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Voice Activity Detection in Presence of Transient
Noise Using Spectral Clustering

Saman Mousazadeh and Israel Cohen, Senior Member, IEEE

Abstract—Voice activity detection has attracted significant
research efforts in the last two decades. Despite much progress in
designing voice activity detectors, voice activity detection (VAD) in
presence of transient noise is a challenging problem. In this paper,
we develop a novel VAD algorithm based on spectral clustering
methods. We propose a VAD technique which is a supervised
learning algorithm. This algorithm divides the input signal into
two separate clusters (i.e., speech presence and speech absence
frames). We use labeled data in order to adjust the parameters of
the kernel used in spectral clustering methods for computing the
similarity matrix. The parameters obtained in the training stage
together with the eigenvectors of the normalized Laplacian of the
similarity matrix and Gaussian mixture model (GMM) are utilized
to compute the likelihood ratio needed for voice activity detection.
Simulation results demonstrate the advantage of the proposed
method compared to conventional statistical model-based VAD
algorithms in presence of transient noise.

Index Terms—Gaussian mixture model, spectral clustering,
transient noise, voice activity detection.

I. INTRODUCTION

S PEECH/NON-SPEECH classification is an unsolved
problem in speech processing and affects diverse applica-

tions including robust speech recognition [1], [2], discontinuous
transmission [3], real-time speech transmission on the Internet
[4] or combined noise reduction and echo cancellation schemes
in the context of telephony [5]. Elementary methods for
voice activity detection such as G.729 standard [3], calculate
line spectral frequencies, full-band energy, low-band energy

kHz , and zero-crossing rate. Each frame is then simply
classified using a fixed decision boundary in the space defined
by these features. Smoothing and adaptive correction can
be applied to improve the estimate. Although these methods
have acceptable performance when applied to clean signals,
their performance essentially degrades in noisy environments
even in moderately high signal to noise ratios (SNRs). To
overcome this shortcoming, several statistical model-based
VAD algorithms have been proposed in the last two decades.
Sohn et al. [6] assumed that the spectral coefficients of the
noise and speech signal can be modeled as complex Gaussian
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random variables, and developed a VAD algorithm based on
the likelihood ratio test (LRT). Following their work, many
researchers tried to improve the performance of model-based
VAD algorithms by assuming different statistical models for
speech signals, see [7]–[12] and references therein. While these
methods have superior performances in presence of stationary
noise over the elementary methods, their performances degrade
significantly in presence of transient noise such as coughing,
sneezing, keyboard typing, and door knocking sounds. This
means that with high probability, these sounds are detected as
speech.
VAD is usually a preprocessing step in speech processing ap-

plications such as speech or speaker recognition. A straightfor-
ward application of VADwould be an automatic camera steering
task. Suppose a scenario in which there exist multiple speakers
with a camera assigned to each of them (a popular example
can be videoconferencing). The camera must be steered to the
dominant speaker automatically. While stationary noise can be
treated very well using a statistical mode-based method, tran-
sient noise could be very annoying [13]. This means that a silent
speaker might be identified as a dominant speaker while he/she
is just typing or there is a knock on the door. Hence, finding a
VAD algorithm which is robust to transient noise would be of
practical interest.
VAD can be regarded as an acoustic event detection (AED)

task which detects some acoustical event including transient
noise, e.g., door knocking, footsteps, etc. Current most promi-
nent works in AED reflect the aim of bringing the most
successful technologies of speech recognition to the field. Zhou
et al. [14] implemented a hidden Markov model (HMM)-based
AED system with lattice rescoring using a feature set selected
by AdaBoost based approach. Haung et al. [15] improved AED
via audio-visual intermediate integration using generalizable
visual features. Using optical flow based spatial pyramid his-
tograms, they proposed a method for representing the highly
variant visual cues of the acoustic events. Espi et al. [16] in-
troduced the usage of spectro-temporal fluctuation features in
a tandem connectionist approach, modified to generate pos-
terior features separately for each fluctuation scale and then
combine the streams to be fed to a classic Gaussian mixture
model-hidden Markov model (GMM-HMM) procedure. Voice
activity detection can also be regarded as a clustering problem,
in which the goal is to classify the input signal into speech
absence and speech presence frames. Hence, after choosing an
appropriate feature space, one can use a clustering algorithm to
obtain a VAD algorithm. Among different clustering methods,
spectral clustering has recently become one of the most popular
modern clustering algorithms. It is simple to implement, can be
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solved efficiently by standard linear algebra software, and very
often outperforms the traditional clustering algorithms such as
the k-means algorithm. Recently, spectral clustering has been
utilized by several authors in signal processing applications
such as image segmentation [17], [18], speech separation [19],
and clustering of biological sequence data [20] just to name a
few.
In this paper, we present a novel voice activity detection algo-

