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Single-Channel Transient Interference Suppression
With Diffusion Maps

Ronen Talmon, Member, IEEE, Israel Cohen, Senior Member, IEEE, and Sharon Gannot, Senior Member, IEEE

Abstract—A transient is an abrupt or impulsive sound followed
by decaying oscillations, e.g., keyboard typing and door knocking.
Such sounds often arise as interference in everyday applications,
e.g., hearing aids, hands-free accessories, mobile phones, and con-
ference-room devices. In this paper, we present an algorithm for
single-channel transient interference suppression. The main com-
ponent of the proposed algorithm is the estimation of the spectral
variance of the interference. We propose a statistical model of the
transient interference and combine it with non-local filtering. We
exploit the unique spectral structure of the transients along with
their impulsive temporal nature to distinct them from speech. A
particular attention is given to handling both short- and long-du-
ration transients. Experimental results show that the proposed al-
gorithm enables significant transient suppression for a variety of
transient types.

Index Terms—Speech enhancement, speech processing, acoustic
noise, impulse noise, transient noise.

I. INTRODUCTION

T RANSIENTS, which are characterized by sudden bursts
of sound, often arise as interference in everyday appli-

cations, such as hearing aids, hands-free accessories, mobile
phones, and conference-room devices. In this work a special
focus is given to the suppression of repeating transient appear-
ances, e.g., keyboard typing and construction operations. While
a single transient may be ignored, repeating events make the
interference especially annoying. In addition, such persistent
reoccurrences may significantly hamper automatic speech
recognition systems. Although transient interferences are very
common their suppression in speech signals is still considered
an open problem. To date, most of the existing single-channel
noise reduction algorithms are based on estimation of sta-
tionary noise from segments in which the desired signal is
absent. Clearly, this approach does not suit the abrupt nature of
transient interference; hence, such algorithms are inadequate in
this scenario.
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In [1] and [2], we circumvented this assumption by proposing
an algorithm that learns the geometric structure of the transient
interference using nonlocal (NL) diffusion filtering [3]–[8].
The key idea was to exploit the intrinsic transient structure
instead of relying on estimates of noise statistics. We utilized
the fact that a distinct pattern appears multiple times. Specif-
ically, the locations of the repeating pattern were identified,
and the transient interference was extracted by averaging over
all these instances. Experimental studies showed significant
enhancement of speech signals and attenuation of transient
interferences, which are characterized by a short duration.
Unfortunately, the algorithm could not well handle transients
with a slowly decaying oscillatory part and varying amplitudes.
In this paper, we improve and extend [1] to support a wider

variety of transient interferences. We utilize a manifold learning
approach termed diffusion maps [9] to compute a robust intrinsic
metric for comparison. In particular, it enables to cluster dif-
ferent transient interference types. We show that when the dif-
fusion distance is incorporated into the NL filter, it provides a
better affinity metric for averaging over transient instances. In
addition, as was presented first in [10], we propose an interme-
diate step to distinguish between transients and speech. The ap-
proach is based on the observation that speech components are
slowly varying with respect to transient interferences, just as
stationary noise is slowly varying with respect to speech. Thus,
by employing common speech enhancement techniques, con-
figured to track faster variations, the “abrupt” transients can be
enhanced while suppressing the slowly varying speech compo-
nents. The enhanced transients are then utilized to improve the
estimation of the spectrum of the interference. We note that ex-
ploiting the rate of change of the signal was previously intro-
duced in RASTA [11], where bandpass filtering of the short-
term power spectrum is employed to suppress both slowly and
rapidly varying interferences.
In order to handle transients with slowly decaying oscillatory

part, we adapt a statistical model used to describe room rever-
beration [12].We split each transient instance into an abrupt part
and a decaying part. The abrupt part has distinct spectral fea-
tures, which can be captured by the NL filter. The decaying part
is random and may resemble a speech component, and there-
fore it is estimated based on the statistical model, similarly to
the variance estimator proposed in [12] for reverberant speech.
This paper is organized as follows. In Section II, we for-

mulate the problem. In Section III, a statistical model for the
transient interference is given. In Section IV, we present the
proposed algorithm. A diffusion maps approach is described
in Section V. Finally, in Section VI, experimental results are
presented, demonstrating the improved performance of the pro-
posed algorithm.
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II. PROBLEM FORMULATION

Let denote a speech signal and let and be
contaminating transient interference and stationary noise. The
signal measured by a microphone is given by

(1)

It is worthwhile noting that numerous methods for enhancement
of speech signals contaminated by (quasi) stationary noise can
be found. Thus, we can employ one of these methods prior to
the proposed algorithm.
The transient interference is represented as in [13], [14]

