals, of single frames,
a regime, which significantly differs from the speech as can be
seen in Fig. 2. Yet, the proposed algorithm successfully detects
these different sources of interest since it is mainly based on
the affinities between the frames and not on a temporal infor-
mation. Moreover, the proposed algorithm provides fewer false
alarms compared to the method based only on the audio signal
demonstrating the advantage of the incorporation of the video
signal.

In Fig. 5, we demonstrate the performance of the detection of
keyboard taps in the presence of interfering speech. The detec-
tion of keyboard-taps is especially challenging since first, there
are rapid transitions between its presence and absence, and sec-
ond, the corresponding video signal comprises almost nonstop
movements of the hands of the user. Moreover, we use videos,
in which keyboard taps are recorded from different angles and
distances; and in few of them, there exist partial occlusions,
e.g., when certain fingers or parts of the hand occlude the other
parts. Indeed, the performance of the variant of the proposed
algorithm based on the video signal completely fails in indicat-
ing the presence of the keyboard taps. Yet, in such a case, the
proposed algorithm provides improved performance compared
to the alternative approaches. Namely, despite the challenge in
the analysis of keyboard-taps using the video signal, and despite
its absence in the tested time intervals, the proposed algorithm
successfully incorporates the video signal outperforming the
alternative approaches.

In Table II we present the performance of the different meth-
ods for the activity detection of keyboard-tapping in the presence
of interfering sources with different levels of SIRs. In addition
to speech, we consider also transient interferences, which are
similar sounds to the keyboard taps including hammering and
taps from another keyboard. To demonstrate the effect of these
interferences, we set the SIR level of speech to two and vary

only the levels of the transient interferences. The improved per-
formance of the proposed method demonstrates the contribution
of the incorporation of the partially available video signal via
the product of kernels for improving the analysis of complex
sound scenes.

D. Discussion

The ability to obtain a representation of audio-visual signals
according to factors that are common to the two modalities gives
rise to extending the proposed approach to other applications
directly related to the analysis of sound scenes. For example,
the proposed approach may be applied for speaker diarization,
i.e., to the task of “who spoke when”, by using multiple video
cameras, each pointed at a different speaker. In this case, the
activity of each speaker is obtained by fusing the video signal
from the camera pointed to him/her with the audio of the entire
scene. In this context, we note that the fusion process based on
the product between the affinity kernels detects, by design, the
activity of all common sources among the two modalities, so
that a single camera is not sufficient for polyphonic detection
as is. To overcome this limitation, one may incorporate, e.g.,
a face detection algorithm to locate the speakers within the
video, then isolate the region of the video frame containing
a particular speaker, and fuse it with the audio signal for the
activity detection of this speaker.

Moreover, the proposed approach may be extended to the task
of source localization in videos, e.g., by analyzing the effect
of removing regions from the video signal before the fusion
process. Specifically, since the parts of the video signal, in which
the source of interest is not present, are assumed to contain
merely interferences, removing them should have a negligible
effect on the source activity pattern in contrast to removing
parts of the video that indeed contain the source of interest. In
the presence of multiple sources of interest, as in the case of
speaker diarization from a single video camera, one may learn
the spatio-temporal patterns of the activity of the sources within
the video assuming that the sources are active independently of
each other and located in different regions of the video frame.

Finally, while we consider here an unsupervised setting,
where the video signal is completely missing in the tested time
intervals, we will consider in a future research a setting in which
both the labels and the video signal are (at least partially) avail-
able. In this context, we point out the work presented in [63]
addressing the analysis of multi-modal scenes using a matrix
completion framework in a supervised setting with partially
available labels. The framework is based on the incorporation
of training and testing data along with the available labels into
a matrix whose missing elements correspond to the (missing)
testing labels. Then, the missing elements of the matrix are es-
timated via the solution of an optimization problem assuming
a linear model for the generation of the labels from the data.
The proposed approach may be further extended to a similar
setting by the incorporation of the unified affinity kernel into a
transductive learning framework presented in [64]. In the latter
case, labels in the testing set are estimated by iteratively diffus-
ing training labels with the testing set according to similarities
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TABLE II
(A)–(C) AUC SCORES

Interfering sources Audio Video CCA MMI Proposed

Speech 0.67 0.59 0.62 0.67 0.78
Speech, hammering 0.65 0.59 0.68 0.71 0.76
Speech, hammering, keyboard 0.65 0.59 0.64 0.62 0.7

(a)

Interfering sources Audio Video CCA MMI Proposed

Speech 0.77 0.59 0.64 0.69 0.83
Speech, hammering 0.64 0.59 0.68 0.7 0.8
Speech, hammering, keyboard 0.65 0.59 0.68 0.75 0.76

(b)

Interfering sources Audio Video CCA MMI Proposed

Speech 0.59 0.59 0.61 0.62 0.71
Speech, hammering 0.65 0.59 0.64 0.62 0.7
Speech, hammering, keyboard 0.64 0.59 0.61 0.63 0.65

(c)

Interfering sources Number of Number of frames containing both
interfering frames the source of interest and interferences

Speech 7614 (77%) 3600 (36%)
Speech, hammering 7862 (79%) 3686 (37%)
Speech, hammering, keyboard 8388 (85%) 3929 (40%)

(d)

Source of interest: keyboard-tapping. SIR: (a) 1, (b) 2, (c) 0.5. Number of tested frames: 9906. Number of frames containing the source of interest
4686 (47%). (d) Statistics on the activity of the interferences.

(relations) between the training and the testing samples. The fu-
sion of the audio and the video data via the product of the affinity
kernels may allow for an improved diffusion of the labels while
reducing the interfering factors in the different modalities.

V. CONCLUSION

We have addressed the analysis of an acoustic scene com-
prising multiple sound sources using a single microphone and a
video camera, which is used as a spotlight pointed to a particular
source of interest. The proposed algorithm utilizes the audio and
the video data, which is available only in a short time interval,
through a product of affinity kernels, separately constructed for
each modality. The leading eigenvector of the product of kernels
is used as a data-driven measure for the presence of the source
of interest, and it is extended in an online manner to time in-
tervals in which only the audio data is available. The proposed
algorithm is used for the activity detection of various sources,
each with different characterization in terms of the movements
in the video signal and in variations in the spectrum of the audio
signal. Experimental results demonstrate the advantage and sig-
nificance of including a video signal for the activity detection
of sound sources.
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