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Kernel Method for Voice Activity Detection
in the Presence of Transients
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Abstract—Voice activity detection in the presence of transient
interferences is a challenging problem since transients are often
detected incorrectly as speech by existing detectors. In this pa-
per, we deviate from traditional approaches and take a geometric
standpoint, in which the key element in obtaining an accurate
voice activity detection is finding a metric that appropriately dis-
tinguishes between speech and transients. For example, speech and
transients may often appear similar through the Euclidean distance
when represented, e.g., by the Mel-frequency cepstral coefficients,
thereby resulting in incorrect speech detection. To address this
challenge, we propose to use a metric based on the statistics of the
signal in short temporal windows and justify its use by modeling
speech and transients by their latent generating variables. These
latent variables may be related to physical constraints controlling
the generation of the signal, and, as such, they accurately represent
the content of the signal—speech or transient. We show that the
Euclidean distance between the latent variables is approximated
by the proposed metric. Then, by incorporating this metric into
a kernel-based manifold learning method, we devise a measure
of voice activity and show it leads to improved detection scores
compared with competing detectors.

Index Terms—Impulse noise, kernel, speech processing,
transient noise, voice activity detection.

I. INTRODUCTION

S IGNALS measured in microphones are often contaminated
with various environmental noises and interferences. The

environmental conditions pose great challenges in a variety
of speech processing tasks, e.g., in speech enhancement
[1]–[4], voice activity detection [5]–[12] and dominant speaker
identification [13]. Here, we focus on the task of voice activity
detection in signals measured in a single microphone, i.e., divid-
ing segments of the signal into speech and non-speech clusters.

To appropriately handle noisy environments, a common
approach in the literature is to track the statistics of the sig-
nal by recursive averaging in short time intervals [1]–[4]. It
relies on the assumption that the spectrum of the noise slowly
varies in time, whereas the spectrum of speech changes quickly.
Hence, sudden variations of the spectrum indicate the presence
of speech. Although methods based on this statistical approach
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successfully distinguish speech from quasi-stationary noises,
they fail in distinguishing speech from transients, which are
abrupt interferences, such as, knocks, keyboard taps and office
noise [14]–[17]. Since the spectrum of such transients varies in
time even quicker than the spectrum of speech, transients are
wrongly detected as speech using approaches based on recursive
averaging.

To overcome the limitations of existing approaches, recent
studies have proposed to model transients according to their ge-
ometry [16], [18]–[22]. The main assumption in these studies is
that transients contain an underlying geometric structure which
can be inferred from the signal measurements using manifold
learning tools, e.g., those presented in [23]–[27]. In the studies
presented in [16], [18], [19], the geometric structure of transients
is captured and is exploited to construct an estimator of their
spectrum. In turn, the estimated spectrum is incorporated into
a denoising filter and is used for speech enhancement. We em-
phasize that while these studies deal with the estimation of the
spectrum of transients, the present study focuses on the problem
of distinguishing them from speech.

In [20], an improved distinction between speech and non-
speech frames is obtained by a method based on clustering the
noisy signal in a specifically designed low-dimensional domain.
More precisely, the method is based on representing time frames
of the noisy signal using the Mel-frequency cepstral coefficients
(MFCCs), and then building a low-dimensional representation
of the signal based on local similarities between them. How-
ever, the similarities between frames are defined based on the
Euclidean distance, which often induces high similarities be-
tween speech and transients in standard domains such as the
MFCCs and the short-time Fourier transform [16], [20]. This
results in an incorrect identification of speech and transients, as
we demonstrate in this paper.

To deal with this problem, we use a modified version of the
Mahalanobis distance [28], which is constructed from the signal
measurements and exploits the statistics of the signal in short
temporal windows. We analyze the modified Mahalanobis dis-
tance using a model of latent variables; we assume that speech
and transients are driven by two independent sets of latent vari-
ables controlling their generation and refer to them as the gen-
erating variables. For example, the generation of the complex
speech signal is controlled by the few parameters of the vocal
tract [29]. The main idea underlying our approach is that com-
paring signal frames according to the generating variables gives
rise to an accurate detection of the content of the frame, partic-
ularly, in terms of speech and transients. The challenge is that
these variables are unknown and need to be inferred from the
noisy signal. We show that the modified Mahalanobis distance
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locally approximates the Euclidean distance in a domain related
to the generating variables.

A particular challenge in the problem of voice activity
detection is that speech needs to be detected in frames contain-
ing both speech and transients. We found in our experiments
that transients are often more dominant than speech, i.e., speech
frames containing transients tend to be more similar to frames
containing only transients, a fact that hampers the detection of
speech presence/absence. The dominance of the transients is
related to the high variation of their spectrum in time, to their
high amplitudes, and to their typical broad bandwidth. We fur-
ther show that the modified Mahalanobis distance mitigates the
problem and reduces the dominance of the transients by implic-
itly exploiting the respective difference in the rate of variations
of speech and transients [15], [16], [30].

By incorporating the modified Mahalanobis distance in a ker-
nel based manifold learning method, we propose an algorithm
for voice activity detection. Since this metric approximates the
Euclidean distance between the generating variables, the eigen-
vectors of the kernel provide a parameterization of the signal
in terms of the generating variables, which is viewed as the
canonical representation of the signal. We show that this canon-
ical representation improves the distinction between speech and
transients compared with the representation obtained using the
Euclidean distance. In addition, the canonical representation
enables us to define a simple measure of voice activity, which
outperforms competing detectors.

It is worthwhile noting that classical voice activity detectors
(VAD), such as those presented in [5]–[12], are originally de-
signed to detect speech in the presence of (quasi-) stationary
background noise. Based on the assumption that the spectrum
of speech rapidly varies compared to the spectrum of (quasi-)
stationary background noise, such algorithms detect speech by
tracking rapid variations in the spectrum of the noisy signal. In
the presence of transients, whose spectrum also rapidly varies
over time, such algorithms successfully distinguish the back-
ground noise from both speech and transients, but they can-
not distinguish between speech and transients. Consequently,
in this paper, we focus on distinguishing between speech and
transients; in practice, a classical VAD may be applied as a pre-
processing stage to distinguish time intervals containing only
background noise from both speech and transients.

The remainder of the paper is organized as follows. In
Section II, we formulate the problem of voice activity detec-
tion. In addition, we present a metric based on the statistics
of the signal in short temporal windows, and to justify its use,
we propose a model of latent generating variables. Based on
this model, we show in Section III that the metric reduces the
effect of transients. Using this metric, an algorithm for voice
activity detection is introduced in Section IV, and experimental
results demonstrating the superior performance of the proposed
algorithm are presented in Section V.