(2)

where is a sequence of impulses of varying amplitudes
indicating the time locations of the transients, and is an
impulse response that models the duration and shape of the tran-
sient interference type.
In this work we use a fixed impulse response , which im-

plies that all transient instances of a single interference type in
the measurement have the same spectral features up to random
amplitudes. Hence, the transient interference can be viewed as a
superposition of the impulse response with random ampli-
tudes. It is worthwhile noting that in Section VI, the proposed
algorithm is evaluated in practical scenarios using real transient
interference recordings, with arbitrary shapes.
Let denote the short-time Fourier transform (STFT)

of the measured signal in time-frame and frequency-bin
.We use analysis and synthesis windows of length with time
shift . Accordingly, (1) can be represented in the STFT domain
as

(3)

where and are the STFT of
and , respectively. In (2), the transient interference is de-
scribed as a linear convolution between a sequence of impulses

and a fixed filter . In order to properly represent the
convolution in the STFT domain we cannot use the common
multiplicative transfer function (MTF) approximation, since
for long-duration transients, may be longer than the time
frame. Thus, according to the analysis presented in [15], we
approximate the convolution using band-to-band filters as

(4)

where is the STFT of and is a band-to-
band filter of frequency-bin corresponding to the impulse re-
sponse . This representation enables to represent a linear
convolution of filters longer than the time frame in the STFT
domain, as often required in our case. For further details on the
representation of the linear convolution in the STFT domain and
the dependency on the transform parameters we refer the readers
to [15] and the references therein.
We assume that no more than one transient event exists in

each short time frame. We denote by the set of time frames
that contain a transient, and by , we denote the set of time
frames free of transient occurrences.

In this work, we aim at estimating the clean speech signal
given the noisy measurements .

III. PRELIMINARIES

Following [12], we propose a statistical model for the
band-to-band filters. We have

(5)

where denotes the decay rate of the filter. are zero-
mean, independent and identically distributed (i.i.d.) Gaussian
random variables, representing the decaying part of the tran-
sient. is a zero-mean Gaussian random variable indepen-
dent of , representing the abrupt part of the transient.
We note that determines the spectral features which char-
acterize the transient type. On the other hand, repre-
sent the random unstructured decaying part in frequency bin
along the time frames . We assume the abrupt and de-
caying parts have different statistical characteristics and that the
abrupt part entails most of the energy. In addition, we assume

are i.i.d., which implies that for a given transient type
the random oscillations across time frames have the same sta-
tistical characteristics.
Let and be the

spectral variances of the abrupt and decaying parts, respectively.
We can now compute the spectral variance of the filter

(6)

In (2), is a sequence of impulses of varying amplitudes.
Thus, we model its spectral variance as a fixed value
across the frequency bins, which is determined by the impulse
amplitude. We have

(7)

where denote the amplitudes of the impulses in the short-
time spectrum domain.
Let be the spectral variance of the

measured signal. We assume that the speech, the transient in-
terference, and the stationary noise are uncorrelated. Thus, the
spectral variance of the measurement is given by

(8)

where , and
.

IV. PROPOSED ALGORITHM

The proposed algorithm consists of four components in
a cascade: 1) An optimally modified log spectral amplitude
(OM-LSA) algorithm for enhancing the transients; 2) a spectral
variance estimator for separating the abrupt and decaying parts
of the transients; 3) a non-local filter for estimating the power
spectral density (PSD) of the abrupt parts, and 4) an additional
OM-LSA for suppressing the transients and the stationary
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Fig. 1. A block diagram of the proposed algorithm.

noise, and enhancing the speech. Fig. 1 depicts a diagram of
the proposed algorithm.

A. Transient Enhancement Using OM-LSA

Our goal in this stage is to enhance transients and attenuate
mainly structured speech phonemes in order to obtain a better
distinction in the succeeding nonlocal filtering stage. We ob-
serve that as stationary noise is slowly varying with respect to
speech, speech is slowly varying with respect to transient inter-
ference. Thus, transient enhancement is attained by short-term
averaging over past spectral power values, such that the fluctu-
ations of speech segments are reduced. We use the OM-LSA
method [16] and modify it to enhance the transient interfer-
ence and suppress the speech. The applied modifications are de-
scribed in this Section.
The log-spectral amplitude (LSA) estimator [17] is useful for

reducing background noise in speech signals. In [16], new es-
timators were introduced for the a priori signal to noise ratio
(SNR) and for the a priori speech absence probability (SAP).
The spectral gain function of the algorithm is then obtained as
a weighted geometric mean of the hypothetical gains associated
with signal presence and absence. The algorithm components
are based on the noise spectrum, estimated by the minima con-
trolled recursive averaging (MCRA) [18]. The MCRA recur-
sively averages past spectral power values, using a smoothing
parameter that is adjusted by the speech presence probability in
sub-bands.
We configure the MCRA algorithm to track rapid variations.

