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Abstract—Enhancement of speech signals for hands-free com-
munication systems has attracted significant research efforts in the
last few decades. Still, many aspects and applications remain open
and require further research. One of the important open problems
is the single-channel transient noise reduction. In this paper, we
present a novel approach for transient noise reduction that relies on
non-local (NL) neighborhood filters. In particular, we propose an
algorithm for the enhancement of a speech signal contaminated by
repeating transient noise events. We assume that the time duration
of each reoccurring transient event is relatively short compared to
speech phonemes and model the speech source as an auto-regres-
sive (AR) process. The proposed algorithm consists of two stages.
In the first stage, we estimate the power spectral density (PSD) of
the transient noise by employing a NL neighborhood filter. In the
second stage, we utilize the optimally modified log spectral am-
plitude (OM-LSA) estimator for denoising the speech using the
noise PSD estimate from the first stage. Based on a statistical model
for the measurements and diffusion interpretation of NL filtering,
we obtain further insight into the algorithm behavior. In partic-
ular, for given transient noise, we determine whether estimation
of the noise PSD is feasible using our approach, how to properly
set the algorithm parameters, and what is the expected perfor-
mance of the algorithm. Experimental study shows good results
in enhancing speech signals contaminated by transient noise, such
as typical household noises, construction sounds, keyboard typing,
and metronome clacks.

Index Terms—Acoustic noise, impulse noise, speech enhance-
ment, speech processing, transient noise.

1. INTRODUCTION

NHANCEMENT of speech signals is of great interest in

many hands-free communication systems. Although this
problem has attracted significant research efforts for several
decades, many aspects remain open and require further research.
Among them is the single-channel transient noise reduction.
Traditional speech enhancement approaches usually consist of
two components: noise power spectrum estimation and estima-
tion of the desired clean speech signal. In single-channel-based
applications, spectral information is usually exploited for the
estimation of the noise [1]-[6]. In particular, the noise signal is
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assumed to remain stationary during the observation interval;
hence, its power spectral density (PSD) is time-invariant or
slowly varying compared to the speech. Another common and
fundamental assumption is that the speech signal is not present
during the whole observation interval. A common approach for
estimating the noise PSD is to average the noisy measurement
over periods where the speech is absent. Using the noise PSD
estimate, the speech signal can be estimated based on some
statistical model.

The assumption of stationary noise signal poses a major lim-
itation on these traditional algorithms, making them inadequate
in many transient noise environments. Transient noises are
usually characterized by percussive or impulsive nature, i.e., a
sudden burst of sound. Typically, transients consist of an initial
peak followed by decaying short-duration oscillations of length
ranging from 10 to 50 ms. Among them we mention noise orig-
inating from engines, keyboard typing, construction operations,
bells, knocking, rings, hammering, etc. Vaseghi and Rayner [7],
[8] proposed a method for detection and suppression of such
impulsive noise, consisting of relatively short duration noise
pulses. After detecting a transient, the corrupted segment is
completely removed and the source signal is estimated using in-
terpolation that relies on the assumption that the desired source
is auto-regressive (AR). Godsill and Rayner [9] improved the
algorithm based on a statistical model and interpolation using
a Gibbs sampler. Unfortunately, removing the entire corrupted
segment is problematic since acceptable speech completion is
obtained only for very short transient occurrences.

Traditional methods typically do not take into account the
repetitive nature of many transient noises. Usually a distinct pat-
tern appears a large number of times at different time locations.
The fact that the same pattern appears multiple times can be uti-
lized for improved denoising. Specifically, the pattern intervals
can be identified, and the transient noise may be extracted by
averaging over all of these instances.

This approach naturally leads to nonlocal (NL) denoising
methods using an NL neighborhood filter [10]. This method
combined with local kernels, enables signal denoising with
specially tailored locality metrics adapted to specific tasks at
hand [11]-[14]. These methods are also known as bilateral
filtering. The main idea in nonlocal filtering is to process the
data according to the affinity metric conveyed by a kernel,
which enables to capture similar patterns. This results in
combining together data samples from different locations in
time. Hence, this process is referred to as “nonlocal,” whereas
“local” filtering is associated with processing of data sam-
ples from adjacent locations. Although NL averaging is very
simple, it is surprisingly superior to other methods. A diffusion
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interpretation of the NL denoising approaches [15], explains
the behavior of NL neighborhood filters and enables improved
filtering algorithms. The analysis of Singer et al. [15] is mainly
based on a probabilistic model and on the relation between
the averaging process and the eigenstructure of the denoising
filter. Although NL neighborhood filters have recently become
common in image processing applications, their potential in
audio processing in general, and speech enhancement in partic-
ular, has not yet been fully investigated.

In this paper, we present a novel approach for speech en-
hancement that relies on NL filters. In particular we propose an
algorithm for the enhancement of nonstationary AR source con-
taminated with repeating transient noise events. For simplicity,
we assume that the time duration of each reoccurring transient
event is relatively short compared to speech phonemes and that
all events have the same spectral features up to random ampli-
fications, as presented by Vaseghi and Rayner [8]. It is worth-
while noting that we evaluate the proposed algorithm using real
signal recordings, since these restrictive assumptions may seem
inadequate in practical scenarios. The proposed algorithm con-
sists of two stages. In the first stage, we estimate the PSD of
the transient noise. This is achieved by enhancing the transient
noise, relying on the strong auto-correlation of the speech signal
in time and the burst-like nature of the transient noise. Then,
we employ an NL neighborhood filter to extract the transient
noise signal. Unlike the approach proposed in [8], we aim at es-
timating the transient signal rather than just detecting the loca-
tions in time of transient events. The NL filter, employed with a
specially tailored similarity function, enables to implicitly cap-
ture the underlying structure of the measurements. This struc-
ture conveys significant information, which may help to distin-
guish between the transient noise and the speech source signal.
In the second stage, we utilize the optimally modified log spec-
tral amplitude (OM-LSA) estimator [4] for denoising the speech
with a modified noise PSD estimator, that relies on the extracted
transient signal. We note that the noise estimate from the first
stage can also be incorporated into other algorithms. For ex-
ample, in [16], a transient noise reduction algorithm was pro-
posed relying on a given indicator for transient noise events. Our
approach may provide an indicator for transient noise events
based on NL filtering.

The proposed algorithm is robust to various transient noise
types. We show good results in cleaning a speech signal con-
taminated with transient noise, such as keyboard typing, typical
household noises, construction sounds, and metronome clacks.
In addition, we present a probabilistic analysis of the NL fil-
tering by introducing a statistical model for the measurements.
Based on the diffusion interpretation indicated by Singer et al.
[15], we obtain further insight into the algorithm behavior. In
particular, for given transient noise, we determine whether es-
timation of the noise PSD is feasible using our approach, how
to properly set the algorithm parameters, and what is the ex-
pected performance of the algorithm. Recently, we have pre-
sented a transient noise reduction algorithm that relies on a mod-
ified NL filter [17]. The modified filter is incorporated to obtain
further enhancement and robustness. This work extends [17] and
provides a probabilistic analysis.
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This paper is organized as follows. In Section II, we describe
the geometric approach for data analysis in general, and a dif-
fusion framework in particular. In Section III, we formulate the
problem of transient noise reduction. In Section IV, we present
the proposed algorithm and analyze it in Section V based on dif-
fusion interpretation of the NL filters. Finally, in Section VI ex-
perimental results are presented, demonstrating the performance
of the proposed algorithm.

II. DIFFUSION FRAMEWORK

In recent years, there has been a growing effort to develop
data analysis methods based on the geometry of the acquired
raw data. These geometric approaches or manifold learning
methods aim at discovering the underlying structure in data
sets as a precursor to other types of processing [18]—[24]. In
particular, among the geometric approaches, diffusion maps
[24], [25] is of particular interest, since its derivation and some
of its main results pave the way for diffusion interpretation of
the NL filtering [15]. The proposed algorithm does not involve
the actual mapping of diffusion maps; however, it relies on the
derivation and main results of this method. Thus, in this section,
we present the general formulation of the diffusion framework.

LetI' = {x;}, be a given high-dimensional data set of M
samples, where x; € FY and F is a field. We note that in the
general setting, ¢ is merely an index of a sample in the data set.
The diffusion framework consists of the following steps: 1) con-
struction of a weighted graph G on the given data set I, based on
a pairwise weight function k, that corresponds to a local affinity
between samples in I'; 2) derivation of a random-walk on the
graph G via a construction of a transition matrix that is derived
from k; and 3) interpretation of the discrete random-walk on the
graph as a continuous diffusion process on a manifold.