II. PROBLEM FORMULATION

A. The Problem of Voice Activity Detection

Consider a speech signal obtained in a single microphone in
the presence of transients and processed in frames. Let yn ∈ RL

be a feature representation of frame n; in particular, we use the
MFCCs such that L is the number of coefficients. The MFCCs
are widely used features for speech representation based on
the perceptually meaningful Mel-frequency scale [31]. They
represent the spectrum of the signal in a compact form and they
were previously exploited both for speech recognition [32], [33]
and for voice activity detection [34]. We consider a setup where
a sequence of N frames y1 ,y2 , . . . ,yN is available in advance.
Assume that the sequence comprises frames where speech is
present and frames where it is absent, and let Hx

1 and Hx
0 be two

hypotheses representing the presence and the absence of speech,
respectively, where x denotes speech. Based on the hypotheses,
we define a speech indicator for frame n, which is denoted by
1x

n and is given by

1x
n =

{
1; n ∈ Hx

1

0; n ∈ Hx
o

}
. (1)

The objective in this study is to estimate the speech indicator,
i.e., to cluster the sequence according to the two hypotheses.

Similarly to the hypotheses Hx
1 and Hx

0 , let Ht
1 and Ht

0 be
hypotheses of the presence and the absence of transients, respec-
tively, where t denotes transients. We note that frames containing
both speech and transients, for which both hypotheses Hx

1 and
Ht

1 hold, are considered as speech frames for the purpose of
voice activity detection. Nevertheless, transients are typically
more dominant than speech, e.g., due to higher amplitudes and
broader bandwidth. Accordingly, the MFCCs of frames con-
taining both speech and transients often appear similar to the
MFCCs of frames containing only transients, and, as a result,
they are often wrongly identified as we show in Section V. One
approach for improving the clustering is to design features, for
which the Euclidean distance better distinguishes between the
content of the frames of the signal. In this study, we take a dif-
ferent approach and propose to use a different metric instead
of the Euclidean distance. Specifically, we propose to measure
distances between frames of the signal using a modified Maha-
lanobis distance, proposed in [28], which is given by

‖yn − ym‖2
M � 1

2
(yn − ym )T (

C−1
n + C−1

m

)
(yn − ym ) ,

(2)
where Cn ∈ RL×L and Cm ∈ RL×L are the covariance matri-
ces of yn and ym , respectively. The covariance matrices are
assumed to be known throughout this section and throughout
Section III; in Section V, we describe their estimation from a
short time window of samples. The modified Mahalanobis dis-
tance was previously presented in [35] for the purpose of solv-
ing the problem of non-linear independent component analysis,
in which the assumption is that the observable signal is gen-
erated by independent latent stochastic dynamical processes.
However, these processes are assumed to smoothly evolve in
time, i.e., the current state of the process is correlated with pre-
vious states. Therefore, such processes cannot properly model
transitions between speech presence and absence. Hence, to
justify the use of the modified Mahalanobis distance in (2) for
voice activity detection, we propose in Section II-B to model
the noisy signal using latent variables controlling its generation.
By assuming a simplifying statistical model for the generating
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variables, we show in Section III that the modified Mahalanobis
distance approximates a weighted Euclidean distance between
the variables, which properly respects the content of the noisy
signal.

B. The Model of the Generating Variables

The generation of many signals can be associated with a
small set of physical constraints controlling their production. For
example, the generation of speech is controlled by the position of
the vocal tract and by the movement of lips, jaw, and tongue [29].
Here, we assume that the measured signal is modeled by two
sets of unknown latent variables associated with the generation
of speech and the transients. Let θx

n ∈ Rdx
and θt

n ∈ Rdt
be two

vectors of generating variables underlying the speech signal and
the transients in frame n, where dx and dt are the number of the
variables, respectively. The vector of all generating variables at
time frame n is denoted by θn ∈ Rd , where d � dx + dt , and
is given by

θn =
[
(θx

n )T ,
(
θt

n

)T
]T

, (3)

where T denotes transpose. The generating variables are as-
sumed hidden, i.e., θn in (3) is not directly measured by the
microphone. For example, a variable that is related to the move-
ment of the lips during the production of speech cannot be
directly captured in the microphone.

We assume that the relationship between the observable signal
yn and the vector of the generating variables θn is given by an
unknown non-linear transformation f : Rd �→ RL , such that

yn = f (θn ) . (4)

If we had access to the generating variables, then voice ac-
tivity detection would become trivial since one may ignore
the variables of the transients, θt

n , and detect speech merely
from the variables of speech, θx

n . However, the generating vari-
ables are not directly accessible and revealing them is chal-
lenging due to their unknown non-linear mapping f in (4) to
the observable domain. Still, in the sequel, we assume a sim-
plified model for the generating variables and the non-linear
transformation f in (4), and based on this model, we show in
Section III that the modified Mahalanobis distance in (2) ap-
proximates weighted Euclidean distances between frames in
the domain of the generating variables. Specifically, we will
show that the proposed metric reduces the effect of transients,
thereby allowing improved distinction of frames containing both
speech and transients from frames containing merely transients.
We emphasize that in practice the generating variables are not
directly estimated, but used for the analysis of the modified
Mahalanobis distance in (2).

We first assume that the generating variables are statistically
independent such that θn has a diagonal covariance matrix. The
variables of speech θx

n and the variables of transients θt
n are

assumed independent since they are related to two independent
phenomena—speech and transients. The independence between
each of the variables of (say) speech, i.e., between the entries of
θx

n , may be associated with a lack of correlation between the cor-
responding physical constraints. For example, the pronunciation

of different parts of speech, e.g., different phonemes, is based
on different combinations of the position of the vocal tract and
the movement of lips, jaw, and tongue. We note that the inde-
pendence between variables is a common assumption found in
the literature for the analysis of latent models [35]–[37]. For
example, in [36], the authors suggest a model of latent inde-
pendent and identically distributed (IID) variables to provide a
probabilistic interpretation of the classical principal component
analysis.

To encode the dominance of the transients, we assume that
the generating variables of the transients have larger variances
than the variables of speech. Specifically, to keep the statistical
model simple, we assume that under hypotheses Hx

1 and Ht
1 ,

the entries of θx
n and θt

n are IID, with zero mean, and σ2
x > 0

and σ2
t > 0 variances, respectively. We assume that

σ2
t = r2σ2

x , (5)

where r2 > 1 is a constant factor encoding the dominance of
the transients, such that a larger r implies more dominant tran-
sients. The parameter r may be seen as related to the ratio
between transients and speech. Typically, even when the tran-
sients and speech are normalized to the same maximal value,
transients, due to their short duration in time, are more domi-
nant than speech. We note that in order to show in Section III the
link between the modified Mahalanobis distance and the gener-
ating variables, we do not assume specific distributions of the
generating variables and they do not have to be identically dis-
tributed. In particular, the variances of the generating variables
of (say) speech, i.e., the entries of θx

n do not necessarily equal
to the same value σ2

x , but they are only assumed to have larger
variances than the variables of speech. In Section III, we show
that the modified Mahalanobis distance approximates weighted
distances between the generating variables such that the weights
reduce the effect of the more dominant variables, which are the
transients, by assumption. Namely, we link the variances of the
variables of speech and transients by a single parameter r only
for the sake of simplicity. In addition, the mean value of the
generating variables is set to zero merely for simplicity and it is
not used explicitly in this study. Under the hypotheses Hx

0 and
Ht

0 , we simply assume that the generating variables of speech
and transients equal zero, respectively. Thus, in the presence of
speech only, for example, the observable signal yn is related
only to the generating variables of speech and not to those of
the transients.