rithm using spectral clustering. In particular, we use a normal-
ized spectral clustering algorithm [21] to cluster the Mel-fre-
quency cepstrum coefficients (MFCC) of the received signal
into two different clusters, i.e., speech presence and speech ab-
sence. The clustering problem can be done using GMM. How-
ever, fitting a GMM to high dimensional data generally requires
a great amount of training data, and as the number of Gaussian
mixtures is increased, we need more and more training data to
fit the GMM to high dimensional data. The fact that the distribu-
tion of natural data, like speech and transient noise is non-uni-
form and concentrates around low-dimensional structures [22],
motivates us to exploit the shape (geometry) of the distribution
for efficient learning. Among different dimensionality reduc-
tion techniques, “kernel eigenmap methods” such as local linear
embedding [23], Laplacian eigenmaps [24], Hessian eigenmaps
[25], and diffusion maps [26] (just to name a few) have re-
cently attracted much research attention. These algorithms ex-
hibit two major advantages over classical dimensionality reduc-
tion methods (such as principal component analysis or classical
multidimensional scaling): They are nonlinear, and they pre-
serve local structures. The first aspect is essential as most of the
time, in their original form, the data points do not lie on linear
manifolds. The second point is related to the fact that in many
applications, distances of points that are far apart are meaning-
less, and therefore need not to be preserved. The main idea of
these methods is to use the dominant eigenvectors of Laplacian
of the similarity matrix as the new lower dimension representa-
tion of the data.
Our proposed algorithm is a supervised learning algorithm.

One must train the system before it can be used. Training
data is used for estimating the parameters of the kernel used
in computation of the similarity matrix. The data is also
used in finding two Gaussian mixture models for modeling
the first two eigenvectors of the Laplacian of the similarity
matrix corresponding to the first two leading eigenvalues
of normalized Laplacian matrix. This means that we model
the low dimensional representation of the original data (i.e.,
MFCC) using two different GMMs, one for each cluster. Upon
receiving new unlabeled data, the optimum parameters of the
kernel are utilized to find the similarity between the new
data and the training set in order to find the low dimensional
representation of new data. Using the GMMs obtained in
the training step, the likelihood ratio is computed, and the
final VAD is obtained by comparing that likelihood ratio to a
threshold.
The rest of this paper is organized as follows. In Section II,

we formulate our problem and introduce a novel VAD for on-
line processing. Simulation results and performance comparison
are presented in Section III. Finally, we conclude the paper in
Section IV.

II. PROBLEM FORMULATION

In this section, we propose our voice activity detection
method, which is based on spectral clustering. The basic idea
behind spectral clustering method is to use several eigenvectors
of the normalized Laplacian of the similarity matrix as a new
low dimension representation of the high dimension data points.
Clustering is generally performed on this new representation of
the data points using a conventional (weighted) k-means algo-
rithm [19]. Here we introduce a novel technique for clustering
the data based on GMM modeling of the eigenvectors of the
normalized Laplacian of the similarity matrix.
Every clustering problem consists of the following three main

stages: selecting an appropriate feature space, choosing a metric
as a notion of similarity between data-points, and selecting the
clustering algorithm. In what follows, we discuss each of these
stages for voice activity detection in more detail.