A. Building a Graph

We construct the graph G on the data set I" in order to cap-
ture the geometry of the set. Let k, : FY x FY — 1R be a
kernel or a weight function representing a notion of pairwise
affinity between the data samples, with a scale parameter o. For
all x;,x; € I, the weight function has the following prop-
erties: 1) symmetry: k,(x;,%x;) = ky(x;j,%;); 2) non-nega-
tivity: ko (x;,x;) > 0; 3) fast decay: given a positive scale
parameter o > 0, ko (x;,%;) — 1 for ||x; — x;]| < o and
k(x;,xj) — 0 for ||x; — x;|| > o. For example, a Gaussian
kernel kq(x;,x;) = exp {—||x; — x;||*/20?} satisfies these
properties. It is worthwhile noting that the Euclidean distance
can be replaced by any application-oriented metric. For sim-
plicity, we omit the notation of the scale o, when referring to
the kernel k.

Based on the relation defined by the kernel, we form a
weighted graph or a Euclidean manifold, where the data sam-
ples are the graph G vertices and the kernel k sets the weights
of the edges connecting the data points, i.e., the weight of the
edge connecting the node x; to the node x; is k(x;,x;). It is
worthwhile noting that the kernel conveys the local geometry of
the data set I' = {x;}, unlike global methods such as principal
component analysis (PCA), which are based on statistical
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correlations between data samples. Moreover, a kernel with
fast decay [property (3)] intensifies the locality property of
this approach, as it defines a neighborhood around each data
sample x; of radius o (in other words, samples x; subject to
|lx; — x,||* > o are weakly connected to x;). Thus, the choice
of the specific kernel function should be application-oriented to
yield meaningful connections and represent perceptual affinity.

B. Constructing a Random Walk

Following classical construction in spectral graph theory
[26], the kernel is normalized to create a non-symmetric pair-
wise metric, given by

k(xi,x;)

() 6]

p(Xi,Xj) =

where d(x;) = Zj\il k(x;, x;) is often referred to as the degree
of x;. Using the non-negativity propertX of the kernel, which
yields that p(x;,x;) > 0, and since Zjil p(xi,X;) = 1, the
function p can be interpreted as a transition probability func-
tion of a Markov chain! on the data set ' = {x;}. Specifi-
cally, the states of the Markov chain are the graph nodes {x;}
and p(x;, x;) represents the probability of transition in a single
random-walk step from node x; to node x;. We point out that
p is not described in a conventional conditional probability no-
tation to emphasize its role as a non-symmetric pairwise metric
and to correspond with the common notations from the litera-
ture. Let K denote the matrix corresponding to the kernel func-
tion k(-, -), where its (7, j)th element is k(x;,%;), and let P =
D~ !K be the matrix corresponding to the function p(-, -), both
on the finite data set ' = {x;}, where D is a diagonal matrix
with D;; = d(x;) = Z?il k(x;i,x;). Let X be a matrix con-
sisting of the data set samples

X = [xl,xz,...xM]T. 2)

Advancing the random-walk on the data set a single step forward
can be written as PX. Similarly, propagating the random-walk
t steps forward corresponds to raising P to the power of ¢ and
applying it on the data set as P!X. We denote the probability
function corresponding to P? as p; (xi, xj), which measures the
probability of transition from node x; to node x; in ¢ steps.

Let X, denote the Markovian process defined by the transi-
tion matrix P, with time index 7. The probabilistic interpreta-
tion of a single step is:2

M
[PX], = Y Pijx;
j=1

M
= ZPr {Xrp1 = x| = xi}x;
j=1
=F [XT+1|XT = Xi] 3)

which means that running the chain forward gives the expected
values of the random-walker starting at the node x; after a single

I A Markov chain is a discrete random process subject to the next state depends
only on the current state.

2[X], extracts the ith row of the matrix X.
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step. Consequently, performing ¢ steps corresponds to the ex-
pected value after ¢ steps. Hopefully, this process results in re-
vealing the relevant geometric structure of I' = {x;}. As we
show in Section IV, (3) may be interpreted as a single iteration of
an NL filter. In Appendix I, we present a simple example of de-
noising a telegraph signal corrupted by additive white Gaussian
noise to demonstrate the diffusion framework construction.

C. Diffusion Interpretation

Results from spectral theory can be employed to describe P,
enabling to study the geometric structure of I' = {x;} in a com-
pact and efficient way. It can be shown that P has a complete
sequence of left and right eigenvectors {¢,,%;} and positive
eigenvalues, written in a descending order

I=X> A1 > Xy > - 4)

satisfying P4; = X\, and PT; = X\;9;. The eigenvalues
{A;} and the eigenvectors {¢;,4;} provide a spectral repre-
sentation of the geometry of the manifold defined by the data
setI' = {x;} and the kernel function k(-, -).

Let g(-) be the probability density function of the data set
samples. When using an exponentially decaying kernel, e.g., a
Gaussian kernel, it is shown in [24], [25] that for a large data
set M — oo (corresponds to dense sampling of the manifold)
and small-scale 0 — 0 (corresponds to very local kernel), the
transition matrix P of the discrete random-walk on the graph
converges to the continuous backward Fokker—Planck operator
L, defined for any smooth function f : I' — IR by

Lf=Af+ z%w )

where A is defined as Af = V - (Vf), Vf is the gradient
of f, and - is the inner product. Let U(x;) = —2Inqg(x;) be
the potential derived from the probability density function ¢(-)
of the data set samples on the manifold. Then Fokker—Planck
operator (5) can be written as

Lf=Af-VUVF. (0)

For example, the Fokker—Planck operator may describe the
motion of a particle in a potential field, where the function f
denotes the location of the particle. An analysis of the diffusion
process associated with the Fokker—Planck operator, and the
characteristics of its eigenfunctions have been extensively
studied in the literature [27]. The characteristics of the spectral
decomposition of the diffusion operator may be exploited
for various tasks and applications [15], [25], [28]-[30]. In
Section V, we exploit this convergence for the analysis of
transient noise extraction using an NL filter.

III. PROBLEM FORMULATION

Throughout this paper, we use the following notation con-
vention. Lowercase letters denote scalars, bold letters vectors,
and capital bold letters matrices. In addition, signals in the time
domain are represented by lowercase letters followed by the
time index in brackets, whereas signals in the short-time Fourier
transform (STFT) domain are represented by lower-case letters
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(to emphasize time variation) followed by a subscript indicating
the time frame and frequency bin indices.

Let s(n) denote a speech signal and let £(n) be a contami-
nating interference, represented by

§(n) = u(n) + d(n) ™

where d(n) is a dominating transient part, and u(n) is a low
variance stationary noise. The signal measured by a microphone
is given by

= s(n) +&(n). ®)

For simplicity, in the remainder of this paper we omit the sta-
tionary part. The proposed algorithm is designed for distinction
of the transient noise from the rest of the measurement compo-
nents. Evidently, it is much easier to distinguish the stationary
noise from the transients, compared to the nonstationary speech.
Consequently, the presence of stationary noise does not change
significantly the derivation of the algorithm. In Section VI, we
show that the proposed algorithm can handle speech contami-
nated by both transient and stationary noises. It is worthwhile
noting that in the literature numerous methods for enhancement
of speech signals contaminated by (quasi) stationary noise can
be found. In addition, we can employ one of these methods prior
to the proposed algorithm.

We assume that the speech signal is modeled as an AR process
in short-time frames [31]. The observation interval is divided
into M short-time frames of length N. Accordingly, in each
time frame p = 1,..., M, the source signal is an AR process,
given by

y(n)

L
Zasn—l—l—w() 9

=1

where w(n) is a white noise excitation signal with zero-mean
and o2, variance, and {a}}L_, are L AR coefficients in frame
p. We assume L is large enough to capture the long-term linear
prediction coefficients, enabling representation of both voiced
and unvoiced phonemes. In practice, we verify that the number
of coefficients L is greater than a single period of the pitch to en-
able its representation. In addition, we do not exploit the white-
ness of the excitation signal, but rather rely on the fact that the
excitation signal can be distinct from the transient noise.