This way, employing the MCRA enables to estimate the PSD
of the slower speech and stationary noise given
the measurements . We use very short time frames of
length 16 ms in order to reduce the variations of the speech
between subsequent frames. In addition, the following temporal
smoothing is carried out

(9)

where is the smoothed PSD of the measurements, and
is a recursion parameter. We choose a relatively small recursion

parameter to enable quick tracking of speech compo-
nents. However, the recursion parameter should not be too small
to discard abrupt changes attributed to transients.
The described modification enables to capture most of

the speech parts, but sudden changes characterizing voiced
phoneme onsets are overlooked. Beginnings of transients can
be distinguished from beginnings of phonemes by exploiting
the fact that transients are typically shorter and decay faster than
voiced phonemes. Thus, by introducing a short lag, we are able
to observe future samples and make this distinction. Phoneme
onset identification is obtained by using two sliding windows.
One window is causal, and used to detect the minimum power
in previous frames, as described in [19], [18], [20]. The other
window is anti-causal, and used to detect the minimum power
in future frames. We note that the window should be shorter
than a typical speech phoneme, but longer than a typical tran-
sient. The PSD estimate is taken as the maximum of the two
minima detected in the two windows. Formally, let and
be the length of the causal and anti-causal windows, and be
the frame under consideration. Thus, the minima values are
picked in the causal window

(10)

and in the anti-causal window as

(11)

Then, the PSD estimate of the speech and stationary noise is
obtained by

(12)

Now, we demonstrate the behavior of the described method.
At the beginning of a speech phoneme, the minimum in the
causal window is low, conveying the power level of the back-
ground noise before the phoneme. On the other hand, the min-
imum in the anti-causal window is high, representing the power
level of the phoneme (assuming the window is shorter than
the phoneme). Consequently, taking the maximum of the two
minima yields the desired estimate of the power level of the
phoneme. It is worthwhile noting that a transient instance is not
captured in this process. Since both windows are longer than a
transient, the minima in such windows must be the power level
of the background signal (either speech or background noise)
before or after the transient.
The typical lengths of the causal and anti-causal windows

range between 40 and 160 ms, which determines the lag intro-
duced into the system. For a typical sampling rate of 16000 Hz
and short time frames of length 16 ms (with 75% overlap), it
corresponds to 10 to 40 frames ( and ).
A particular attention is given to unvoiced phonemes, whose

durations might be shorter than 40 ms.We assume that unvoiced
phonemes usually appear adjacent to voiced phonemes with
higher power and longer duration due to speech harmonies.
Thus, unvoiced phoneme onsets are less likely to be local
maxima with respect to the causal and anti-causal windows.
As a result, we are usually able to distinguish both voiced and
unvoiced speech from transients using the temporal averaging.
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However, short duration plosive phonemes, especially in high
frequency bins, might be wrongly detected and might not be
attenuated by this filter. Since such phonemes are usually less
structured compared to transients, they are well handled in a
succeeding stage of the algorithm as described in Section IV-C.
In Section VI, we demonstrate the processing of unvoiced
speech.
Let denote the spectral gain of the OM-LSA esti-

mator, based on the described MCRA component with two win-
dows configured to track fast variations. Thus, the enhanced
transient interference can be written as

(13)

In practice we employ a mild recursive temporal smoothing
on to circumvent alignment and offset problems, and
to enable extra robustness. We employ on each frequency bin
a first order auto-regressive filter with a recursive coefficient of
0.95.

B. Abrupt and Oscillatory Decaying Parts Estimation

The idea in this work is to exploit the transient geometric
structure by utilizing the fact that a distinct pattern appears mul-
tiple times [1]. Examination of a wide variety of transient in-
terferences led us to the observation that each transient event
is characterized by an abrupt sound followed by decaying os-
cillations. Unfortunately, only the abrupt part demonstrates a
characteristic structure, whereas the decaying part has a more
random nature. Thus, in order to exploit the repetitive nature
of the abrupt part of the transient, we first need to decompose
each transient instance into its abrupt and decaying parts. In this
section, we propose to estimate the decaying part based on a sta-
tistical model adapted from room reverberations modeling [12].
We emphasize that we merely exploit the fact that both applica-
tions deal with suppression of decaying interferences. However,
there is no additional similarity between dereverberation appli-
cations and the proposed work.
The independence of and from (5) yields that

for . By further assuming that
and are mutually independent, we have from

(4)

(14)

Using (6), we can reformulate (14) as

(15)

with

(16)

and

(17)

Using (16), can be rewritten as

(18)

where . From (15), we obtain

(19)

As seen from (19), we require that , which implies
that the energy of the abrupt part is larger than the energy of the
decaying part. From (6) and by the derivation in [12], can
be estimated by solving the following equation

where is the length of the abrupt part and is set empirically
for every transient type. Now, since is unavailable,
we use in (19) its estimate from Section IV-A to
obtain an estimate for the transient abrupt and decaying parts.
We note that we may also use the more accurate estimate of the
transient obtained in the following section. Let be the
PSD estimate of the decaying part obtained from (19). Accord-
ingly, from (15), we have an estimate of the abrupt part

(20)