A. Feature Selection

Let denote a speech signal and let and
be the additive contaminating transient and stationary noise
signals, respectively. The signal measured by a microphone is
given by:

(1)

The goal is to determine whether there exists speech signal
in a given time frame (each approximately 16–20 msec
long). Here we choose absolute value of MFCCs and the
arithmetic mean of the log-likelihood ratios for the indi-
vidual frequency bins as our feature space. More specifi-
cally, let and

be the absolute
value of the MFCC and the STFT coefficients in a given time
frame, respectively. MFCC and the STFT coefficients are
computed in and frequency bins, respectively. Then,
each frame is represented by a -dimension column
vector defined as follows:

(2)

where is the -th column of , and is the arith-
metic mean of the log-likelihood ratios for the individual fre-
quency bands in frame , which is given by:

(3)

where is called a priori SNR, which
can be estimated using decision-directed method [27], and

is the variance of speech signal in the -th frequency
bin of the -th frame; is called
the a posteriori SNR, is the kernel width obtained during
the training phase, and is the variance of stationary
noise in -th time frame and -th frequency bin, which can
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be estimated from training data (if there exist sequences con-
sisting of only stationary noise) or by improved minima con-
trolled recursive averaging (IMCRA) [28]. The reason behind
choosing this feature space for each frame is as follows. The
likelihood ratio has been long exploited as a feature for voice
activity detection in presence of stationary noise [6]–[10]. The
Mel-frequency cepstrum coefficient is a representation of the
short-term power spectrum of a sound, based on a linear co-
sine transform of a log power spectrum on a nonlinear Mel
scale of frequency. MFCCs are commonly used as features in
speech recognition systems. Combining these two features ap-
propriately would be a suitable feature space for voice activity
detection in presence of transient noise. See Section III for
further discussion.

B. Clustering Algorithm

A popular way for representing the data is to build a similarity
graph, which is a weighted graph , where is the
set of the vertices and is the set of the edges of the graph.
Each vertex in this graph represents a data point . Each
edge between two vertices and carries a non-negative
weight , which is a measure of similarity between
the corresponding points. We assume that the graph is an
undirected one (i.e., ). A similarity matrix
is a matrix whose -th element equals to .
Using the concept of subspace comparison, Bach and Jordan

[19] proposed a spectral clustering algorithm using the eigen-
vectors of matrix where is a diagonal ma-
trix whose -th diagonal element equals to (i.e.,

where is a column vector of ones). More
specifically, let be the number of clusters and be a matrix
consisting of the first eigenvectors of cor-
responding to ’s largest eigenvalues of . The
clustering is done either by running a weighted k-means algo-
rithm on where each point is represented by a row of or
by running a k-means algorithm on
where each point is represented by a row of . The most im-
portant drawback of this method is that it does not prepare a toll
for controlling the tradeoff between probability of false alarm
and probability of detection. We will deal with this issue by
using GMMmodeling of the eigenvectors (see testing algorithm
below for further discussion).
The most important part of a spectral clustering algorithm is

the calculation of the similarity matrix. Although the definition
of the similarity between points is an application and data de-
pendent, a popular way of defining the similarity matrix is to
use a Gaussian kernel as follows:

(4)

where is the -th data point. The selection of is com-
monly done manually. Ng et al. [29] suggested selecting
automatically by running their clustering algorithm repeatedly
for a number of values of and selecting the one that provides
the least distorted clusters. In [30] and [31], it was suggested
to automatically set the scale by examining a logarithmic scale

of the sum of the kernel weights without computing the spec-
tral decomposition of the transition matrix. Zelnik-Manor et
al. [17] suggested calculating a local scaling parameter for
each data point instead of selecting a single scaling parameter
. The above mentioned methods are somehow heuristic or
hard to implement because of high computational load. Bach
and Jordan [19] introduced a method for estimating the param-
eters of the kernel (not necessarily Gaussian kernel) based on
minimization of a cost function that characterizes how close
the eigenstructure of the similarity matrix is to the true
partition.
Our voice activity detection algorithm is a supervised

learning one. As a consequence, one must utilize training data
in order to adjust the parameters of the algorithm and use
those parameters for clustering unlabeled data. In the next two
subsections, we illustrate how each of these stages works.
1) Learning Algorithm: In this section, we introduce our

learning algorithm based on the method presented in [19]. Sup-
pose that we have a database of clean speech signal, a database
of transient noise, and a database of stationary noise. We choose
different signals from each database and combine them as fol-

lows. Let , , be the -th speech signal, tran-
sient noise, and stationary noise, respectively. Without loss of
generality, we assume that all of these signals are of the same
length (i.e., ). We build the -th training sequence,