For the approximation in Section III showing the relation be-
tween the modified Mahalanobis distance and the generating
variables, we consider the inverse of the function f in (4). How-
ever, we consider only frames located within a local neighbor-
hood such that the (Euclidean) distance between them is smaller
than a certain value. In such neighborhoods, we assume that the
function f in (4) is smooth and locally invertible. Note that this
assumption is significantly less restrictive than assuming a glob-
ally invertible function. In this context, we further note that in
Section IV we take a data-driven approach to obtain a represen-
tation of the noisy signal based on the generating variables, by
exploiting the Mahalanobis distances between the frames of the
measured signal. Accordingly, the assumption that the function
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f in (4) is locally invertible is not strictly imposed, i.e., if it does
not hold in practice, the obtained representation may be seen
as the best fit of the model of the generating variables to the
measured signal.

To facilitate the model of the generating variables, the pres-
ence of a (quasi-) stationary noise is not considered in this paper.
In practice, a classical speech enhancement algorithm, e.g., the
one presented in [2], may be used as a preprocessing stage to
attenuate stationary noise. Such an algorithm is based on the
assumption that the spectrum of the speech signal rapidly varies
over time compared to the spectrum of a (quasi-) stationary
noise. Hence, the stationary noise is estimated (and then atten-
uated) by tracking the small variations of the spectrum of the
noisy signal. Since the spectrum of transients also rapidly varies
over time, it is “seen” by such a speech enhancement algorithm
as speech. As a result, the speech enhancement algorithm atten-
uates only the stationary noise while preserving speech and the
transients. Accordingly, we assume that frames which do not
contain speech nor transients, i.e., silent frames, are known in
advance focusing on the more challenging problem of distin-
guishing speech from transients. Silent frames are successfully
identified even in the presence of stationary noise by classical
VAD, e.g., those presented in [5], [8].

III. MODIFIED MAHALANOBIS DISTANCE

In this section we show that the modified Mahalanobis dis-
tance (2) approximates the following distance:

‖yn − ym‖2
M =

1
σ2

x

(
‖θx

n − θx
m‖2 +

1
r2

∥∥θt
n − θt

m

∥∥2
)

+ O
(
‖yn − ym‖4

)
, (6)

which consists of a weighted sum of the Euclidean distances
between the generating variables.

As we observed in our experiments, the main challenge in
obtaining a successful clustering arises from the fact that speech
components may be similar to transient components. Consider,
for example, two frames, yn and ym , one consists of only speech
and the other consists of only transients. Often, small Euclidean
distances are obtained between the MFCCs of such pairs of
frames; as a result, these frames are not properly associated
with different clusters as we demonstrate in Section V [16], [20].
However, speech and transients are assumed to have different
generating variables. As a result, the Mahalanobis distance (6)
between these frames is given by

‖yn − ym‖2
M ≈ 1

σ2
x

(
‖θx

n‖2 +
1
r2

∥∥θt
m

∥∥2
)

. (7)

Hence, the distance between these two frames is given accord-
ing to the squared norms of θx

n and θt
m conveying the different

content of the frames, in contrast to the Euclidean distance. As-
suming for simplicity that σx = 1, this example demonstrates
that the content of a frame is better represented by the Maha-
lanobis distance, which approximates the Euclidean distance
between the generating variables, i.e., a small Mahalanobis

distance between frames truly indicates that they comprise a
similar content.

Another property of the Mahalanobis distance (6) stems from
the re-scaling of the Euclidean distance between the generating
variables of the transients by a factor of r2 . Since transient
components are often more dominant than speech components
due to their typical abrupt nature and large amplitudes, frames
containing both speech and transients tend to be labeled as
“transient” frames, i.e., Ht

1 , by typical clustering algorithms.
This poses a problem for voice activity detection, where the
speech presence is required to dominate the clustering. The
Mahalanobis distance (7) mitigates the dominance of transients
by reducing the weight of the Euclidean distance between their
generating variables by a factor of r2 > 1, thereby allowing
for the design of a VAD in which transients are less dominant,
and frames tend more to be labeled according to their speech
presence and absence, as demonstrated in Section V.

We note that the approximation in (6) holds only for short
distances, where the error term ‖yn − ym‖4 is negligible. In
Section IV we show how to obtain a global representation of
the generating variables by incorporating this metric in a kernel-
based manifold learning method.

To derive (6), we follow [30]. Consider the re-scaled vectors
ψx

n ∈ Rdx
and ψt

n ∈ Rdt
defined by

ψx
n =

θx
n

σx
(8)

ψt
n =

θt
n

σt
(9)

such that the entries of the vectors have unit variances. In addi-
tion, let ψn ∈ Rd denote a vector consisting of all the re-scaled
variables in the nth frame

ψn =
[
(ψx

n )T ,
(
ψt

n

)T
]T

, (10)

and let h : Rd �→ RL denote the corresponding nonlinear func-
tion that maps the re-scaled variables to the observable signal

yn = h (ψn ) . (11)

The function h is locally invertible since we assume that
the function f in (4) is locally invertible; consequently, let
g : RL �→ Rd be an inverse map of h, i.e., ψn = g (yn ). Note
that for simplicity we follow [35], and, for all points y consid-
ered throughout the paper, we denote by g (y) the local inverse
map of the function h even though the function h is assumed
invertible only locally.

Singer et al. derived (6) in [35], [38] by using the Taylor
expansions of ψn = g (yn ) and ψm = g (ym ) at ym and yn ,
respectively, relying on the symmetry of the expansions. How-
ever, in our case, two frames yn and ym may consist of different
signals, e.g., yn may consist of only speech and ym may consist
of only transients, thereby breaking the symmetry between the
Taylor expansions of ψn and ψm .

To overcome this problem, we consider the middle point yp

between yn and ym

yp =
yn + ym

2
, (12)
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which does not necessarily exist in practice, but is used here
merely as a reference point for the derivation. The mid-point
relaxes the symmetry assumption since it contains speech or
transients if they are present in one of the frames yn or ym .

First, we focus on the hypothesis that both speech and tran-
sients are present, and then extend the derivation to all other
possible hypotheses. Specifically, yn and ym are assumed to
contain both speech and transients, and hence, so is the mid-
point yp .