The transient noise consists of short duration pulses of
random amplitudes. It may be modeled as the output of a filter
excited by an amplitude-modulated random binary sequence
[7], [8], [32], given by

d(n) = h(n) * (b(n)v(n))

where b(n) € {0,1} is a binary valued random sequence of
time locations of the transient noise events, v(n) is a continuous
valued random process of transient amplitudes, and h(n) is an
impulse response of a filter that models the duration and shape
of each transient event. In this paper, we use a fixed impulse
response h(n), which implies that the transient events have
the same spectral features up to random amplitude. Hence, the
transient noise can be viewed as a superposition of the im-
pulse response h(n) with random amplitudes. This restrictive

(10)
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assumption is used for simplicity. It is worthwhile noting that
in Section VI the proposed algorithm is evaluated in practical
scenarios using real transient noise recordings. We use the
Gaussian—Poisson statistical model proposed in [8], i.e., the
random amplitude v(n) is modeled as a Gaussian process with
4, mean and ag variance, and the transient time locations b(n)
are modeled as a Poisson process.3 The Poisson distribution
is assumed for simplicity; however, it does not have a signif-
icant role in the algorithm derivations, nor does the Gaussian
amplitude and the exact pulse shape. For sufficiently low-rate
Poisson process, we assume that no more than one transient
event exists in each short time frames. We denote by Hg the
set of time frames free of transient noise occurrences, and by
‘H;, we denote the set of time frames that include transient
occurrences.

IV. PROPOSED ALGORITHM

The proposed algorithm consists of two stages. In the first
stage, we aim at estimating the PSD of the transient noise. In
the second stage, we utilize the OM-LSA estimator [4] for de-
noising the speech. The OM-LSA that we use is equipped with
a modified noise PSD estimator, based on the estimation of the
transient noise PSD obtained in the first stage.

A. Transient Noise Spectrum Estimation

Aiming at enhancing the characteristic difference between
the transient noise and the AR source signal, we “whiten” (or
“decorrelate”) the noisy measurement y(n) in each time frame
using the AR parameters of the source signal. Let 7, (n) be the
whitened measurement in time frame p, which can be written
as4

L
ip(n) Z aly(n —1). (11)

=1

Substituting (7)—(9) into (11) yields
Jp(n) = w(n) + dy(n) (12)

where Jp(n) is a smeared version of the transient noise, given
by
dy(n) (13)

L
Zadn—l

=1

In (12), we observe that the whitened signal consists of two
components—the source excitation signal w(n), and a smeared
version of the transient noise d,(n).

The derivation of (11) and (12) is applicable given the AR co-
efficients of the source signal {a} }, which are unknown. Esti-
mation of the coefficients of an AR source from noisy measure-
ments has been a subject of many studies and extends the scope
of this paper. In practice, we use the common Levinson—Durbin
algorithm to estimate the AR coefficients in time frames free
of a transient noise event. By exploiting the short duration of
transient impulses and by assuming slow variations of the AR

3We use a discrete time version of the continuous time Poisson process, as
described in [8].

4We note that in our notation, tilde denotes a whitened version of the signal.
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coefficients in time, we are able to set the AR coefficients in
time frames that contain a transient occurrence according to the
estimated AR coefficients of neighboring frames.5 Moreover, as
previously noted, the main role of the whitening is to further en-
hance the distinction between transient noise events and speech
components. Therefore in practice, the proposed algorithm is
not sensitive to estimation errors of the AR coefficients.

According to our assumption, typical transient events have
unique spectral features. Thus, we apply the STFT to emphasize
the difference between the transient noise and the source. We
use STFT time-frames of length V. Let ¢, » be the whitened
measurement in the STFT domain in time frame p and frequency
bin k. Using (12) and (13), it can be written as

Up e =Wy 1o + dp 1

=wpr+(1—apr)dpk (14
where w), 1, is the STFT of the excitation signal, a,, \ is the mul-
tiplicative transfer function (MTF) approximation of the source
AR filter [33], and d,, 1, is the STFT of the transient noise. Using
(10), dy, 1, is given by

dy i = { mpep {=ie}. pem
0, p € Ho

where hj is the MTF approximation of the transient noise
system h(n), v, = v(pN + 7,) is the random amplitude of the
impulse, and 7, is the random relative location of the impulse
from the beginning of the frame, both in frame p € H;. In (15)
we assume a single impulse per frame. In addition, we circum-
vent overlaps of the transient occurrences between frames by
including in H; only frames that contain a significant part of
a transient event. Since time frames usually overlap, combined
with the fact that typical transient events are shorter than the
length of a time frame, we are able to assume that frames in H1
share the characteristic spectral features of a transient event.

Given the AR coefficients of the source, estimating the
PSD of the transient noise d(n) and estimating the PSD of the
smeared version of the transient noise d,(n) are equivalent
tasks. Furthermore, (12) and (14) imply that the whitened
measurements consist of the smeared version of the transient
noise “contaminated” by a white noise wp ;. Consequently,
we can interpret the estimation of the transient noise PSD as
a problem of spectral denoising, where we aim at enhancing
the transient events and attenuating the white excitation signal.
For that purpose, we employ an NL filter that exploits the
divergence between the STFT features of the transient events
and the white excitation signal.

Consider the STFT features of each time frame as a single
sample in a high-dimensional field. Specifically, let y, be a
vector of the STFT coefficients from all frequency bins in the
pth time-frame of the whitened signal g, (n), defined as

Vo = [Up.0s- - s Upn—1]" (16)

SWe note that speech onset or phoneme transition right before or after the
transient results in inaccurate estimation of the AR coefficients. We assume such
cases occur with very low probability.
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and let Y be an M x N matrix consisting of all these vectors,
given by

YZ[S’I?S’Q?"';S’]\/I]T' (17)
We define an affinity kernel k(y,, ¥:) between pairs of samples
yp and y; for all p and /. In this paper, we use the following
Gaussian kernel based on a Euclidean distance:

3(p) — (DI
where ¢;(p) is a vector of size N, given by

where ¢y (p, k) is the short-time PSD of g,(n) in time-frame p
and the frequency bin k. In practice, we evaluate the short-time
PSD by smoothing the periodograms 1/Ng,, kU, OVer time
frames p according to the common Welch method. This spe-
cific choice of kernel is motivated by the desire to exploit the
reoccurring distinct spectral features of time frames containing
a transient event, which may be appropriately conveyed by the
power spectrum ¢y (p, k). In addition, the phase of the frames
that contain transient events should be disregarded in the com-
parison, since it varies from frame to frame, and depends on the
relative location of each event in the frame. Consequently, the
phase of the STFT has little role in the estimation of the tran-
sient noise PSD derived in this step of the proposed algorithm.
However, the phase is taken into consideration in the applica-
tion of the NL filter, and in the next step, where the speech is
estimated according to the OM-LSA gain function calculation.

As described in Section II, we view the STFT features of
the time frames {y,} as nodes of an undirected symmetric
graph. Two nodes y, and y; are connected by an edge with
weight k(¥,,¥:), that corresponds to the affinity between y,
and y;. We continue with the construction of a random-walk
on the graph nodes by normalizing the kernel k(-, ), similarly
to (1). We obtain a non-symmetric metric p(y,,y:) between
two nodes, which represents the probability of transition in a
single step from y,, to y;. Let {)77} be the Markovian process
associated with this random-walk (where 7 represents time
index), and let P be an M x M matrix consisting of the
transition probabilities. Similarly to (3), a single random-walk
step is given by

M
[PYL =S P
=1

M
= Zpr {j}T-‘rl = 5’1|3~7¢ = S’p} S’l
1=1
=E I:j)‘r+1|5)‘r = S’p:| . (20)
In (20), a single step is interpreted as averaging over similar time
frame samples, where the sense of similarity is emerged from
the kernel. Thus, the choice of the kernel &(-, -) is of key impor-
tance in this method. We rely on the fact that time frames that
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contain transient events consist of distinct spectral features com-
pared to time frames free of transient events, as demonstrated
in Section VI. Consequently, the kernel (18), which compares
between the spectral features of time frames, implicitly leads
to separation of frames into two classes. The first class, which
was previously denoted by H 1, consists of time frames that con-
tain transient noise occurrences, which are similar to each other
(in the kernel sense) since they have similar PSD features that
characterize a transient event. The second class, denoted by H,
consists of time frames free of transient noise, which are sim-
ilar to each other since they contain only the PSD of the white
excitation signal. It is worthwhile noting, that in the latter case,
we assume that the whitening using the long-term AR coeffi-
cients have captured both the white and pitch excitation char-
acterizing unvoiced and voiced segments, respectively. Thus,
the random-walk iteration approximately averages over all the
frames from the same class, i.e.,

[ } ZPPIYI ~ Z P,y p € H;.