, as follows. Let

(5)

(6)

(7)

and let , , and be the feature matrix extracted using (2)
and (3) from , , and , respectively. Then, the
-th training data is obtained by concatenating these matrices as
follows:

...
... (8)

A typical training sequence is depicted in Fig. 1. For each of
these training sequences, we compute the indicator matrix of the
partitions using (9), where is the -th el-
ement of , is an indicator function that equals to one if its
argument is true and zero otherwise, and and are speech
and transient noise thresholds and are chosen as the maximum
value of threshold such that thresholding the speech or transient
noise has no significant auditory effect, and are logicalOR
and logicalAND operators, respectively. is a power calcu-
lation operator defined by:

(10)

(11)
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Fig. 1. Typical training sequence consisting of speech signal and keyboard stoke noise (transient noise) corrupted by babble noise (absolute value of MFCC (right)
likelihood ratio (left)).

where and are the STFT coefficients of
and in the -th frame, respectively.

The last and most important object to be defined, in order to
use the training algorithm presented in [19], is the parametric
similarity matrix, i.e., . For our problem, we define this ma-
trix as follows:

(12)

(13)

where is the
vector of parameters, and are the absolute value of
the MFCC and the likelihood ratio of the -th training sequence
in the -th frame, respectively, and is the Euclidian norm
of a vector. The reason behind choosing this weight function is
discussed in the following paragraph.

For designing an appropriate weight matrix, we have taken
the following two points into consideration. The first one was
the similarity between two individual frames, and the second
one was the effect of neighboring frames on deciding whether
a specific frame contains speech or transient noise. Combining
these two features (i.e., MFCC and likelihood ratio) as in
(12)–(13), results in a goodmetric as a similarity notion between
two frames for voice activity detection in presence of transient
noise. More specifically, if there exists speech signal or transient
noise in a specific frame, the value of likelihood ratio is large
(see Fig. 1 (right)); hence, the exponential term in (13) approx-
imately equals to zero, and the feature for that frame will be
approximately theMFCCs. On the other hand, if a specific frame
consists of only stationary noise, then the likelihood ratio will
be small, and the exponential term in (2) approximately equals
to one. Consequently, the feature vector will approximately be
equal to zero vector for those frames that only contain stationary
noise. Considering the MFCCs of a typical training sequence
as depicted in Fig. 1 (left), it is apparent that there might exist
two frames in the speech part (left part of the figure) and the
transient noise part (middle part of the figure) that are very
similar to each other (in the sense that their Euclidean distance

Only stationary noise
Transient plus stationary noise
Speech plus transient plus stationary noise
Speech plus stationary noise

Only stationary noise
Transient plus stationary noise
Speech plus transient plus stationary noise
Speech plust stationary noise

Only stationary noise

Transient plus stationary noise

Speech plus transient plus stationary noise

Speech plus stationary noise

(9)
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is small) but belong to two different clusters. The characteristic
that distinguishes the frames containing speech from those
frames containing transient noise is that the neighboring frames
of a specific speech frame are almost the same, which is not
true for transient noise. Choosing the weight function as in
(12)–(13), guarantees small similarity between two frames from
different classes (speech and transient noise) even if they are
very similar to each other (in the Euclidean sense), because of the
large distance between neighboring frames. Upon defining the
parametric weight function, the parameters can be obtained by
solving the following optimization problem [19]:

(14)