C. Nonlocal Filtering

We improve the estimation of the abrupt transient part by ex-
ploiting its repetitive nature, i.e., a distinct pattern appears a
large number of times at different time locations. The fact that
the same pattern appears multiple times can be utilized for im-
proved denoising. Specifically, the pattern intervals can be iden-
tified, and the transient interference may be extracted from the
measurement by averaging over all of these instances. This nat-
urally leads to NL filtering [4]–[8].
Let be a non-negative kernel defined between any pair

of time frames, such that for any time frame index , we have
. A single step of the NL filter is given by

(21)
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where is the number of time frames of the measured signal,
is a vector of length , obtained by collecting all fre-

quency bins of a single time frame, i.e.,

(22)

and is similarly defined as

(23)

The NL filter step can be repeated a few times, where each step
of the NL filter (21) can be interpreted as averaging over similar
time frames according to . Let denote the number of filter it-
erations. As we describe in Section V, is associate with the
probability of a Markov process to go from one frame to an-
other in a single step. Applying NL filter steps is associated
with the probability to go from one frame to another in steps,
and as a result more remote frames may be averaged. For sim-
plicity, the derivation is presented based on a single filter step,
however, in Section VI, we use several iterations to enable better
performance.
We assume that the kernel implicitly separates between time

frames according to the transient events presence. This assump-
tion provides trackable approximated analysis of the NL fil-
tering. We note that this assumption circumvents the risk of ap-
plying several steps of the NL filter, which is analyzed in [1]. In
particular, it satisfies for either and ,
or and . The values in each set convey
the uncertainty of the division. The construction of such kernel
function is described in Section V.
According to (21), applying a single iteration of the NL filter

based on such kernel yields

(24)

As a result, since each transient interference has the same abrupt
spectral pattern (16), the transient instances are averaged to-
gether and enhanced. On the other hand, the “random” speech
(after pre-filtering) is averaged incoherently, and therefore sup-
pressed. After a few iterations of the NL filter, the instances of
the transient interference may be extracted. In [1] we discuss
the diffusion interpretation of the NL filter and present a prob-
abilistic analysis which enables to determine the expected per-
formance and the proper choice of parameters, e.g., the proper
number of filter steps .
Next, we formulate the employment of the NL filter. We

express the estimate of the abrupt transient part obtained in
Section IV-B as

(25)

where is the positive estimation error with mean
and variance , which consists of the spectral variance

of the residual speech components and stationary noise. The

parameters of the OM-LSA in Section IV-A are set to enable
small transient distortion at the expense of significant speech
leftovers. This includes a restriction of the maximum attenua-
tion of spectral components to dB. In addition, the win-
dows lengths are set to be longer than the typical transients at
the expense of including short-duration speech phonemes.
Substituting (7), (16) and (25) into (24) yields

(26)

with the scaling variable

(27)

and the weighted sums,

(28)

(29)

In (26), we observe that the output of the NL filter consists of a
clean estimate of the abrupt part of the transient, up to scaling,
and an additive error term. Unlike the additive error in
(25), can be considered time independent, as it is an av-
erage of error terms over time. Thus, we employ spectral sub-
traction to reduce the additive error. We subtract from (26) the
average of obtained from time frames that do not contain
transients, yielding

(30)

where denote the cardinality of the set . Using (26), (30)
can be written as

(31)

where the residual additive error is given by

(32)

We note that while implying that the
initial estimate is biased, the residual error in
satisfies . To further analyze the behavior of the
NL filter, we assume perfect kernel clustering, i.e.,

(33)

Thus, we obtain from (28) and (32) that

(34)
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with the number of time frames and .
In case the number of transients grows linearly with the number
of time frames, can be approximated by a constant. In addition
the number of frames containing transients is relatively small,
and hence, the variance of is attenuated with rate .
Moreover, sufficient number of time frames result
in

(35)

In (35), we obtain a consistent estimate of the abrupt part of the
transient, up to scaling.
Since the scaling depends only on the time frame and

independent of the frequency bin (it represents the amplitude
of the entire transient event), it can be estimated based on the
variability of spectral speech components. Dividing the NL filter
output after spectral subtraction in (35) by the initial estimate in
(25) yields the following ratio

(36)

We assume that for each time frame , there exists a fre-
quency bin with negligible residual . Such a fre-
quency bin exists since the speech does not typically span the
entire spectrum, and the stationary noise may successfully be
suppressed by the OM-LSA in Section IV-A. Thus, since
and are positive, from (36) we have

(37)

for each . In practice, before the minima search, we em-
ploy local smoothing between adjacent frequency bins to in-
crease the robustness to small variations of the abrupt part at
the expense of smearing the minima. We use a window function
whose length is , and for each frame we smooth the
ratio along the frequency bins

(38)

where the natural choice for is any smooth window, e.g.,
Hamming.
Finally, from (35) and (37) we compute

(39)

which is an estimate of the abrupt part of the transient, free of
the speech leftovers .