I€H;
As a result, the smeared transient events are averaged with
similar events, whereas the zero-mean random excitation signal
wp., 1s averaged destructively, and therefore suppressed. Con-
sequently, after a random-walk iteration, the smeared transient
noise signal can be extracted from the whitened measurement.
We note that unlike the kernel function (18), the application
of the NL filter takes into account the phase of the signal. The
length of a time frame is chosen to be similar to the lengths
of transients. Time frames, which contain similar and aligned
transients, are identified as similar frames according to (18),
whereas time frames, which contain similar transients but
unaligned, are identified as different. Hence, the constructive
averaging in (21) is carried out only over time frames with
aligned transients. In future work, we intend to include relative
alignments before the averaging, that would enable construc-
tive averaging also over time frames consisting of unaligned

21

transients. Let JM denote the estimate of the smeared tran-
sient noise at time frame p and frequency bin k after a single

iteration. Let & be a vector of length N consisting of the
STFT features of the estimated transient noise in time frame p,

dp = [dp 0 -- dp N— 1}, which is given by

d, = [PY]Z

(22)

The spectral decomposition of the transition probability func-
tion can be written as (using the notations from Section II)

ZA (),
)+ Zwmmw
7j=1

In the last transition, we used the fact that A\g = 1 and 9y = 1,
since according to the construction, the sum of each row of P is

ypvyl

(23)
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1. Based on (23) we obtain that applying the random-walk step
(20) can be expressed as®

M-—1

[PYL L= D Aibiaths(p)
ko=

where b; 1, is the inner product between the left eigenvector @,
and the whitened measurement at frequency bin &, given by

(24)

bk = (k) 03) = [Y Iy (25)
Consequently, ¢ consecutive steps are written as
. M-1
[PtYL = D bt () (26)
. =

Using the properties of the eigenvalues of the transition matrix
(4), we note that for infinite number of iterations, all the com-
ponents in the sum (26), except the first, converge to zero, since
A L2200, WA j < 1. Consequently, the resulting signal after
an infinite number of iterations is “blurred” to a trivial steady
state [Pt?} t—oo, bo,x. Thus, we conclude that by in-
creasing the number of random-walk steps we do not necessarily
obtain a better result, but we might rather degenerate the signal.
In order to properly estimate the transient noise signal, a finite
number of iterations should be applied. On the one hand, the
proper number of steps should be large enough to extract an
accurate estimate of the transient noise. On the other hand, we
should not use too many steps that would “smear” or “blur” the
signal. Setting the proper number of iterations is of key impor-
tance and is addressed in Section V. It is worthwhile noting that
in our experiments (described in Section VI) we find that the
range of the proper number of iterations is between 10 and 200.
In addition, we find that beyond 1000 iterations, significant dis-
tortions might emerge.

The spectral decomposition enables efficient implementation
of such random-walk steps. First, computing a desired iteration
does not involve taking powers of the transition matrix P, but
rather taking powers of the scalar eigenvalues. In addition, by
assuming a fast eigenvalues decay, we may use merely few of the
eigenvectors that correspond to the largest eigenvalues for the
implementation of (26), and hence, exploit the dimensionality
reduction property of this approach [24].

It is worthwhile noting that (20) implies that the transition
matrix P simply constitutes an NL diffusion filter as described in
[15]. In Section V, we present a statistical model of the PSD es-
timate of the decorrelated signal §(n) and analyze the behavior
and performance of the proposed NL filter based on diffusion
interpretation. Using this interpretation we gain further insight
into the algorithm. In particular, it enables to address the ques-
tion of a proper choice of the algorithm parameters, and provides
quality measures of the filter capability to extract the transient
noise properly.

Finally, we perform inverse filtering using the source signal
AR coefficients on the output of the NL filter
~ 1 ~
dp = ——dpi (27)

»

1-— ap7k

8[X],, ,, returns the element at the pth row and kth column of the matrix X.
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where dp,k is an estimate of the transient signal in the STFT
domain. Since the kernel is based solely on spectral features, an
estimate of the short-time PSD of the transient noise ¢, (p, k) is
calculated based on smoothing periodograms 1/N d,,k d; i Of
the outcome signal of the NL filter.

We note that the transient noise PSD estimation presented in
this section is an offline algorithm. The entire observable data
is processed in two iterations. In the first iteration, the kernel is
constructed, which requires the calculation of M? pairwise dis-
tances between time frames. In the second iteration, the NL filter
is applied on each time frame by averaging over M time frames.
Both iterations can be efficiently implemented. The kernel func-
tion can be calculated only for few nearest neighbors. Then,
the corresponding NL averaging is performed only over these
neighbors.

B. OM-LSA With a Modified Noise Spectrum Estimator

The optimally modified log spectral amplitude (OM-LSA)
speech estimator [4] relies on the optimal spectral gain function,
which is controlled by speech presence uncertainty. As pro-
posed in [4], the speech presence probability is estimated based
on the time—frequency distribution of the a priori signal-to-
noise ratio (SNR), where the noise variance is estimated using
the minima controlled recursive averaging (MCRA) [5]. Unfor-
tunately, short bursts of transient noise occurrences are falsely
detected as speech components. Hence, the transient noise is not
estimated by the MCRA approach, and as a result, is not atten-
uated by the OM-LSA estimator.

In the proposed algorithm, we use an OM-LSA version
equipped with a modified noise PSD estimation. From the
output of the NL filter we obtain an estimate of the PSD of the
transient noise signal qu(p7 k). We adjust the optimal spectral
gain function calculation to rely on the following noise spectral
estimation

be (D, k) = bu(p, k) + balp, k) (28)

where dgu (p, k) is the stationary noise PSD estimate obtained
using the MCRA approach. Accordingly, the calculation of the
optimal spectral gain function is controlled by both the sta-
tionary and transient noise parts, and thus, attenuation of tran-
sient occurrences is feasible. It is shown in [1] that the MMSE
estimator of the phase of the desired speech signal is simply the
phase of the measurement. Consequently, the calculation of the
gain function requires estimate of the noise PSD without the
phase, which is provided by the first stage of the proposed al-
gorithm. Therefore, the phase of the transient noise signal is not
taken into consideration in our work separately, but is processed
as part of the noisy measurement. For more details regarding the
optimal gain function derivation and estimation of the speech
presence probability and the noise PSD, we refer the readers to
[4]-[6] and references therein. The outcome of the algorithm is
denoted by $(n) and §, 1, corresponding to the enhanced speech
in the time and the STFT domains, respectively.

V. PROBABILISTIC ANALYSIS AND DIFFUSION INTERPRETATION

In the limit of a large number of samples (i.e., M — c0)
and small kernel scale (i.e., 0 — 0 (18)), the discrete random-
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walk converges to the continuous diffusion process described
by the backward Fokker—Planck operator [24], [25], [34]. As
described in Section II, two graph nodes y, and y; effectively
have nonzero affinity k(y,,¥;) if their distance is less than o.
Consequently, for each node ¥, p(¥,,¥:) > 0 only for nodes
y: within a ball of radius o around y,. This means that the
random-walker has nonzero transition probability from node
yp only to nodes within radius o. Thus, in terms of a diffu-
sion process in continuous time, we obtain that a single (dis-
crete) random-walk step corresponds to the evolution defined
by the Fokker—Planck operator (6) in a continuous time step
of A7 = o¢. The Fokker—Planck operator (6) implies that the
propagation of the diffusion process depends on the distribution
q(+) of the data set samples, which is conveyed by the poten-
tial U(-) = —21n ¢(+). Moreover, the density of samples ¢(-) is
going to evolve according to the Fokker—Planck equation. Thus,
in our case, given the distribution of the PSD estimate of the
whitened measurements, we may provide analysis for the be-
havior of the random-walk [15], [25], [29], [30] . In particular,
in this section we evaluate the proper number of iterations that
should be used to extract the transient noise signal. In addition,
we estimate the probability of misidentifying a transient occur-
rence and choose the proper kernel scale o. In Appendix II, we
demonstrate the diffusion interpretation on a simple example
from [15] of denoising a constant signal corrupted by additive
white Gaussian noise.