(15)

where is the number of training sequence, denotes
transpose of a vector or a matrix, and is an approximate
orthonormal basis of the projections on the second principal
subspace of obtained by classical orthogonal
iteration [32]. In practice, we use the gradient method (e.g.,
fminunc or fmincon functions in Matlab®) to solve this mini-
mization problem.
2) Testing Algorithm: A testing algorithm aims to cluster

the unlabeled data. The most straightforward way to perform
clustering using spectral methods into disjoint clusters is to
use the parameters obtained by the learning algorithm, con-
struct the similarity matrix , compute the eigenvectors
of corresponding to the first largest eigen-
values (denoted by ), and run weighted k-means algorithm on
or k-means algorithm on [19]. This

method has two major drawbacks. First, this method can only
be used for batch processing (offline processing) of data. The
second and more important one is that, this method does not
allow the user to control the tradeoff between the probability of
false alarm and the probability of detection. Every detection al-
gorithm must be equipped with a tool such that one can increase
the probability of detection (probably) by increasing the proba-
bility of false alarm. In order to overcome these two shortcom-
ings, we utilize the extension method proposed in [33] based on
the fact that two test points are similar if they see the training
data similarly, and the likelihood ratio test as our decision rule.
In order to compute the likelihood ratio, we use GMM to model
the eigenvectors of normalized Laplacian matrix. In what fol-
lows, we discuss these two issues in more detail.
Let be the similarity matrix of -th training sequence

and be a matrix consisting of the two eigenvec-

tors of corresponding to the first two largest
eigenvalues. Let the column concatenation of through
be

(16)

(17)

Fig. 2. Scatter plot of the new representation of a typical training data sequence
containing speech and door knock noise degraded by colored Gaussian noise

dB obtained by concatenating all training sequences.

Fig. 3. Scatter plot of the new representation of a typical training data sequence
containing speech and door knock noise degraded by colored Gaussian noise

dB obtained by (16)–(17).

where is term by term multiplication, , is a diagonal
matrix whose diagonal is vector and is an by
matrix of ones. This normalization of the matrices through

is due to a possible different number of points in the
same cluster of different training sequences. Because of sign
ambiguity in computation of eigenvectors, each of these eigen-
vectors is computed such that the mean of each cluster (noise
only cluster or speech cluster) is as close as possible to the mean
of each cluster of the first training sequence. More specifically,
we compute the mean of low dimensional representation of
each of the two clusters in the first training sequence and choose
the sign of the eigenvectors corresponding to the remaining
training sequence, such that their means are close to the means
of the clusters in the first training sequence. We have selected
this approach instead of combining all training sequences as
a single training sequence because of computational load and
memory usage. Combining all training sequence as a single
sequence leads to a very large similarity matrix that cannot be
handled computationally. This method is in some sense equiv-
alent to ignoring the similarity between each training sequence,
which is a widespread approach for sparsifying the similarity
matrix [19]. Figs. 2 and 3 show the scatter plot of the new
representation of a typical learning sequence. These figures are
obtained from five training sequences each approximately 10
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seconds long. The similarity matrix is calculated using optimum
parameters obtained by solving the optimization problem in
(14). These figures are obtained in the case where the stationary
noise was colored Gaussian noise, and the transient noise was a
door knock. Fig. 2 is the low dimensional representation of the
training data obtained by concatenating the training sequences
to a large sequence. Fig. 3 is the low dimensional representation
of the training data obtained by the aforementioned method
(i.e., (16)–(17)). These figures are experimental justification for
the proposed approximation in computation of eigenvectors.
It is also apparent that there exist four separated clusters (i.e.,
only stationary noise, transient plus stationary noise, speech
plus transient plus stationary noise, and speech plus stationary
noise), two of which contain speech signal.
Once the matrix , a new representation of the training data,

is obtained, we use Gaussian mixture modeling to model each
cluster (i.e., speech presence or absence) with a different GMM.
A mixture model is a probabilistic model that assumes the un-
derlying data belongs to a mixture distribution. In a mixture dis-
tribution, the density function is a convex combination of other
probability density functions. The most common mixture dis-
tribution is the Gaussian density function, where each of the
mixture components has a Gaussian distribution. This model
has been utilized in many machine learning and speech pro-
cessing applications such as speaker verification [34], texture
retrieval [35], and handwriting recognition [36] just to name
a few. Parameters of the GMM can be estimated by the Ex-
pectation-Maximization (EM) method [37], and the number of
Gaussian component to be used can be selected by the Akaike
information criterion (AIC) or Bayesian information criterion
(BIC). The procedure to obtain the GMM for each cluster is as
follows. For each cluster (i.e., speech presence or absence), we
find the rows of the matrix corresponding to that cluster by
using the indicator matrix. Then, by exploiting the EM algo-
rithm and AIC or BIC criterion, we fit a GMM to the new data
representation in that cluster. Since the matrix only depends
on the training data, the GMM model for each of the two hy-
potheses (i.e., speech presence or absence) is obtained during
the training phase.
Now suppose we are given frames of unlabeled data, and