Kushnir et al. have shown in [39] that using a second order
Taylor expansions of ψn and ψm at the mid-point, the Euclidean
distance between the two points is given by

‖ψn − ψm‖2 = (yn − ym )T Λ−1 (yp) (yn − ym )

+ O
(
‖yn − ym‖4

)
, (13)

where Λ−1 (yp) is a pseudo-inverse of Λ
(
ψp

)
� JJT

(
ψp

)
∈

RL×L , and J
(
ψp

)
∈ RL×d is the Jacobian of the function g

at the mid-point. The approximation to the fourth order in (13)
holds due to the symmetry of the Taylor expansions of ψn

and ψm at the mid-point under our hypothesis; for the sake of
completeness, the derivation of (13) is given in Appendix I. In
Appendix II, we further show that the term Λ−1 (yp) in (13) can
be replaced by the term 1

2 Λ
−1 (yn ) + 1

2 Λ
−1 (ym ); this result is

obtained by the Taylor expansion of Λ−1 (yn ) and Λ−1 (ym )
to the first order at the mid-point. Consequently, we have

‖ψn − ψm‖2 =
1
2

(yn − ym )T (
Λ−1 (yn ) + Λ−1 (ym )

)
× (yn − ym ) + O

(
‖yn − ym‖4

)
(14)

where the mid-point, which may not exist in practice, does
not appear. Yet, the Jacobian matrices at yn and ym in (14)
are unknown. In Appendix III, we show that these Jacobian
matrices can be estimated from the signal at hand based on
local temporal statistics. Specifically, we show that the terms
Λ−1 (yn ) and Λ−1 (ym ) in (14) are equivalent to the inverse of
the local covariance matrices C−1

n and C−1
m , respectively. Thus,

using the definition of the modified Mahalanobis distance (2),
we obtain

‖ψn − ψm‖2 = ‖yn − ym‖2
M + O

(
‖yn − ym‖4

)
. (15)

Reordering (15) yields

‖yn − ym‖2
M = ‖ψx

n − ψx
m‖2 +

∥∥ψt
n − ψt

m

∥∥2

+ O
(
‖yn − ym‖4

)
, (16)

and substituting the re-scaled variables, ψx
n and ψt

n , by the
generating variables, θx

n and θt
n , respectively, leads to (6).

Thus far, the derivation of (6) was made under the assumption
that hypotheses Hx

1 and Ht
1 hold for both frames yn and ym ;

in Appendix IV, we derive (6) under the other hypotheses. We
note that the limitation of the result in (6) lies in the assumption
that the covariance matrix Cn is invertible [35], [39], [40]. In
practice, when the dimension of the generating variables, d,
is smaller than the dimension of the observable signal, L, the

covariance matrix is not invertible, and, in this case, a pseudo-
inverse should be used; we further discuss the estimation of the
covariance matrices in Section V.

IV. CANONICAL REPRESENTATION THROUGH DIFFUSION MAPS

FOR VOICE ACTIVITY DETECTION

The metric we present in (2) approximates the Euclidean dis-
tance between the (re-scaled) generating variables; however, the
approximation holds only for short distances, where the factor
O(||y(n) − y(m)||4) in (6) is negligible. Therefore, the pro-
posed metric cannot be directly incorporated in typical cluster-
ing or classification methods such as support vector machines.
To overcome this limitation, we use a kernel-based geometric
method, termed diffusion maps, with a Gaussian kernel which
“sees” only local distances between frames [27]. Diffusion maps
integrates all local distances into a global parameterization re-
specting the local distances; since the local distances are based
on the generating variables, this global parameterization repre-
sents the generating variables and can be viewed as the canonical
representation of the signal.

Let k (yn ,ym ) be a similarity kernel between frames yn and
ym , given by

k (yn ,ym ) = e−
‖y n −y m ‖2

M
ε , (17)

where ε is a scaling parameter. Short distances between frame
yn and frame ym provide high values of the kernel, whereas
distances much greater than the scaling parameter ε are negligi-
ble. In practice, we set the parameter ε according to [41]; since
for distances smaller than ε the approximation in (6) holds, the
proposed kernel measures local similarities between frames ac-
cording to the (re-scaled) generating variables. Using the kernel
in (17), we construct an affinity matrix K ∈ RN ×N such that
its (n,m)th entry, denoted by Kn,m , represents the similarity
between frame yn and frame ym

Kn,m = k (yn ,ym ) . (18)

The affinity matrix K defines a weighted symmetric graph such
that the frames y1 ,y2 , . . . ,yN are the nodes of the graph and
the edge between frame yn and frame ym is given by Kn,m . We
define a Markov chain on the graph by normalizing the kernel
[27]

M = D−1K, (19)

where D ∈ RN ×N is a diagonal matrix with Dm,m =∑
nKm,n . Namely, M ∈ RN ×N is a row stochastic Markov

matrix whose rows sum to one. Then, we apply the eigenvalue
decomposition to M yielding eigenvalues 1 = λ0 > λ1 > · · · >
λN −1 ∈ R corresponding to eigenvectors φ0 ,φ1 , . . . ,φN −1 ∈
RN [27]. Due to the row normalization, the leading eigenvalue
λ0 equals one, and the leading eigenvector φ0 is an all ones vec-
tor that we ignore since it does not contain information. We use
the eigenvectors to form a global parameterization of the signal.
Specifically, we construct a matrix Φ ∈ RN ×J using J < N
eigenvectors corresponding to the J largest eigenvalues

Φ ≡ [φ1 ,φ2 , . . . ,φJ ] , (20)
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where the nth row of the matrix is the parameterization of frame
yn . This parameterization respects the local affinities between
the generating variables and is independent of the mapping func-
tion f . Therefore we view it as the canonical representation of
the signal. In [20], similarly to the present study, the eigenvec-
tors of a kernel function are used to construct a low-dimensional
representation of the signal. The representation is exploited for
voice activity detection in a supervised learning framework.
Specifically, a measure of voice activity is constructed in the
low-dimensional domain using a training set comprising marked
speech and transients segments. In this study, we obtain im-
proved clustering between speech and transients using the pro-
posed kernel as we demonstrate in Section V. Hence, we take
an unsupervised approach and propose to use only the leading
(non-trivial) eigenvector, φ1 , as a measure of voice activity, i.e.,
we set J = 1 in (20). We emphasize that the eigenvector φ1 is
of length N , as the number of frames in the sequence, and each
of its coordinates describe a frame. Specifically, we estimate the
speech indicator of frame n in (1) by comparing the nth entry of
φ1 , which we denote by φ1(n), to a threshold, such that values
above the threshold indicate voice activity

1̂x
n =

{
1; φ1(n) > τ

0; otherwise

}
, (21)

where τ is the threshold value. The threshold value may control
the trade-off between correct detection and false alarm rates,
and, in particular, setting the threshold value to zero may pro-
vide a good distinction between speech and non-speech frames
as we will show in Section V. We note here that the leading
eigenvector, φ1 , solves the well-known normalized cut problem
presented in [42] and is widely used for clustering. The main
difference with respect to previous studies is that in this study,
the use of the modified Mahalanobis distance gives rise to the
clustering of the signal according to the generating variables. In
addition, we use the leading eigenvector as a continuous mea-
sure of voice activity in contrast to binary labeling. We will
show in Section V that the leading eigenvector successfully
distinguishes between speech and transients and provides im-
proved detection scores compared to competing detectors. The
proposed algorithm for voice activity detection is summarized
in Algorithm 1.