A. Probabilistic Setup

From (14) and (15), we can write an estimate of the PSD of
the whitened measurement as

y(p, k) = {02 o peTh
YA [F(k) + 2’":p,k] ¢d(p7 k) + 0-31 + €pk D € 7%59)
where ¢4(p, k) is the transient noise PSD, which according to
(15), is given by’

pa(p. k) = |hel*v,|* 30)
I'(k) is the mean power of the AR spectral envelope
1M
(k) £ 2 D 11— apil 31)
p=1

and €, ;, expresses the diversity of the spectral envelope of time
frame p with respect to the mean spectral envelope I'(k), satis-

fying

11— api|” =T(k) + epp (32)

In addition, e, ) is the PSD estimation error. Periodogram,
which is used for estimating the PSD, is exponentially dis-
tributed. In our work, we improve the PSD estimate by
averaging periodograms (as in the Welch method), which gives
a single peak distribution, resulting from convolving exponen-
tial pdfs. For simplicity, we assume that the PSD estimation
error is white and Gaussian e, , ~ N(0,02 ;). It is worthwhile
noting that e, j, may also express a model mismatch that can

"Notice that the transient amplitude v, (without the phase) does not depend
on the frequency bin.
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Fig. 1. Illustration of the distribution of the PSD of the decorrelated measure-
ment (a) The probability density function. (b) The potential.

be derived from inaccurate estimation of the AR envelope
coefficients.

According to our choice of the kernel (18), the propagation
of the Markovian random-walk depends on the potential U(-) =
—2log q(-) corresponding to the distribution g(-) of the PSD es-
timate ¢5(p, k) of the whitened measurements. Consequently,
we can view qgg (p, k) presented in (29) as a random variable,
and analyze the random-walk propagation accordingly. Specif-
ically, since the density of the random variable ¢3g (p, k) evolve
according to the Fokker—Planck equation, we are able to track
the processing enabled by the NL filter on the signal g, 1.

B. Setting the Number of Random Walk Steps

First we examine a simple case, where there is no diver-
gence between transient noise events, i.e., 02 — 0, and the
AR process is stationary, €, — 0. From (29), we have that
the PSD of the measurements has a two Gaussian mixture
distribution ¢(-), both with variance o2, centered at a = o2 and
¢ £ 02 + T(k)|hi|?u2, respectively,’ creating a “two wells”
potential U(-), as illustrated in Fig. 1. The left well, centered
at a, corresponds to time-frames from the class H,, whereas
the right well, centered at ¢, corresponds to time-frames from
the class H;. Accordingly, our aim in the first stage of the
algorithm, i.e., averaging time frames from each class sepa-
rately, can be interpreted as to bring values from each well to its
minimum [or mean according to (29)]. It is worthwhile noting
that Fig. 1 illustrates the “two wells” potential corresponds
to the two Gaussian mixture distribution of the simplest case.
However, as we describe later in this section, the “two wells”
shape characterizes the potential of the distribution in the
general case, where the number of wells corresponds to the
number of hypotheses.

The analysis of the continuous diffusion process in two-wells
potential is well studied in the literature, mainly for physical and
chemical systems [27], [28] . In particular, two characteristic
times enable to analyze the diffusion process [15]. The first is
the relaxation (equilibration) time 7 for each well. It implies
that in order to properly bring all samples in a certain well to
their mean, we need to propagate the diffusion process for 7x.
Thus, we need to apply at least tg = 7Tr /AT = T /0 random-
walk steps (using the fact that each discrete random-walk step
corresponds to A7 = ¢ propagation time). It can be shown that
the relaxation time of each well depends on the curvature of the
bottom of the potential well. In this simplest case, assuming the

811, and &, are the mean and variance of the Gaussian random amplitude
v(n) of the transient signal (10).
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two Gaussians are well separated, the relaxation time of both
left and right wells can be approximated by the curvature of
each Gaussian independently. In one dimension, the curvature
is the absolute value of the second derivative. Specifically, for
the potential of a Gaussian it is given by

_ 1 _ 1
0@ T U]

-1

0? 1 z—a)?
a: \ /27r06237k Te,k
) =a
o
=" (33)

where U is the potential associated with the two Gaussian mix-
ture distribution of ¢ (p, k), and U” is the second derivative of
U. However, bringing all the samples to their mean can be ob-
tained only if the samples do not exit their well. Consequently,
the second characteristic time is the mean first passage time
(MFPT) 7exit to exit a well. Alternatively, it can be described as
the time it takes for a particle to surmount the potential barrier on
its way to the lowest well. Matkowsky and Schuss [28] showed
that the MFPT is exponentially increasing with the height of the
barrier between the wells, i.e.,

2T
Texit (@ =€) = W exp {|U(a) — U(b)|}
2
Texit (C—> a) = W eXP{|U(C) - U(b>|} (34

where b is the location of the barrier between the wells as
illustrated in Fig. 1. In addition, they showed that the MFPT
is closely related to the convergence rate of the diffusion
process to the steady state, which is determined by the first
nontrivial eigenvalue \; of the transition matrix as implied in
(26). Accordingly, to properly bring the samples to their mean,
we should not apply more than texit = Texit/o random-walk
iterations, which can be approximated by using A;.

Thus, in order to be able to obtain a good extraction of the
transient noise signal, the two potential wells of the PSD of
the whitened measurement should be well separated to distin-
guish the two classes, indicating the presence/absense of a tran-
sient occurrence. In particular, the two characteristic times of in-
terest of the potential should satisfy Texit > TR, and the proper
number of iterations ¢ should be

tr <t <K toxit- (35)

For the simple case, (35) can be written explicitly using (33) and
(34) as
o2

<k <t <« min (Texit (@ = €) , Texit (c— a)) . (36)
o

As the transient noise occurrences become more diverse, i.e.,
3 increases, the Gaussian distribution is smeared. The PSD dis-
tribution in this case is a convolution (due to summation of two
independent random variables) between Gaussian and x2 pdfs.
The x? probability of a single degree of freedom corresponds
to the random variable ¢4(p, k) presented in (30) as square of a
Gaussian random variable with mean i, and variance o>

v*

a
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Fig. 2. Tllustration of the potential of the PSD of the decorrelated measurement.
(a) In case of diverse transient occurrences. (b) In case of nonstationary AR
source.

Fig. 2(a) shows the potential corresponding to three values of
o2: zero (solid line), arbitrary small value (dashed line), and a
ten times larger value (dotted line). As illustrated in Fig. 2(a),
the right well becomes wider and shallower and the barrier be-
tween the wells is lower. According to (33) and (34), it results
in a longer relaxation time and a shorter MFPT to exit a well.
Consequently, it is more difficult to distinguish the presence of a
transient occurrence. In addition, since the number of iterations
should satisfy (35), more iterations should be applied; however,
the maximum number of iterations is more restricted. In addi-
tion, the extracted transient noise signal obtained by averaging
over all transient events, which are more diverse, varies from
each individual occurrence. It implies that degraded extraction is
achieved at the cost of a larger computational effort. In Fig. 2(b),
similar trends can be observed as the AR process becomes non-
stationary and more diverse. We assume that €, ;, has a Gaussian
distribution, and compare in Fig. 2(b) three values of ¢, j: zero
(solid line), low value (dashed line), and a ten times larger value
(dotted line). According to (29), the distribution of frames in
‘H1 corresponds to a sum of two independent Gaussian random
variables. Consequently, we observe that as €, ;, increases, the
right well becomes wider and shallower, which increases the re-
laxation time and decreases the MFPT to exit this well.

C. Identification Probability of Transient Events

We exploit the propagation of the diffusion process in a two
wells potential to evaluate the probability of misidentifying a
transient occurrence. It implies that a misidentification occurs
in case the PSD estimate (,5;, (p, k) of a frame in p € H, falls in
the wrong left well (due to large PSD estimation error e, ). As
(Zgg (p, k) is presented in our analysis as a random variable (29),
we are able to calculate this probability. Specifically, in the sim-
plest case (02 — 0 and €, , — 0), the probability of misidenti-
fying a transient occurrence can be explicitly written as

Pr{@g(ﬁ: k) < b|H1} =2 (bff_ C)

€

(37)

where ®(z) is the standard Gaussian cumulative distribution
function. Similarly, the probability of falsely identifying a tran-
sient occurrence, which occurs when the PSD estimate ¢ (p, k)
of a frame in p € H) is in the right well (again, due to a large
PSD estimation error), is given by

Pr{<2>g(p, k) > b|H0} —1-® (b; “) .