we want to decide whether each of these frames belongs to the
speech presence or speech absence clusters. For each of these
frames, we first extract the feature vector using (2) and (3). Let

(18)

be the feature vector extracted from unlabeled data, where
is the absolute value of the MFCC of the -th frame, and

is the likelihood ratio of -th unlabeled frame obtained by (3).
The similarity matrix between the new data and training data is
computed as follows:

(19)

(20)

(21)

where is the op-
timum kernel parameters vector obtained in learning stage by
solving the optimization problem in (14), and

is the -th element of the matrix .
Once the similarity matrix between unlabeled data and training
data has been computed, the new data representation in terms
of eigenvectors of the Laplacian can be easily approximated by
the following equation:

(22)

where the -th column of the matrix is obtained by setting
to zero all elements of the -th column of , except the largest
elements. The subscript stands for -nearest neighbor. The
last equation means that the low dimensional representation of
a given test point is simply the weighted mean of the low rep-
resentation -nearest neighbor of that point in the training set.
Using this new representation of the unlabeled data, the deci-
sion rule can be obtained by a likelihood ratio test as follows.
Let and be speech absence and presence hypotheses, re-
spectively. Let and be the probability density
function of those rows of corresponding to noise only frames
and frames containing speech signal, respectively. These two
probability density functions were obtained by GMMmodeling
in the training stage. The likelihood ratio for a new unlabeled
frame is given by:

(23)

where is the -th row of the matrix . Practical evi-
dence shows that using the information supplied by neighboring
frames can improve the performance of VAD algorithms [12].
This is because of the fact that frames containing speech signal
are usually followed by a frame that also contains speech signal
while the transient signals usually last for a single time frame.
Using this fact, the decision rule for an unlabeled time frame is
obtained by:

(24)

where is a threshold which controls the tradeoff between
probability of detection and false alarm. Increasing (decreasing)
this parameter leads to a decrease (increase) of both the proba-
bility of false alarm and the probability of detection. In a prac-
tical implementation, a hangover scheme is required to lower the
probability of false rejections. The hangover scheme does this
by reducing the risk of a low-energy portion of speech at the end
of an utterance being falsely rejected, by arbitrarily declaring a
period of speech activity after a period of speech activity has
already been detected. This is based on the idea that speech
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TABLE I
PROPOSED VOICE ACTIVITY DETECTION ALGORITHM

BASED ON SPECTRAL CLUSTERING METHOD

occurrences are highly correlated with time. We use the hang-
over technique introduced by Davis et al. in [9]. More specifi-
cally, the quantity is the input of the hangover procedure,
and a final VAD decision is obtained from hangover scheme.
Our overall voice activity detection algorithm is summarized in
Table I.

III. SIMULATION RESULTS AND PERFORMANCE EVALUATION

In this section, we examine the performance of the proposed
method using several simulations. We also compare the per-
formance of our method with that of conventional statistical
model-based methods presented in [6]–[8], [11], [12] and two
standard VAD’s: G.729 [3] and AMR2 [38]. The simulation
setup is as follows.
We perform our simulation for different types of stationary

and transient noise for different SNR situations. The SNR is de-
fined as the ratio of the speech energy to the energy of stationary
noise. The stationary noise energy is computed in those frames
where speech signal is present. All speech and transient noise
signals are sampled at 16 kHz (although the same performance
was obtained at 8 kHz sampling rate) and normalized to have
unity as their maximum. Since the duration of transient noise is
small with respect to speech, defining SNR for transient noise is
not useful. Instead, we normalize the transient noise and speech
signal to have the same maximum amplitude, which is a very
challenging case to treat [39]. Each signal (speech or transient