D. Speech Enhancement Using OM-LSA

To enhance the speech, we apply OM-LSA again (at a second
time), now with a modified noise PSD estimate, similarly to
[1]. We set the optimal spectral gain to the sum of the transient
interference and the stationary noise PSD estimates. Let
denote the spectral gain of the OM-LSA estimator given the
noisy measurement . Thus, the speech estimate is given
by

(40)

The spectral gain relies on the noise PSD estimate
where is the PSD estimate of the stationary

noise obtained by the MCRA [18], and
is the estimate of the PSD of the transient interference

obtained in Sections IV-B and IV-C.
Since the calculation of the optimal spectral gain function is

now controlled by both the stationary noise and transient inter-
ference, additional suppression of the transients is attainable.
For more details regarding the optimal gain function derivation
and estimation of the speech presence probability and the noise
spectrum, we refer the reader to [16] and references therein. In
addition, the OM-LSA parameters used in this stage are similar
to the parameters of an OM-LSA set to enhance speech and re-
duce background noise, as proposed in [16]. We note that as in
[16], the phase of the noisy signal is used for reconstructing the
enhanced speech. A Matlab code of the OM-LSA is available at
[21].

V. DISTANCE MEASURE OF TRANSIENTS
BASED ON DIFFUSION MAPS

In this section we present the intrinsic distance measure
defined between any pair of time frames. This distance

measure, used in the NL filtering (21), is based on diffusion
maps, and is described in the remainder of the section.
We define an affinity metric between pairs of the

vectors estimated in Section IV-B using the following
Gaussian kernel

(41)

where is the variance of the Gaussian kernel which deter-
mines the scale of the affinity metric. For more details regarding
this specific choice of a kernel see [1]. It is worthwhile noting
that different frame length than the length used in Section IV
may be used here by concatenating the power spectrum of con-
secutive time frames into .
We view the vectors as nodes of an undirected

symmetric graph, where denotes the number of available
time frames of the measurement. Two nodes and
are connected by an edge with weight , that corresponds
to the affinity between and . We continue with the
construction of a Markov process on the graph nodes by nor-
malizing the kernel as

(42)

where . Consequently, represents
the probability of transition in a single step from node to
node . Similarly, let be the probability of tran-
sition in steps from node to node . Let de-
note the matrix corresponding to the kernel function , and let

be the matrix corresponding to the function ,
where is a diagonal matrix with . Accordingly,
is the matrix corresponding to the function .
Results from spectral theory [22] can be employed to describe
, enabling to study the geometric structure of in a

compact and efficient way. It can be shown that has a com-
plete sequence of left and right eigenvectors and pos-
itive eigenvalues, written in a descending order
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, satisfying . Each singular vector, or
, is of length , and and denote access to the th

elements of the singular vectors. We note that since the sum of
each row of equals to one, the 0th component is trivial, i.e.,

and elements equal to one. The left eigenvector ,
associated with the eigenvalue , is the stationary proba-
bility, i.e., .
The construction of the Markov process leads to a definition

of a new affinity metric between any two vectors [9]

(43)

for any integer . This metric is termed diffusion distance as it
relates to the evolution of the transition probability distribution

. Moreover, it enables to describe the relationship be-
tween pairs of vectors in terms of their graph connectivity. Con-
sequently, the main advantage of the diffusion distance is that
local structures and rules of transitions are integrated together
into a global metric. In recent years, this metric was shown
to be very useful in various applications from different fields
[23]–[27], [7].
We use the right eigenvectors of the transition matrix to

obtain a new data-driven description of the vectors
via a family of mappings that are termed diffusion maps [9]. Let

be the diffusion mappings of the vectors
into a Euclidean space for any integer , defined as

(44)

where is the new space dimensionality ranging between 1 and
. We note that a fast decay of the eigenvalues may

enable dimensionality reduction, as coordinates in (44) become
negligible for large .
It can be shown that the diffusion distance (43) is equal to the

Euclidean distance in the diffusion maps space when using all
eigenvectors [9], i.e.,

(45)

This result provides a justification for using the Euclidean dis-
tance in the new space for comparison and clustering purposes.
Instead of aggregating the transition probabilities over all pos-
sible trajectories as implied by (43), we may simply compute
the Euclidean distance between the embedded samples. In par-
ticular, since the eigenvalues typically decay fast for a large
enough , the diffusion distance can be well approximated by
only the first few eigenvectors, yielding efficient calculations
of the diffusion distance. In Section VI, we show that embed-
ding the vectors into the diffusion maps space naturally orga-
nizes the measurements into separate clusters of speech and
transient interference.
Similarly to (41), we now define a new Gaussian kernel

based on the diffusion distance

(46)

and, similarly to (42), construct a corresponding Markovian
process to obtain a new transition probability function .
According to the diffusion analysis in [9], the application of
the Gaussian kernel in (41) enables parametrization of the
lower-dimensional structure of transients. The second appli-
cation of the Gaussian kernel in (46) intensifies the locality
property by implicitly defining a neighborhood around each
embedded sample of radius . Embedded samples

such that are weakly
connected to .
We emphasize that unlike the kernel (41) used in [1] for the