(38)
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We observe that the misidentification probability mainly de-
pends on the distance between the potential wells minima.

It is worthwhile noting that these probabilities are closely re-
lated to the analysis of spectral clustering limitations. The dif-
fusion interpretation implies that the question of whether tran-
sient occurrences can be distinguished is analogous to the ques-
tion of whether spectral clustering can be employed. In this
problem setup, in case the condition Teyit > Tg is satisfied,
it indicates that time frames free of transient events can be dis-
tinguished from time frames that contain transient events using
spectral clustering methods. For more details see [29] and [30],
where the authors discuss the limitation of spectral clustering
extensively using similar diffusion interpretation. Based on this
analogy, we can conclude that spectral clustering algorithms
[35]-[38] relying on the proposed diffusion operator may en-
able identification of the locations in time of transient events. In
particular, Shi and Malik [36] proposed to use the first nontrivial
eigenvector of the diffusion operator P as an indicator for the
clusters. They showed that calculating the first nontrivial eigen-
vector is equivalent to finding the minimum normalized cut of
the graph G we constructed, whose nodes are the data set sam-
ples and the edges weights are determined by the affinity kernel.

D. Setting the Kernel Scale

The convergence to the continuous diffusion operator is fur-
ther utilized for properly choosing the kernel scale o. It can be
shown [39], [40] that the convergence rate of the random-walk
to the continuous diffusion process depends on a balance be-
tween a bias term and a variance term. The bias term is asso-
ciated with discretization of the diffusion in time, and hence,
calls for small o (corresponds to the propagation time of a single
random-walk step), which results in small random-walk steps.
The variance term is associated with discretization of the dif-
fusion in space, and hence, calls for large ¢ which results in
increasing the number of neighbors for each node, and hence
integrating over a larger number of samples. In [39] and [41], it
was proposed to automatically set the scale by examining a log-
arithmic scale of the sum of the kernel weights, without com-
puting the spectral decomposition of the transition matrix. The
sum of the kernel matrix elements can be approximated by an in-
tegral. In particular, for a proper scale, the samples are assumed
to lie on a manifold M, and this integral is approximated by
[39]

> k(yp.yi) & M rgyar2 (39)
~ ypvyl ’UOl(M)

where vol (M) is the volume of the manifold, and d is the man-
ifold dimensionality. In a logarithmic scale, we have

d M2(27)4/2
g | 32 bty31) | = §los(e) +10g (ML) o
p,l

which implies that the slope of the logarithmic scale of
the sum of the kernel weights as a function of o is d/2.
However, in the limit 0 — oo, we have k(yp,y:;) — 1 and
21 k(yp.y1) — M?. On the other hand, for & — 0, we have
k(yp:y1) = 6p1, and 3 k(yp,y1) — M. These two limits
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suggest that the logarithmic plot cannot be linear for all ¢. In the
linear region, both the bias and the variance errors are relatively
small, and therefore o may be chosen from that region.

E. High-Dimensional Processing

Based on the probabilistic analysis, we obtain additional ex-
planation for the usefulness of comparing a few frequency bins
collected into a single vector for each time frame. In Section IV,
we stated that by comparing the spectrum of all frequency bins
of each time frame (18) rather than the individual sub-bands,
we exploit the unique spectral structure of each time frame con-
sisting of a transient occurrence. In terms of diffusion process in
atwo high-dimensional potential wells, the distance between the
potential wells minima is increased and the barrier between the
wells becomes higher. As a result, the probability of misidentifi-
cation (37) decreases as the distance between c and b increases.
Similarly, the probability of false alarm (38) decreases since
the distance between a and b increases. Moreover, according
to (34), the MFPT to exit a well 7oy;; increases, and therefore,
additional random-walk steps satisfying (35) can be employed,
yielding a more accurate transient noise signal extraction.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method. First, we examine the results on synthetic signals and
explore the trends according to our analysis. Second, we test the
algorithm on real recorded signals, and compare the results of
the proposed algorithm with the results of the OM-LSA esti-
mator [4].

In the first experiment, we generate signals according to the
time domain model. The sampling frequency is set to 16 kHz.
The source signal is simulated as a stationary fourth order auto-
regressive source according to (9) with white Gaussian excita-
tion signal w(n) of unit variance o,, = 1. The transient noise
is generated according to (10). The fixed filter h(n) has dis-
tinct spectral features containing three harmonies at frequencies
1600, 3200, and 6400 Hz, as shown in Fig. 3(a), and the transient
occurrences are determined according to a Gaussian—Poisson
distribution. The mean and variance of the random amplitude
v(n) are y, = 2 and o, = 0.003, and the Poisson rate is 0.0005.
The parameters for the simulated scenario are chosen such that
the potential-wells are well separated, which according to (36)
enables estimation of the transient noise PSD using diffusion
filtering. Empirical testing showed that simulation parameters
that did not satisfy (36), indeed resulted in poor performance.

For illustration, we plot in Fig. 3 the measurement along
with the first (nontrivial) eigenvector. To correspond with the
measurement, we show the magnitude of the eigenvector as a
function of time (the eigenvector consists of magnitudes per
time frame). We clearly observe that the eigenvector provides
an indicator for transient noise occurrences. First, it implies
according to the analogy between the transient noise reduction
problem and spectral clustering, that proper denoising is fea-
sible. Second, as a by-product of the proposed algorithm, we
obtain an identifier for transient events. It is worthwhile noting
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Fig. 3. Synthetic signals experiment. (a) Noisy measurement. (b) The first
(nontrivial) eigenvector ¥ .
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that our proposed method aims at a more difficult outcome—ex-
tracting the transient noise signal from the measurement, rather
than just indicating transient occurrences.

Fig. 4 illustrates the proposed automatic choice of kernel
scale. We plot a logarithmic scale of the sum of the kernel
weights as a function of the scale. We observe that the curve is
nonlinear, and we choose the scale o for this experiment from
the linear region (i.e., o = 10™!). According to our empirical
experiments, choosing the scale from this region indeed yields
good results.

‘We evaluate the transient signal estimation obtained using the
NL diffusion filter. For measuring the performance we use the
transient to signal ratio (TSR) defined by

{d2 n)} '
(y(n) = d(n))?}
E{d*(n)}
E{(d(n) - d(n))?}

where d(n) is obtained by applying inverse STFT (ISTFT) on
the estimated transient noise dp, .

TSRIH 10 loglo IE.{

TSR = 10logy,

(41)
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Fig. 5. (a) TSR improvement (in dB) obtained as a function of the number of denoising steps. (b) Comparison of the obtained TSR improvement. (in dB) between
low and high transient occurrence divergence. (¢) Comparison of the TSR improvement (in dB) between two different mean amplitude values.

Fig. 5(a) shows the TSR improvement obtained as a function
of the number of denoising steps. We note that in this experiment
we use powers of the transition matrix (the NL filter) P, indi-
cating several random-walk steps in each diffusion iteration. We
clearly observe the tradeoff in setting the proper number of steps
that emerges from the results. Initially, we obtain an increase in
the TSR as we employ more steps. Then, after reaching a cer-
tain number of steps (greater than the relaxation time), the TSR
remains constant and applying more denoising steps does not
improve the results. Finally, when the number of steps reaches
the MFPT to exit a well, applying additional denoising steps
smears the signal, and the TSR decreases.

In Fig. 5(b), we compare the TSR improvement between low
and high transient occurrence divergence. For the low diver-
gence case, we set the variance of the amplitude modulation o2
in the simulation to be a small value (o, = 0.003), and for the
high divergence case, we set o2 in the simulation to be twice
higher. First, the TSR obtained when the transient occurrences
divergence is high, is smaller than the TSR obtained when the
divergence is low. Since transient occurrences are less similar,
the averaging obtained by the diffusion filter is less accurate
since the resulting mean value varies from each transient oc-
currence. Second, we observe that in the high diversity case, we
need to apply more steps in order to reach optimal TSR values.
However there is a sharp decline starting from smaller number
of iterations. By increasing the transient noise amplitude vari-
ance, the potential well becomes wider, and the barrier lower.
Consequently, the relaxation time of the right-hand well (corre-
sponding to the transient occurrences) increases, and more dif-
fusion steps should be used. In addition, the MFPT decreases,
implying that less diffusion steps can be used.