V. EXPERIMENTAL RESULTS

A. Implementation

To evaluate the performance of the proposed approach, we
use speech and transient signals taken from the TIMIT database
[43] and an online free corpus [44], respectively. The signals
are sampled at 16 kHz, and are processed in frames of 512 sam-
ples with 50 percent overlap. We use 40 speech utterances of
different speakers and construct 20 sequences, 20–30 s long, by
raffling 5 random utterances for each sequence. The transients
are synthetically added to the speech sequences, and they are
normalized to have the same maximal values. This type of nor-
malization was previously used in [16], [19], [20], and we find
it more convenient than for example, normalizing the transients

Algorithm 1: Voice activity detection.
1: Calculate the MFCCs of the noisy signal y1 ,y2 , . . . ,

yN and estimate the corresponding covariance matrices
C1 ,C2 , . . . ,CN

2: Calculate the affinity kernel K based on the modified
Mahalanobis distance according to (2), (17) and (18)

3: Calculate M according to (19)
4: Obtain the leading eigenvector φ1
5: for n = 1 : N do
6: if φ1(n) > τ then
7: 1̂x

n = 1
8: else
9: 1̂x

n = 0
10: end if
11: end for

according to their energy, which often has small values due to
the short duration of the transients.

The proposed metric in (2) requires the estimation of local
covariance matrices for each frame of the signal; one approach
for their estimation is to use the sample covariance, as was
suggested in [45]

Ĉn =
1

2R + 1

R∑
i=−R

(yn+i − μ̂n ) (yn+i − μ̂n )T ,

where yn−R ,yn−R+1 , . . . ,yn+R are consecutive frames at
a small temporal neighborhood of frame yn , and μ̂n =

1
2R + 1

∑R
i=−R yn+i is the sample mean. In our experiments, we

set R to 15 and similarly to the finding in [45], we empirically
found that a good distinction between speech and transients is
obtained using a very small temporal neighborhood with a high
overlap between the consecutive frames. However, the use of
highly overlapping frames significantly increases the computa-
tional cost of the algorithm. Hence, in this study we assume
that entries of the observable signal are uncorrelated such that
the covariance matrix is diagonal. Accordingly, we estimate the
variance of each entry of the observable signal using recursive
averaging of the spectrum of the signal, similarly to the method
presented in [4]. In this approach, we exploit the entire signal
including the silent frames since the variances of speech and the
transients are estimated according to variations of the spectrum
of the noisy signal with respect to the spectrum estimated in the
silent frames. Recall that when the dimension of the generating
variables, d, is smaller than the dimension of the observable
signal L, a pseudo-inverse is used for the estimation of the in-
verse of the covariance matrix in (2). We empirically found that
applying a pseudo-inverse using three entries of the observable
signal with the highest variances provide improved distinction
between speech and transients. This finding heuristically implies
that the signal is controlled by three generating variables. In our
experiments, the estimation of the covariance matrices based on
recursive averaging of the spectrum of the signal provides better
detection scores compared to the use of the sample covariance,
and it is the one used in the simulations in this section. The
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estimation of the covariance matrix will be further addressed in
a future study.

The proposed representation is obtained according to
(17)–(20) in a batch manner since all N frames of the sequence
are required in advance to calculate the affinity matrix in (18).
Still, the proposed algorithm may be implemented in an on-
line manner, e.g., by constructing the canonical representation
of the signal using a calibration set, given in advance without
labels. Then, the eigenvectors of the kernel may be extended
to new incoming frames, e.g., using the Nyström method [46].
In this context we note that to reduce the computational cost
of the affinity matrix calculation in (18), we exploit a non-
symmetric kernel in (17), and address the reader to [39] for more
implementation details. We empirically found that it provides
better detection scores compared to calculating the symmetric
kernel.

B. Voice Activity Detection

The proposed representation of a speech signal, contaminated
with a door-knocks transient, is illustrated in Fig. 1 (bottom),
and is compared to the representation obtained using the Eu-
clidean distance instead of the Mahalanobis distance in Fig. 1
(top). In both figures, we present a scatter plot of the first two
eigenvectors of the affinity kernel such that each point repre-
sents a time frame. The points are marked according to the
hypotheses Hx

1 and Ht
1 using the labels of the ground truth:

frames for which only one of the hypotheses, Hx
1 or Ht

1 , holds
are marked with red squares and green stars, respectively, and
those for which both hypotheses Hx

1 and Ht
1 hold are marked

with blue circles. It can be seen in Fig. 1 (top) that the represen-
tation obtained based on the Euclidean distance only partially
distinguishes between speech and non-speech frames. In partic-
ular, since transients are often more dominant than speech, many
frames containing both speech and transients are represented as
similar to frames containing only transients. In contrast, the rep-
resentation obtained based on the proposed metric, illustrated in
Fig. 1 (bottom), provides improved clustering between speech
and transients. In particular, frames containing both speech and
transients tend to be more similar to speech frames than to
transients.

The representation obtained from the noisy signal using the
proposed metric allows us to devise a measure of voice activ-
ity in an unsupervised manner based on the first eigenvector.
Specifically, we can estimate the speech indicator for voice ac-
tivity in (1) by comparing the first eigenvector to a threshold
such that values above the threshold indicate voice activity.
Specifically, setting the threshold value to zero may provide a
good distinction between speech and non-speech frames. At this
point we note that the eigenvectors are obtained by the eigen-
value decomposition with arbitrary signs. Therefore, the sign of
the first eigenvector has to be set such that the speech cluster
corresponds to its high values. In this study, we assume that the
correct sign of the eigenvector is known. In practice, the sign of
the eigenvector may be set according to the temporal variability
of the signal, such that the cluster of transients is assumed to
comprise segments of the signal with higher variability rates

Fig. 1. Scatter plot of the first two non-trivial eigenvectors, for which the
speech signal is contaminated by a door-knocks transient. (Top) Kernel based on
the Euclidean distance and (bottom) kernel based on the modified Mahalanobis
distance.

over time [15]. In addition, we note that although in this study
we only use a single eigenvector, more eigenvectors may be
used for voice activity detection. For example, in the studies
presented in [20], [21], several eigenvectors are used as a low
dimensional representation and they are incorporated in a su-
pervised learning framework. However, these studies consider
a different problem setup, where the type of transients is known
in advance and that they are available in a training set. A dif-
ferent heuristic approach, which does not require a training set,
is using a deterministic combination between the eigenvectors,
e.g., the sum of the first two eigenvectors; yet, we did not find
in our simulations a combination, which consistently provided
improved performance. The incorporation of several eigenvec-
tors for voice activity detection will be addressed in a future
study.