Fig. 4. A realization of the test signal (speech signal plus keyboard typing plus
babble noise) together with hand-marked and proposed VAD.

noise) is approximately 3 sec long. The training and testing se-
quences are constructed using the procedure introduced in (6)
and (7). Speech signals are taken from the TIMIT database [40].
Transient noises are taken from [41]. In the training step, we
use different speech utterances (different speakers,
half male and half female) and transient noise. In the testing
step, we use different speech utterances (different
speakers from the training set, half male and half female) and
transient noise (different from the training sequences) each ap-
proximately 3 sec long (the length of the testing signal is approx-
imately 500 sec, with sixty percent of total frames containing
speech). We use windowed STFT with a hamming window of

samples long and 50% overlap between consecutive
frames. We compute the MFCC in Mel frequency
bands. To solve the optimization problem (14) in the training
stage, we use the function in Matlab®. We solve this
optimization problem under the constraint that all estimated pa-
rameters are strictly positive. This constraint results in an ap-
propriate similarity matrix. The parameter in computing the
matrix ((22)) is set to 10.
In order to compare our method to the conventional statis-

tical based method, we introduce two different kinds of false
alarm probabilities. The first type denoted by Pfa, is defined as
the probability that a speech free frame (i.e., consisting of only
stationary noise or stationary noise with transient noise) is de-
tected as a speech frame (i.e., exactly the same as probability of
false alarm defined in conventional methods). The second type,
denoted by , is defined as the probability that a frame con-
sisting of stationary and transient noise is detected as a speech
frame. We need these two concepts to show the advantage of
the proposed method over conventional statistical model-based
methods. The number of frames that contain transient noise
(which are mostly detected as speech in statistical model-based
methods) is small with respect to the total number of frames.
Such frames do not affect the probability of false alarm signif-
icantly if it is defined as the probability that a noise frame is
detected as a speech frame. For our comparison to be fair, we
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Fig. 5. Probability of detection versus probability of false alarm (Training: dB; Stationary Noise: Babble; Transient Noise: Metronome; Testing:
dB; Stationary Noise: Babble; Transient Noise: Metronome).

Fig. 6. Probability of detection versus probability of false alarm (Training: dB, Stationary Noise: Babble; Transient Noise: Keyboard Typing; Testing:
dB; Stationary Noise: Babble; Transient Noise: Keyboard Typing).

assume that the stationary noise statistics are known in conven-
tional methods. The noise statistics are estimated using a real-
ization of stationary noise. In what follows, we investigate the
performance of the proposed method in several situations. For
our comparison to be more insightful, we also use the following
six parameters defined in [9] to indicate the VAD performance:
• FEC (front end clipping): Clipping due to speech being
misclassified as noise in passing from noise to speech ac-
tivity.

• MSC (mid speech clipping): Clipping due to speech mis-
classified as noise during an utterance.

• BEC (back end clipping): Clipping due to speech being
misclassified as noise in passing from speech activity to
noise.

• Over (over hang): Noise interpreted as speech due to the
VAD flag remaining active in passing from speech activity
to noise.

• NDS (noise detected as speech): Noise interpreted as
speech within a silent period.

• Correct (correct VAD decision): Correct decisions made
by the VAD.

The results of simulations are depicted in Figs. 4–8 and
Tables III–VII. Fig. 4 shows a speech signal corrupted by key-
board typing and babble noise with dB together with
hand-marked VAD and the result of the proposed algorithm.
For this simulation, the detection threshold is chosen such
that be zero. The results of Tables III–VII are obtained
by setting the threshold such that the probability of detection
(Correct) be at least ninety-five percent. In Tables III–VII,
the best performance (i.e., the lowest probability of false
alarm NDS) is identified in bold number. As can be seen from
Figs. 5–8 and Tables III–VII, although different statistical
model-based methods have different performances in different
situations, the proposed method is superior in all simulations
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Fig. 7. Probability of detection versus probability of false alarm (Training: dB; Stationary Noise: Babble; Transient Noise: Keyboard Typing; Testing:
dB; Stationary Noise: White Gaussian; Transient Noise: Metronome).