NL filtering which relies on the Euclidean distance between
the vectors, in this work we use for the NL filtering a kernel
that relies on diffusion distance. The use of diffusion distance
conveys the capability to distinguish between different types of
transients, and hence, the proposed algorithm enables handling
few transient types simultaneously. In Section VI we demon-
strate the performance of the new kernel based on the diffusion
distance and compare it with the kernel based on the Euclidean
distance.
The computational burden of the diffusion maps approach

may be significant. The computation of the kernel requires
calculations of the distance between each pair of samples. In
addition, a spectral decomposition of an matrix is em-
ployed. In practice, we relax these two steps. First, since we
use a Gaussian kernel, we clip small values of the kernel, cor-
responding to remote samples (not in time but in distance), to
zero, and obtain a sparse kernel matrix. Consequently, we are
able to use efficient spectral decomposition algorithms adapted
for sparse matrices. Second, we employ an efficient version of
an approximated k-nearest-neighbors search. Thus, instead of
calculating the kernel between each sample and all the rest of
the samples, we calculate the kernel only between each sample
and its nearest neighbors. In our implementation, for the spectral
decomposition of sparse matrices we use the standardMATLAB
implementation, and for the k-nearest-neighbors search we use
TSTOOL for MATLAB available online in [28].
The derivations of the diffusion maps and distance presented

in this section require the availability of all the data. As a result,
the presented algorithm entails batch processing of the entire
measurement interval. There exists an efficient online version
of diffusion maps computation which requires training and cal-
ibration [29]. However, this issue is beyond the scope of this
paper.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm. We use recorded speech and transient signals sam-
pled at 16 KHz. Speech signals are taken from the TIMIT data-
base [30], and recorded transient interferences are taken from
an online free corpus [31]. The measurements are constructed
according to (1). We re-scale the speech and transient interfer-
ence to have equal maximal amplitude in the measured interval.
The additive stationary noise part is a computer generated white
Gaussian noise with signal to noise ratio (SNR) of 20 dB. The
length of each speech utterance and the corresponding transient
interference is 20 s. Such transient interference signal typically
consists of 25 to 30 transient events.
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Fig. 2. (a) A scatter plot of the PSD of 3 arbitrary frequency bins of speech contaminated by kitchen knocks. (b) A scatter plot of the PSD of 3 arbitrary frequency
bins of speech contaminated by door knocks. (c) A scatter plot of the 1st, 3rd, and 5th coordinates of the diffusion map of speech contaminated by kitchen knocks.
(d) A scatter plot of the 1st, 2nd, and 3rd coordinates of the diffusion map of speech contaminated by door knocks.

TABLE I
PARAMETERS OF THE PROPOSED ALGORITHM

The algorithm configurable parameters used in the experi-
ments are summarized in Table I. The length of the anti-causal
window approximately corresponds to the typical length of the
transient. The frame length was chosen empirically to fit each
transient type and to produce maximal results. We note that the
frame length used for the abrupt and decaying parts estimation,
the nonlocal filtering, and the speech enhancement stage equals
the specified length used for diffusion maps. Only in the tran-
sient enhancement stage we use a fixed length of 16 ms for all
transient types. In addition, we used 75% overlap between suc-
cessive frames. The proper oscillation decay parameter for
each transient type is picked by examining the decay rate of a

clean representative transient event. Our experimental results
show that it suffices to set a single value of the decay rate corre-
sponding to all frequency bins. In addition, the results show that
the algorithm performance is insensitive to different choices of
in a wide range of values. We note that in general it is prefer-

able to choose smaller values, which enable under-estimation of
the decaying part. This choice results in decaying parts leftovers
in the output signal, whereas larger values may result in speech
distortion. As depicted in Table I, we demonstrate the suppres-
sion of transient types with both short- and long-duration de-
caying parts. The enhancement of all transient types is attained
using iterations of the NL filter. The parameters of
the second application of the OM-LSA are set (to enhance the
speech) according to [16].
Fig. 2 illustrates the diffusion maps embedding. In Fig. 2(a)

and (b) we present a scatter plot, where each point represents the
PSD estimate of a time frame of the abrupt part in three arbitrary
frequency bins. We note that similar visualization is obtained by
different choices of the three bins. Fig. 2(a) depicts points cor-
responding to the samples of speech contaminated by kitchen
knocks, and Fig. 2(b) depicts points corresponding to speech
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Fig. 3. Signal spectrograms. (a) A clean transient event. (b) The noisy signal. (c) The enhanced transient. (d) The estimated decaying part.