An example of the obtained voice activity detection of a
speech signal contaminated with keyboard taps transients is
presented in Figs. 2 and 3. In Fig. 2, we qualitatively compare
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Fig. 2. Qualitative assessment of the proposed VAD, with a keyboard taps transient. (Top) Time domain, input signal—black solid line, true speech—orange
squares, true transients—purple stars, Mousazadeh with a threshold set for 90 percents correct detection rate- green triangles, proposed algorithm with a threshold
set for 90 percent correct detection rate- blue circles. (Bottom) Spectrogram of the input signal.

Fig. 3. Qualitative assessment of the proposed VAD, with a keyboard taps transient. (Top) Time domain, the voice activity measure, i.e., φ1 —black solid line,
true speech—orange squares, true transients—purple stars, a threshold value τ providing 90 percents correct detection rate—green line, proposed algorithm with
a threshold set for 90 percent correct detection rate—blue circles. (Bottom) Spectrogram of the input signal.
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Fig. 4. Probability of detection versus probability of false alarm. Test for a
keyboard taps transient.

the performance of the proposed detector to the one presented
in [20], which we term “Mousazadeh” in the plots. For both de-
tectors, we set the threshold value to provide 90 percent correct
detection rate and compare between their false alarms. Fig. 2
(top) demonstrates that the false alarm rate of Mousadazeh is
significantly higher than the false alarm rate of the proposed
detector, especially in the non-speech region after the 15th sec-
ond. We note that the method presented in [20] is based on rep-
resenting the noisy signal using MFCCs, and then inferring a
low-dimensional representation based on the Euclidean distance
in which transient frames tend to be similar to speech frames as
demonstrated in Fig. 1 (top). Therefore, it only partially distin-
guishes speech from transients, whereas the proposed method,
based on the improved metric, provides a better distinction be-
tween them.

In addition, the method presented in [20] is based on a su-
pervised learning procedure in which the low-dimensional rep-
resentation is obtained using a training set, and the transients
are assumed known in advance. To make a fair comparison, in
our simulations, we train the algorithm presented in [20] using
several types of transients. In particular, for the evaluation of the
algorithm, we use the same types of transients as in the training
procedure, but the transients are taken from different recordings
than those used for training. In contrast to Mousadazeh, the
proposed method performs in an unsupervised manner, and the
voice activity measure is learned from the sequence without any
prior information.

To further gain insight into the voice activity detection ob-
tained using the leading eigenvector φ1 in (20), we plot the
trajectory of φ1 over time in Fig. 3. For the clarity of the pre-
sentation, we normalize the eigenvector in the plot to the range
of 0 to 1. In addition, we recall that the eigenvector is used
as a voice activity measure only for frames containing speech,
transients or both of them; silent frames are assumed known in
advance and they are assigned with the value zero in the plot.
Fig. 3 demonstrates that entries of the eigenvector with large val-

Fig. 5. Probability of detection versus probability of false alarm. Test for a
hammering transient.

Fig. 6. Probability of detection versus probability of false alarm. Test for a
door-knocks transient.

ues correspond to frames containing speech. Indeed, by setting
the threshold to a value that yields 90 percent correct detection
rate, the entries of the eigenvector, {φ1(n)}, that correspond to
non-speech frames containing transients, receive values below
the threshold. As a result, they correctly indicate absence of
speech.

In addition to the method presented in [20], the performance
of the proposed method is compared to the performance of the
methods presented in [5], [8], and [47], which we term “Sohn”,
“Ramirez” and “Ishizuka” in the plots, respectively. The pro-
posed method is termed “Proposed (MK),” where (MK) is the
Mahalanobis kernel, and it is also compared to a similar method
based on the Euclidean distance termed “Proposed (EK),” where
(EK) is the Euclidean kernel. To better appreciate the results,
we report on the delays induced by each method. The meth-
ods Sohn and Ishizuka operate in an online manner without a
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TABLE I
(a) AUC SCORES; TRANSIENT TO SPEECH RATIO: 1. (b) AUC SCORES; TRANSIENT TO SPEECH RATIO: 2. (c) AUC SCORES; TRANSIENT TO SPEECH RATIO: 0.5.

(d) AVERAGE AUC SCORES

delay; Mousazadeh and Ramirez operate with a delay of two
and four frames, respectively; and in the presented experiments,
the proposed method operate in a batch manner. Yet, as already
noted, the proposed method may be implemented in an online
manner without a delay using a calibration set, given in ad-
vance without labels, similarly to the method we presented in
[21].

The performance of the methods is evaluated in Figs. 4–6
and in Table I. In Figs. 4–6 the methods are evaluated in
the form of receiver operating characteristic (ROC) curves,
which are curves of probability of detection versus probabil-
ity of false alarm. The ROC curves are generated by sweep-
ing the threshold value in (21) from the minimal to the
maximal entry of the leading eigenvector such that the higher
the threshold is, the lower the correct detection and the false
alarm rates are. The larger the area under the curve (AUC),
the better the performance of the method; the AUC of each
method is given in the legend box of each plot. Each of the
Figs. 4–6 illustrates the performance of the methods for different
types of transients: keyboard taps, hammering and door-knocks,
respectively.

It can be seen in Figs. 4–6 that the competing methods Sohn,
Ramirez and Ishizuka provide poor performance in distinguish-
ing speech from transient frames since they are not designed
for this particular task. In Figs. 4 and 5, the proposed method
with the Euclidean distance and the method Mousadazeh, which

both exploit the Euclidean distance to obtain a low-dimensional
representation are comparable and perform significantly better
than the methods presented in [5], [8] and [47]. Moreover, the
proposed method based on the modified Mahalanobis distance
provides the best performance. In Fig. 6, the proposed method
provides comparable results to Mousadazeh and significantly
outperforms all other methods.

We evaluate the proposed method for different ratios between
the transients and speech, and report the AUC obtained for each
method for different types of transients in Table I. We define the
transient to speech ratio as the ratio between the maximal ampli-
tudes of the transients and speech such that for equal maximal
amplitudes, as considered in the previous experiments, the ratio
is one. To provide a fair comparison, the Mousadazeh method,
which is the only method in our experiments based on supervised
learning, is trained only for transient to speech ratio of 1 such
that the transient to noise ratio is assumed to be unknown for all
methods. We observe in Table I that for transient to speech ratio
of 0.5, the proposed method based on the Mahalanobis distance
provides performance, which is comparable to Mousazadeh and
outperforms the competing detectors. Moreover, the proposed
method provides the best performance in most of the experi-
ments for transient to speech ratios of 1 and 2. The improved
performance of the proposed method for high transient to speech
ratio demonstrates its ability to reduce the dominance of the tran-
sients. In Table I (d) we summarize the average performance of
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the different methods for the different transients and transient to
speech ratios demonstrating that the proposed method based on
the modified Mahalanobis distance outperforms the competing
detectors.