Fig. 5(c) shows the obtained TSR improvement for two dif-
ferent mean amplitude values p,, = 1.5,2 (with the same vari-
ance o, ). We observe that the TSR obtained when the mean am-
plitude is small, is lower than the TSR obtained when the mean
amplitude is large. In addition, a decay in the TSR occurs after
a smaller number of iterations, in the case of small mean ampli-
tude. By decreasing the mean transient noise amplitude (., the
potential wells become closer. As a consequence, the MFPT de-
creases, and less diffusion steps can be used. In addition, since
the separation of the two potential wells is worse, the probability
for misidentification increases.

In the second experiment, we use recorded speech and tran-
sient noise signals. Speech signals sampled at 16 kHz are taken

Frequency [kHz]

Frequency [kHz]
o N £ [«>] o

Time [Sec]

(b)

Fig. 6. Signal spectrograms. (a) The noisy signal. (b) The whitened. signal
Ip(n).

from TIMIT database [42]. Various recorded transient noises are
taken from [43]. The measurements are constructed according
to (7) and (8). The additive stationary noise part is a computer
generated white Gaussian noise with an SNR of 20 dB. The
length of the speech utterance and the recorded transient noise
is 10 s. Such transient noise signal consists of 10 to 12 transient
events. We use short-time frames of 256 samples length both
for the LPC estimation and for the STFT. The corresponding
time frame length is 16 ms, which is longer than the duration
of the tested transients (approximately 10 ms). In each time
frame, we estimate AR envelope consisting of L = 50 coef-
ficients, in order to obtain a white excitation signal for both
voiced and unvoiced phonemes (we verify that the pitch pe-
riod is of shorter length). According to our empirical tests, such
a relatively short envelope enabled sufficient whitening of the
speech. Fig. 6 shows spectrograms of the noisy measurement
with metronome noise and the whitened signal ¢,(n). We ob-
serve that the impulsive nature of transient events is maintained,
while the speech phonemes are whitened. Specifically, we no-
tice that L = 50 AR coefficients provide satisfactory whitening
of both voiced and unvoiced phonemes to enable better distinc-
tion of the transient events from the speech components.

The transient noise is extracted by the diffusion filter using
128 iterations. This specific number of iterations was

t
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Fig. 7. Signal spectrograms. (a) The noisy signal. (b) The enhanced signal obtained by the OM-LSA. (c) The transient estimate obtained by the NL diffusion

filter. (d) The enhanced signal obtained by the proposed method.
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Fig. 8. Signal spectrograms and waveforms in the area near the transient event

at 7.7 s. (a) The noisy signal. (b) The enhanced signal obtained by the proposed
method.

chosen both according to the analysis from Section V along
with empirical testing.

Fig. 7 shows spectrograms of the noisy speech signal
corrupted by metronome noise, denoised signal using the
OM-LSA, transient PSD estimation from the output of the
diffusion filter, and denoised signal using the proposed method.
Audio samples of these signals are available online in [44].
The proposed algorithm does not require periodic occurrences
of the transient noise signal. Thus, we artificially change the
gaps between each metronome “clack” to demonstrate the full
potential of the proposed algorithm. We see in Fig. 7(d) that
the proposed estimator achieves both stationary and transient
noise reduction, while imposing very low distortion. The
satisfactory transient noise reduction is enabled due to the
accurate noise PSD estimation, as shown in Fig. 7(c), where
we obtain a relatively clean estimation of the PSD of the
metronome signal. In addition, we observe that the spectral
shape of the metronome “clacks” are estimated accurately.
Fig. 8 zooms into the area near the transient event at 7.7 s, and
further illustrates the removal of the transient component and
the preservation of the speech. It is worthwhile noting that a
small speech distortion was also detected in informal subjective
listening tests. To demonstrate the accuracy of the estimation
of the transient signal, we present in Fig. 9 a single metronome
“clack” compared to its estimate taken from the output of the
diffusion filter.

0.2

—— Transient Estimate
Transient

0.15

01}

0.05 |+

Time
Fig. 9. Estimation of a single metronome “clack.”
We evaluate the transient noise estimation using two objective

measures. The first is the TSR improvement, defined in (41).
The second is the mean spectral distance (SD) defined as

| M[q Nl 1/2
2
SDin = 27 > N > (il = lyprl)
p=1 k=0
N M 1 N-1 R 9 1/2
SDout = M Z N Z (|dpk| - |dpk|)
p=1 k=0

The TSR measure provides evaluation of the estimation in terms
of power, whereas the SD provides evaluation of the estimation
accuracy of the spectral features.

In Table I we examine the estimation of various transient
noise types. We compare the TSR improvement and the SD im-
provement, obtained by the proposed method and the OM-LSA
in various transient noise environments. The presented results
are averaged over ten realizations of noise and different speech
signals (both male and female). We obtain significant improve-
ment in both measures, indicating good estimation of the tran-
sient noise. Keyboard typing noise PSD estimation is of par-
ticular interest. We obtain marginal improvement in SD, which
implies less accurate extraction of the spectral features of the
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TABLE 1
EVALUATION OF THE TRANSIENT SIGNAL ESTIMATION

Input TSR Transient SD
Improvement [dB] | Improvement [dB]

Metronome 14.2 0.93

Door Knocks 10.7 0.79

Kitchen Pocks 6.3 0.69

Keyboard Typing 57 0.56

transient noise. Due to the high divergence between transient
occurrences belonging to different key strokes, both in shape
and power, the averaging process results in a “mean tapping
shape” which varies from the spectral shape of each individual
key press. Nevertheless, we observe good improvement in TSR,
which indicates good estimation in terms of noise power. Since
the potential-well associated with the excitation signal is well
separated, the transient signal is properly extracted by the NL
filter, which enables accurate identification of transient events
time locations, yielding significant reduction in the total noise
power at the output of the proposed algorithm. This particular
noise type demonstrates the robustness of the proposed algo-
rithm. Even though the transient interference caused by key-
board typing do not correspond to our assumptions, the pro-
posed algorithm still enables improved result.

We evaluate the output of the proposed method using another
two objective measures. The first is the common signal to noise
ratio, defined as

E {sz(n)} ‘
(y(n) — 5(n))}’

E {sQ(n)}
(8(n) = s(n))?}
The second is the mean log spectral distance (LSD) between the

measured signal and the desired source, which is specifically
adapted to speech signals and defined as

SNRi, = 1010g10 £

SNRout =10log;q Eq (42)

1 M 1 N-1 1/2
LSD;, £ i N 2 [fspe) = Uyp1)I
p=1 k=0
1 M 1 N-1 1/2
LSDout é M N |£(spak) - £(§Pyk)|2
p=1 k=0

where

£(f(t)) = max {10log,q [ ()], 6}

and 4 is a small value defined by 6 = max; | f(¢)| — 50, used to
confine the dynamic range of the log-spectrum to 50 dB.

To test the estimation of the speech in the presence of the
transient noise events, we present in Table II the results ob-
tained only in time frames in H; (instead of the whole observa-
tion interval). We compare the speech enhancement results ob-
tained using the proposed method and the OM-LSA estimator.
We present the two objective measures (SNR improvement and
LSD improvement) in dB. We clearly observe that the proposed
method achieves better results compared to the OM-LSA in all
noise types. It is worthwhile noting that similar results were
obtained for other transient noise types taken from [43]: roof
hammering, door slams, household clacks, and other percussive
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TABLE II
ENHANCEMENT EVALUATION IN TRANSIENT OCCURRENCE PERIODS

Input SNR Improvement [dB] | LSD Improvement [dB]
OM-LSA | Proposed | OM-LSA | Proposed
Metronome 0.03 9.58 0.07 6.05
Door Knocks 0.23 6.85 0.14 4.23
Kitchen Pocks 0.39 6.91 0.35 2.34
Keyboard Typing 0.68 3.45 1.22 227

noises. The results emphasize the advantage of the proposed al-
gorithm in obtaining good transient noise reduction, while pre-
serving speech components, even under the adverse conditions
created by the presence of transient noise events.