contaminated by door knocks. In Fig. 2(c) and (d) we present a
scatter plot of the diffusion maps, where each point represents
the embedding according to (44) of the samples from Fig. 2(a)
and (b), respectively. In Fig. 2(c) we show the 1st, 3rd, and 5th
coordinates of the embedding, and in Fig. 2(d) we show the 1st,
2nd, and 3rd coordinates of the embedding. We present merely
three coordinates for the 3D illustration. The color of the points
represents the frame content: frames containing transients ap-
pear in brown and frames without transients appear in blue. In
Fig. 2(a) and (b) we do not detect any separation between the
time frames according to their content. On the other hand, in
Fig. 2(c) and (d) we observe a clear clustering according to tran-
sient presence. However, when using merely three coordinates,
we see some points with different content overlap. Our empir-
ical testing show that by using dimensions, the diffusion
maps embedding provides an adequate separation of the points
and minimal overlaps.
To illustrate the performance of the transient enhancement

and estimation of the abrupt and decaying parts we present in
Fig. 3 spectrograms of a single transient event of a kitchen
knock. Fig. 3 shows the clean transient event, the noisy signal,
the enhanced transient PSD , and the estimated decaying part
PSD . In Fig. 3(a) we can clearly see both the abrupt part of
transient, characterized by a vertical PSD shape, followed by the
decaying part. We note that such a knock has a relatively long
decaying part, and hence, it is more difficult to estimate and sup-
press. In Fig. 3(d) we observe the estimated decaying part, and
notice that the abrupt part is successfully excluded from the es-
timation. We note that the PSD estimate of the abrupt transient
part is estimated by subtracting (d) from (c). Fig. 3 also illus-
trates the important role of the NL filtering. As observed, the
enhanced transient signal contains residual speech components.

If not attenuated, such residual speech in the transient PSD esti-
mate may result in significant speech distortion, as these speech
components would be suppressed along with the transient inter-
ference and the background noise by the second application of
the OM-LSA. We note that most of the speech leftovers remain
in the abrupt part and as a consequence are suppressed by the
NL filter. However, as observed in Fig. 3(d), few speech com-
ponents with a low signal power, located typically around tran-
sients, are estimated as parts of the decaying components. Thus,
we remove them by applying a threshold on the signal power,
where the threshold value is set empirically and was shown to
be suitable for all tested transient types.
Fig. 4 shows spectrograms of the noisy speech signal cor-

rupted by metronome interference, the transient estimate, and
the enhanced signal. We observe that the proposed method
yields an accurate estimation of the spectrum of the transient
interference and attains significant transient interference reduc-
tion while imposing very low distortion.
In Fig. 5 we demonstrate the enhancement of plosive

phonemes attained by the algorithm by presenting the spectro-
grams corresponding to the utterance “Oh, the time of death”
corrupted by household clicks. In Fig. 5(a) we present the noisy
speech and in Fig. 5(b) the enhanced signal. We observe that
the plosive “t” at 0.6 s is undistorted. Furthermore, the plosive
“d” at 1.1 s is undistorted, whereas the adjacent transient event
is suppressed.
We test the algorithm on several speech utterances (of both

males and females) and transient interference types. We com-
pare the performance of the proposed algorithm using two dif-
ferent kernels: the kernel proposed in [1] based on the Euclidean
distance, and the kernel proposed in Section V, based on the dif-
fusion distance.
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Fig. 4. (a) Spectrogram of the noisy speech signal corrupted by metronome
interference. (b) Spectrogram of the transient estimate. (c) Spectrogram of the
enhanced signal obtained using the proposed algorithm.

Fig. 5. Spectrograms corresponding to the utterance “Oh, the time of death”
corrupted by “household clicks”. (a) The noisy speech. (b) The enhanced signal.

We evaluate the transient interference estimation using two
objective measures. The first is the transient to signal ratio
(TSR), defined by

(47)

where is the estimated transient interference corresponding
to the PSD . We note that in order to obtain the signals
in the time domain, we use the phase of the noisy signal .
The second measure is the mean spectral distance (SD) defined
as

(48)

where is the ensemble average with respect to the time
frame . The TSR measure provides evaluation of the estima-
tion in terms of power, whereas the SD provides evaluation of
the estimation accuracy of the spectral features. We note that
both measures are computed only in time periods where the es-
timation contains transient interference.
Table II summarizes the evaluation of the transient interfer-

ence estimation using Euclidean and diffusion distances, respec-
tively. We report the average measures obtained over several
speech utterances for different transient interferences. The re-
sults are compared to the transient estimation obtained by the
algorithm proposed in [1]. We observe significant improvement
of the measures implying good transient estimation. The usage
of diffusion distance outperforms the usage of the Euclidean
distance in most of the tested cases, except keyboard typing.
Compared to the algorithm in [1], the proposed algorithm is ad-
vantageous in TSR improvement. SD improvement results are
inconclusive and the differences between the algorithms are rel-
atively small.
We evaluate the output of the proposed algorithm using two

objective measures as well. The first is the common SNR, de-
fined as

(49)

The second is the mean log spectral distance (LSD) between the
measured signal and the desired source, which is specifically
adapted to speech signals and defined as

(50)

where

(51)

and is a small value defined by 50, used
to confine the dynamic range of the log-spectrum to 50 dB.
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TABLE II
EVALUATION OF THE TRANSIENT INTERFERENCE ESTIMATION

TABLE III
SPEECH ENHANCEMENT EVALUATION

These measures are computed in time periods where the esti-
mate of the PSD of transients exists. This way we are able to
focus on the performance of the proposed algorithm and eval-
uate the speech enhancement and the artifacts introduced by the
algorithm simultaneously. In periods where the transient esti-
mate does not exit, only stationary noise suppression is attained,
and the performance of the algorithm equals to the performance
of the OM-LSA.
Table III depicts the evaluation of the speech enhancement.