VI. CONCLUSION

We have addressed the problem of voice activity detection in
the presence of transients and have proposed a modified ver-
sion of the Mahalanobis distance, which better distinguishes
between speech and transients. To motivate the use of the
modified Mahalanobis distance, we have presented a model
in which speech and transients are represented by two inde-
pendent sets of generating variables. The generating variables
represent the content of the signal, i.e., speech and transients,
and, as a result, speech and transients are successfully distin-
guished. Although the generating variables are not directly ac-
cessible, we have shown that distances between them can be
approximated by the modified Mahalanobis distance. More-
over, we have shown that the Mahalanobis distance approxi-
mates the Euclidean distance between re-scaled variables for
which the dominance of the transients is reduced; therefore, it
is especially suitable for voice activity detection since it allows
us to cluster the signal according to the presence of speech
rather than according to the presence of transients. The main
limitation in the use of the Mahalanobis distance is that the
approximation of the Euclidean distance between the generat-
ing variables holds only for small distances. To overcome this
problem, we have proposed to exploit a kernel-based manifold
learning approach that integrates short Mahalanobis distances
into a global canonical representation of the signal. We have
shown that the canonical representation successfully divides the
signal into speech and non-speech clusters. Based on the canon-
ical representation we have proposed a measure of voice ac-
tivity providing improved performance compared to competing
detectors.

APPENDIX I
SECOND ORDER TAYLOR EXPANSION AT THE MID-POINT

Recall that the mid-point yp is given by yp = yn + ym

2 ; by a
second order Taylor expansion at the mid-point, the ith re-scaled
generating variable, denoted by ψn (i), is given by [39]

ψn (i) = ψp(i) +
1
2

∑
j

gi,j (yp) (yn (j) − ym (j))

+
1
8

∑
kl

gi,kl (yp) (yn (k) − ym (k)) (yn (l) − ym (l))

+ O
(
‖yn − ym‖3

)
(22)

where gi is the ith element in g, gi,j � ∂g i

∂yn (j ) and gi,kl �
∂g i

∂yn (k)∂yn (l) . Using a similar expansion of ψm (i) around
the mid-point, the Euclidean distance between the re-scaled

variables is given by

‖ψn − ψm‖2 =
∑

i

(ψn (i) − ψm (i))2

=
∑
ijk

gi,j (yp) gi,k (yp) (yn (j) − ym (j)) (yn (k) − ym (k))

+ O
(
‖yn − ym‖4

)
,

because all multiplications terms comprising the second order of
the Taylor expansion in (22) are of the order of O(‖yn − ym‖4)
due to symmetry. In a matrix notation, we have

‖ψn − ψm‖2 = (yn − ym )T Λ−1 (yp) (yn − ym )

+ O
(
‖yn − ym‖4

)
,

where Λ
(
ψp

)
� JJT

(
ψp

)
∈ RL×L , and J

(
ψp

)
∈ RL×d is

the Jacobian of the function h at the mid-point.

APPENDIX II
JACOBIAN AT THE MID-POINT

Let γij (yn ) be the (i, j)th entry of Λ−1 (yn ); the first order
Taylor expansions of γij (yn ) and γij (ym ) at the mid-point are
given by

γij (yn ) = γij (yp) +
1
2

∑
k

γij,k (yp) (yn (k) − ym (k))

+ O
(
‖yn − ym‖2

)
,

γij (ym ) = γij (yp) +
1
2

∑
k

γij,k (yp) (ym (k) − yn (k))

+ O
(
‖ym − yn‖2

)
,

where γij,k (yn ) = ∂γ i j
∂yn (k) . The summation of this two equa-

tions yields

γij (yp) =
1
2
γij (yn ) +

1
2
γij (ym ) + O

(
‖yn − ym‖2

)
.

Hence, in a matrix form, we have

Λ−1 (yp) =
1
2
Λ−1 (yn ) +

1
2
Λ−1 (ym ) + O

(
‖yn − ym‖2

)
,

and by substituting the last equation into (13), we have

‖ψn − ψm‖2 =
1
2

(yn − ym )T (
Λ−1 (yn ) + Λ−1 (ym )

)
× (yn − ym ) + O

(
‖yn − ym‖4

)
.

APPENDIX III
LOCAL JACOBIAN VERSUS LOCAL COVARIANCE

We estimate the covariance matrix Cn of the observable sig-
nal yn at a small temporal neighborhood of frame n, and as-
sume a set of frames in a small temporal neighborhood of yn

for which yn is the mean value. The first order Taylor expan-
sion of an arbitrary frame, denoted by y, around yn is given
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by

y = yn + J (ψn ) (ψ − ψn ) + O
(
‖ψ − ψn‖2

)
. (23)

The relation between the covariance matrix Cn and the Jacobian
J (ψn ) in frame n is given by

Cn = E
[
(y − yn ) (y − yn )T

]
= J (ψn )E

[
(ψ − ψn ) (ψ − ψn )T

]
JT (ψn )

+ O
(
‖ψ − ψn‖3

)
= Λ (ψn ) + O

(
‖ψ − ψn‖3

)
, (24)

where assuming that ψn is the mean value of the generat-
ing variables, E[(ψ − ψn )(ψ − ψn )T ] is the covariance of
ψ, which is the identity matrix due to the normalization in
(8) and (9). We note that the error term in (24) is neglected
since we assume that frames in a small temporal neighbor-
hood tend to be more similar to yn compared to an arbitrary
frame ym . Moreover, assuming a symmetric distribution of
ψ around ψn , e.g. a Gaussian distribution, the error term be-
comes of the order of four since odd moments of the distribu-
tion equal zero. By following the derivation presented in [39],
it may be further shown that [Λ(ψn ) + O(‖ψ − ψn‖3)]−1 =
[Λ−1(yn ) + O(‖y − yn‖3)]. This result is obtained by further
assuming that the function f in (4) is bi-Lipschitz such that
distances between frames in the observable domain ‖y − yn‖
are of the same order as in the domain of the generating vari-
ables ‖ψ − ψn‖. Hence, by setting C−1

n ≈ Λ−1(yn ) in (13) we
have

‖yn − ym‖2
M = ‖ψn − ψm‖2 + O

(
‖yn − ym‖4

)
.