VII. CONCLUSION

We have presented a novel approach for handling speech cor-
rupted with transient interferences. The proposed approach is
based on the NL diffusion filter, that exploits the intrinsic geo-
metric structure of the measurements. In particular, it relies on
the variation of speech components and sharp impulses of re-
peating transient noise occurrences. By using diffusion interpre-
tation of the NL filters, we gained insight into the behavior of the
proposed method. Using the diffusion framework, we addressed
the problem of proper choice of parameters and evaluated the
performance and limitations of the proposed method. Experi-
mental results have demonstrated that for repetitive and short
transient occurrences, the proposed method obtains improved
results, compared to those obtained by the OM-LSA estimator.
In addition, the proposed method is robust to various types of
transient interferences.

The main component of the proposed algorithm is the esti-
mation of the transient noise PSD using NL diffusion filtering.
Here, we have incorporated the PSD estimate into the OM-LSA
estimator for speech enhancement. However, the PSD estimate
may be exploited for other tasks as well. For example, it can be
of major importance when developing a voice activity detector
(VAD), adapted to transient noise environments. Future work
will address real-time implementation of the algorithm, and de-
veloping a model for the spectral variations and durations of
the transient events. For example, we aim at developing a more
robust algorithm based on two iterations of the NL filter. The
first iteration will provide just an estimate of the locations of the
transients. In the second iteration, given the transients locations,
each transient amplitude, shape and duration will be estimated
and handled.

APPENDIX 1
GAUSSIAN NOISE EXAMPLE

We present a simple example of denoising a step function cor-
rupted by Gaussian noise using NL filters. Let I' = {z,}}, be a
data set consisting of M real samples z; € IR. Each data sample,
which consists of a desired constant corrupted by additive white
Gaussian noise, is given by

z; = d;i +n; 43)
where d; are in {—1,0,1} with equal probability and n; are
independent and identically distributed Gaussian random vari-
ables with zero mean and 0,21 = 0.2 variance. For example, x;
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Fig. 10. (a) Source signal. (b) The noisy measurement. (c) The denoised signal
using low-pass filter.
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Fig. 11. Denoised signals using 1-D NL filters. (a) The denoised signal after a
single step (¢ = 1). (b) The denoised signal after t = 10 steps. (¢) The denoised
signal after ¢ = 3000 steps.

may be seen as a time series with time index ¢, consisting of mea-
surements of a noisy telegraph signal. Fig. 10(a) and (b) shows
the source signal and the noisy measurement. In Fig. 10(c), we
present a denoised signal using low-pass filter. We use a finite
impulse response (FIR) filter of length 20 with cutoff frequency
of 0.17 rad to maintain the low frequencies of the source step
function. We observe that the noise is suppressed; however, sig-
nificant distortions are introduced, especially in the source func-
tion edges. It is worthwhile noting that other common denoising
algorithms would enable similar trends. For example, wavelet
denoiser might improve the performance of the low-pass filter
since it provides multiscale resolution of the signal. However,
the distortion of the edges, which occurs due to the processing of
samples from two levels of the step function together, remains.
In the remainder of this section, we demonstrate how a nonlocal
filter solves this artifact.

We define a Gaussian kernel k& I' x T—=R as
k(z;,z;) = exp{—(z;—=;)?/20%} which conveys a
notion of pairwise affinity between the samples. As described
in Section II, we construct a weighted graph G based on the
data samples and the kernel in three steps. 1) We set the data
samples I' = {z;} to be the graph nodes. 2) The weights of
the edges connecting the nodes are set according to the kernel,
i.e., the edge connecting z; and z; is of weight k(z;,x;). 3)
By normalizing the kernel according to (1), we create a non-
symmetric affinity metric p(z;, ;). This metric can be viewed
as a transition probability function of a Markov chain on the
graph, i.e., p(z;, z;) represents the probability of transition in a
single step of the random-walk from node z; to node z;. Let P
be a matrix corresponding to the function p, where its (7, j)th
element is p(z;,2;), and let x be a vector consisting of all
the data samples x = [z1, ..., za7]" . Accordingly, advancing
the random-walk on the graph a single step forward can be
written as Px. Using the eigendecomposition of the matrix P,
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Fig. 12. Denoised signals using 3-D NL filters. (a) The denoised signal after a
single step (¢ = 1). (b) The denoised signal after t = 3 steps. (c) The denoised
signal after ¢ = 10 steps.

described in Section II, we can present the expansion of the
samples on the eigenbasis as’

M-—1

x= > b
7=0

where 1; are the matrix P right eigenvectors, and b; are given
by the inner product between the left eigenvectors ¢; and the
samples x, i.e., b; = <p]Tx. Applying the random-walk (i.e., the
matrix P) on the data set results in

(44)

Pxl; = 3 Asbsths i) @)
=0

where )\; are the matrix P eigenvalues satisfying (4). Now, ap-
plying ¢ random-walk steps is given by

M
[P'x]. = Z Abjah; (i) (46)
j=1

Fig. 11(a)—(c) shows the denoised signal after t = 1, ¢ = 100,
and ¢ = 3000 random-walk steps. In Fig. 11(a), we observe that
the step function is denoised without the distortions that were
introduced by using the low-pass filtering. Fig. 11(b) presents
further noise suppression by using ten random-walk steps, still
without distorting the step function edges. However, we observe
in Fig. 11(c) that the signal is completely degenerated to a con-
stant value when using too many steps (¢ = 3000). We elaborate
and discuss this issue in details in Sections IV and V.

In practice, the affinity metric is usually extended to
improve the performance of the NL filter. Instead of
the 1-D metric between single samples, a high-dimen-
sional metric between the samples entire neighborhoods
or patches is used. Consequently, let the pairwise kernel be
k(z;,zj) = exp{—|/x; — x;]|?/202}, where x; is a vector
consisting of the neighborhood of the sample z;. For example,
let x; be a vector of length 3 given by x; = [z; 1, 7;, z;41]7.
Fig. 12(a)—(c) shows the denoising results using the 3-D kernel
aftert = 1,¢ = 3, and ¢ = 10 steps. We observe that the noise
is completely suppressed, whereas the edges are maintained.

APPENDIX II
DIFFUSION INTERPRETATION EXAMPLE

In order to provide another interpretation of the NL filter, we
degenerate the example presented in Appendix I. Now we as-
sume the desired source signal is a constant corrupted by addi-

9The eigenvectors are a complete set spanning the space of the samples.
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tive Gaussian noise, i.e., d; = d. In this case, from (43), we have
that the density of the samples {z;} is Gaussian

12
;exp{_u}. 47

2 202

Q\zi) =
(:) 2mo;

Thus, up to an additive constant, the potential, defined by U =
—21n g, is parabolic
i —d)?
Ulz;) = (@i —d)” (48)

2
On

As shown in [24] and [25], for a large data set M — oo
and small kernel scale o — 0, the transition matrix P, which
represents the discrete random-walk on the graph, converges
to the continuous backward Fokker—Planck operator £ (6).
When using scalars, we have that for every smooth function
f : T' = 1R, the resulting Fokker—Planck operator is merely a
second-order differential equation, given by

Lf=f"-Uy (49)

where f’ and f"’ are first- and second-order derivatives of f, and
U’ is the first derivative of the potential U.

It can also be shown that the eigenvectors of P are discrete
approximation of the eigenfunctions of £. In our case, using (48)
and (49), the eigenfunctions v, (x;) (which can be viewed as a
smooth function on the data samples) satisfy the second-order
differential equation
2(%72(]/)1/1;(%) = pi(zi)  (50)

n

L) = ) () = =
where 11; are the corresponding eigenvalues of the continuous
Fokker—Planck operator. The eigenfunctions that solve (50) are
known as the Hermite polynomials ¢ (x;) = H;((z; —d)/on).
The first three are given by Ho(z) = 1, Hi(z) = =z, and
Hy(z) = 22 — 1. Thus, from (44) and the special form of the
eigenfunction, we obtain that the expansion of the samples on
the eigenbasis consists of only the first two terms

x = botho + b1
= b()]. + b—l(X - d].)
o

n

=d1 + (x —d1) (51)

where 1 is a vectors of ones of length M. Combining (46) and
(51) yields

[P'x], = d1+ M\{(x —d1) (52)
which means that each step of the random-walk shrinks the
noise in x towards the desired mean value d at rate A;. Con-
sequently, we obtained that applying the random-walk on the
data set suppresses the additive Gaussian white noise and pro-
vides an estimate of the desired constant.
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