We compare the proposed algorithm configured with Euclidean
and diffusion based kernel, with the algorithm proposed in [1].
We observe improvement in all tested cases. In addition, the
use of a diffusion-based kernel outperforms a Euclidean-based
kernel and the algorithm proposed in [1]. It is worthwhile noting
that informal hearing tests demonstrate significant reduction of
the transient interference. In case of metronome or household
clicks the interference is hardly notable in the result. However,
kitchen knocks and keyboard typing are attenuated the least, al-
though the SNR and the LSD measures report the most signif-
icant improvement. These transient types are particularly diffi-
cult to handle. The knocks have a relatively long decaying part,
causing the random oscillations to “hide” the distinct spectral
pattern of the abrupt part. However as presented in Table III, the
improvement obtained by the proposed algorithm (using either
distances) is significantly better than the improvement obtained
by [1]. This result demonstrates the contribution of the separate
handling of the decaying part. In case of keyboard typing, dif-
ferent key strokes have different spectral features, and hence the
typing instances are less similar, and the nonlocal averaging is
less effective. In this case, the use of diffusion distance which
enables better handling to few transient types simultaneously
shows superior improvement compared to the other algorithms.
Table IV presents the perceptual evaluation of speech quality

(PESQ) score. The PESQ score is computed over the entire
utterance and not only in transient periods. We observe im-
provement of the speech quality in all tested cases, and note
that the improvement for short-duration transients, such as

TABLE IV
PERCEPTUAL EVALUATION OF SPEECH QUALITY (PESQ) SCORE

metronome and household clicks, is larger than for long-du-
ration transients, e.g., kitchen knocks. Both versions of the
proposed algorithm outperform the previous algorithm. It im-
plies the benefit of using the transient enhancement stage and
the separation of the abrupt and decaying parts in the proposed
algorithm. In addition, as presented in the previous tables,
the diffusion based kernel is advantageous compared to the
Euclidean based kernel. It is worthwhile noting that even small
increase in the PESQ score suggests noticeable improvement,
as any sudden increase of power (e.g., attenuated transients) is
audible. Audio samples of the presented results are available
online in [32].
In Table V we demonstrate that the proposed approach is ca-

pable of suppression of a few transient interferences simultane-
ously. We test the suppression of a different keyboard typing
recording containing strokes on a wider variety of keys. We
note that since the gaps between consecutive strokes is larger
compared to the previous sample the results in Tables III and
V are not comparable. In addition, we test a new door knocks
sample by incorporating more types of door knocks (some with
shorter duration), and a new household interferences sample by
combining the household clicks and knocks. The reported ex-
perimental results show the same trends except for the LSD im-
provement of household interferences. The difference in the im-
provement is due to the different distribution of transients and
the varying durations. It is worthwhile noting the same decay
rate of the oscillatory part is assumed for all the transient in-
terferences. However, as the algorithm is not sensitive to the
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TABLE V
EVALUATION OF SUPPRESSION OF MULTIPLE INTERFERENCES

particular choice of the decay rate, this limitation is not very
restricting.

VII. CONCLUSION

We have presented an algorithm for transient interference
suppression in speech signals. The main component of the
proposed algorithm is the estimation of the spectral variance of
the transient interference, which is carried out in three steps.
First, the transient interference is enhanced by applying a
common algorithm for noise PSD estimation, equipped with
two sliding windows and configured to track rapid variations
characterizing transients. Second, the decaying part of the tran-
sient interference is estimated using a variance estimator based
on a statistical model adapted from modeling room reverbera-
tions. Third, the abrupt part of the transient is estimated. The
estimation is based on NL filtering, that exploits the intrinsic
geometric structure of the transients. In particular, it relies on
the variation between speech components and sharp impulses of
repeating transient interference events. The distinction between
transient and speech is obtained by incorporating a manifold
learning approach termed diffusion maps, which naturally
enables to compute an intrinsic metric for the signals at hand.
Experimental results have demonstrated that significant inter-
ference suppression is attainable for a variety of transient types,
which include both short- and relatively long-duration events.
In addition, we demonstrated suppression of few transient types
simultaneously. In future work, we intend to develop an online
version of the diffusion maps and nonlocal filter parts.
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