APPENDIX IV
MODIFIED MAHALANOBIS DISTANCE FOR

DIFFERENT HYPOTHESES

The derivation of (6) was made in Section III under the as-
sumption that hypotheses Hx

1 and Ht
1 hold for both frames yn

and ym . We now address the other hypotheses, starting from
the case in which only speech is present in both yn and ym ,
and as a result, in the mid-point yp as well. Since both frames
are independent of transients, the partial derivatives of entries of
the function g with respect to the generating variables of tran-
sients equal zero, i.e., ∀j : gi,j = ∂g i

∂ yn (j ) = 0. Accordingly, the
Jacobian of g is reduced to

J (ψn ) �
[
Jx (ψx

n )

Jt

(
ψt

n

)
]

=

[
Jx (ψx

n )

0

]
,

where Jx (ψx
n ) ∈ Rdx ×L and Jt

(
ψt

n

)
∈ Rdt ×L are the parts

of the Jacobian associated with the generating variables of the
speech and of the transients, respectively, and hence

Λ (ψn ) � JJT (ψn ) = JxJT
x (ψx

n ) . (25)

By substituting (25) into (13) and using a similar derivation as
in Appendix II, we obtain a result similar to (14)

‖ψn − ψm‖2 =
1
2

(yn − ym )T (
Λ−1

x (yn ) + Λ−1
x (ym )

)
× (yn − ym ) + O

(
‖yn − ym‖4

)
,

where Λx(ψp) � JxJT
x (ψp) ∈ RL×L . Since transients are ab-

sent for frames yn and ym , the estimated statistics of the ob-
servable signal are related to the generating variables of speech,
and, by revisiting Appendix III, we have C−1

n ≈ Λ−1
x (yn ) and

C−1
m ≈ Λ−1

x (ym ). Therefore, (6) holds under the hypothesis
that only speech is present in both yn and ym . The deriva-
tion of (6) is analogous in case yn and ym comprising only
transients.

Our derivation of (6) concludes by addressing the case where
yn contains only speech and ym contains only transients. In
this case, we exploit the introduction of the mid-point, which
comprises both speech and transients. As a result, the derivation
of (13) remains unchanged, and by revisiting Appendix II, we
have

‖ψn − ψm‖2 =
1
2

(yn − ym )T (
Λ−1

x (yn ) + Λ−1
t (ym )

)
× (yn − ym ) + O

(
‖yn − ym‖4

)
, (26)

where Λt(ψm ) � JtJT
t (ψm ) ∈ RL×L . Recall that according

to Appendix III, C−1
n ≈ Λ−1

x (yn ) and C−1
m ≈ Λ−1

t (yn ). Thus,
by substituting them in (26), we obtain (6).
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voice activity detection,” in Proc. IEEE 32th Int. Conf. Acoust., Speech,
Signal Process., 2007, vol. 4, pp. IV–801.

[12] J. W. Shin, H. J. Kwon, S. H. Jin, and N. S. Kim, “Voice activity detection
based on conditional map criterion,” IEEE Signal Process. Lett., vol. 15,
pp. 257–260, 2008.

[13] I. Volfin and I. Cohen, “Dominant speaker identification for multipoint
videoconferencing,” Comput. Speech Lang., vol. 27, no. 4, pp. 895–910,
2013.

[14] R. Talmon, I. Cohen, and S. Gannot, “Clustering and suppression of tran-
sient noise in speech signals using diffusion maps,” in Proc. IEEE 36th
Int. Conf. Acoust., Speech, Signal Process., 2011, pp. 5084–5087.

[15] A. Hirszhorn, D. Dov, R. Talmon, and I. Cohen, “Transient interference
suppression in speech signals based on the OM-LSA algorithm,” in Proc.
Int. Workshop Acoust. Signal Enhancement, 2012, pp. 1–4.

[16] R. Talmon, I. Cohen, and S. Gannot, “Single-channel transient interfer-
ence suppression with diffusion maps,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 21, no. 1, pp. 132–144, Jan. 2013.

[17] D. Dov and I. Cohen, “Voice activity detection in presence of transients
using the scattering transform,” in Proc. IEEE 28th Conv. Elect. Electron.
Eng. Israel, 2014, pp. 1–5.

[18] R. Talmon, I. Cohen, and S. Gannot, “Transient noise reduction using
nonlocal diffusion filters,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 19, no. 6, pp. 1584–1599, Aug. 2011.

[19] R. Talmon, I. Cohen, S. Gannot, and R. R. Coifman, “Supervised graph-
based processing for sequential transient interference suppression,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 9, pp. 2528–2538,
Nov. 2012.

[20] S. Mousazadeh and I. Cohen, “Voice activity detection in presence of
transient noise using spectral clustering,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 21, no. 6, pp. 1261–1271, Jun. 2013.

[21] D. Dov, R. Talmon, and I. Cohen, “Audio-visual voice activity detection
using diffusion maps,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 23, no. 4, pp. 732–745, Apr. 2015.

[22] D. Dov, R. Talmon, and I. Cohen, “Kernel-based sensor fusion with appli-
cation to audio-visual voice activity detection,” arXiv:1604.02946, 2016.

[23] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[24] M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and
J. C. Langford, “The isomap algorithm and topological stability,” Science,
vol. 295, no. 5552, p. 7, 2002.

[25] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6,
pp. 1373–1396, 2003.

[26] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear em-
bedding techniques for high-dimensional data,” Proc. Nat. Academy Sci.
USA, vol. 100, no. 10, pp. 5591–5596, 2003.

[27] R.R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmonic
Anal., vol. 21, no. 1, pp. 5–30, 2006.

[28] P. C. Mahalanobis, “On the generalized distance in statistics,” Proc. Nat.
Inst. Sci., (Calcutta), vol. 2, pp. 49–55, 1936.

[29] B. H. Story, “A parametric model of the vocal tract area function for
vowel and consonant simulation,” J. Acoust. Soc. Amer., vol. 117, no. 5,
pp. 3231–3254, 2005.

[30] C. J. Dsilva, R. Talmon, C. W. Gear, R. R. Coifman, and I. G. Kevrekidis,
“Data-driven reduction for multiscale stochastic dynamical systems,”
arXiv:1501.05195, 2015.

[31] B. Logan, “Mel frequency cepstral coefficients for music modeling,” pre-
sented at the 1st Int. Conf. Music Inform. Retrieval, Plymouth, MA, USA,
2000.

[32] S. B. Davis and P. Mermelstein, “Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sen-
tences,” IEEE Trans. Acoust., Speech, Signal Process., vol. 28, no. 4,
pp. 357–366, Aug. 1980.

[33] H. Hirsch and D. Pearce, “The aurora experimental framework for the
performance evaluation of speech recognition systems under noisy con-
ditions,” presented at the Automatic Speech Recognition: Challenges for

the new Millenium, ISCA Tutorial and Research Workshop, Paris, France,
2000.

[34] T. Kinnunen, E. Chernenko, M. Tuononen, P. Fränti, and H. Li, “Voice
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