Fig. 8. Probability of detection versus probability of false alarm (Training: dB; Stationary Noise: Colored Gaussian; Transient Noise: Door Knock;
Testing: dB; Stationary Noise: Babble; Transient Noise: Metronome).

TABLE II
ELAPSED TIME IN SECONDS FOR DIFFERENT METHODS

over the compared statistical model-based methods, especially
for low false alarm rates. The proposed method outperforms
the statistical model-based methods even in the case that the
training and testing do not match (Figs. 7 and 8 and Tables VI
and VII).
Simulation results indicate that the matrix is sensitive to

change in SNR and stationary or transient noise type. Hence, for
different SNR or stationary or transient noise type, the matrix
must be recomputed (even though simulation results reveal

the effectiveness of the proposed method even if there exists a
mismatch between training and testing, see Figs. 7 and 8 and
Tables V–VII). In all of the following simulations we set the

TABLE III
VOICE ACTIVITY DETECTION PERFORMANCE COMPARISON

( dB; STATIONARY NOISE: BABBLE; TRANSIENT
NOISE: METRONOME; dB; STATIONARY NOISE:

BABBLE NOISE; TRANSIENT NOISE: METRONOME)

parameter vector to . In the
testing algorithm we chose , which means that our algo-
rithm has 160 msec delay (each frame is msec
long, where the factor of 2 in the denominator is due to fifty
percent overlap). Choosing this parameter is a tradeoff between
induced delay and computational load. Increasing leads to a
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TABLE IV
VOICE ACTIVITY DETECTION PERFORMANCE COMPARISON

( dB; STATIONARY NOISE: BABBLE; TRANSIENT NOISE:
KEYBOARD TYPING; dB; STATIONARY NOISE: BABBLE;

TRANSIENT NOISE: KEYBOARD TYPING)

TABLE V
VOICE ACTIVITY DETECTION PERFORMANCE COMPARISON

( dB; STATIONARY NOISE: BABBLE; TRANSIENT NOISE:
KEYBOARD TYPING; dB; STATIONARY NOISE: WHITE

GAUSSIAN; TRANSIENT NOISE: METRONOME)

TABLE VI
VOICE ACTIVITY DETECTION PERFORMANCE COMPARISON

( dB; STATIONARY NOISE: COLORED GAUSSIAN;
TRANSIENT NOISE: DOOR KNOCK; dB; STATIONARY

NOISE: BABBLE; TRANSIENT NOISE: METRONOME)

TABLE VII
VOICE ACTIVITY DETECTION PERFORMANCE COMPARISON

( dB; STATIONARY NOISE: BABBLE; TRANSIENT NOISE:
DOOR KNOCK; dB; STATIONARY NOISE: COLORED

GAUSSIAN; TRANSIENT NOISE: KEYBOARD TYPING)

lower computational load but increases the delay. The decrease
in computational load by increasing the parameter is due to
the fact that there exist efficient algorithms for computing the
matrix ((19)), and it can be shown that the computational
load is of the order . The most time consuming part
of the proposed algorithm is solving the optimization problem,
which is done offline and is not of great importance in practice.

The excess computational load in the testing stage compared
to statistical model-based methods is computation of the matrix

. The elapsed time for processing a 500 second sequence
sampled at 16 kHz for the proposedmethod and other competing
methods are depicted in Table II. Although the computational
load of the proposed algorithm is relatively higher than other
methods, there exist efficient algorithms for decreasing the com-
putational load [42].

IV. CONCLUSIONS

We have proposed a novel voice activity detector based on
spectral clustering method. Our main concern was dealing with
transient noise, which is very challenging to handle. Almost all
conventional methods fail in this situation. Our VAD is a su-
pervised learning algorithm that requires some training data in
order to estimate the parameters of the kernel used for compu-
tation of a similarity matrix. We used GMM to model the eigen-
vectors of the similarity matrix. In the testing stage, we used
eigenvector extension and proposed a VAD which can be used
for online processing of the data with a small delay. Simulation
results have demonstrated the high performance of the proposed
method, particularly its advantage in treating transient noises.
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