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Audio-Visual Voice Activity Detection
Using Diffusion Maps

David Dov, Ronen Talmon, Member, IEEE, and Israel Cohen, Fellow, IEEE

Abstract—The performance of traditional voice activity
detectors significantly deteriorates in the presence of highly
nonstationary noise and transient interferences. One solution is
to incorporate a video signal which is invariant to the acoustic
environment. Although several voice activity detectors based on
the video signal were recently presented, merely few detectors
which are based on both the audio and the video signals exist in the
literature to date. In this paper, we present an audio-visual voice
activity detector and show that the incorporation of both audio
and video signals is highly beneficial for voice activity detection.
The algorithm is based on a supervised learning procedure, and a
labeled training data set is considered. The algorithm comprises
a feature extraction procedure, where the features are designed
to separate speech from nonspeech frames. Diffusion maps is
applied separately and similarly to the features of each modality
and builds a low dimensional representation. Using the new repre-
sentation, we propose a measure for voice activity which is based
on a supervised learning procedure and the variability between
adjacent frames in time. The measures of the two modalities
are merged to provide voice activity detection based on both the
audio and the video signals. Experimental results demonstrate the
improved performance of the proposed algorithm compared to
state-of-the-art detectors.

Index Terms—Audio-visual speech processing, diffusion maps,
voice activity detection.

I. INTRODUCTION

V OICE activity detection is an essential component in
many applications such as speech and speaker recog-

nition [1], speech coding, speech enhancement and dominant
speaker identification [2]. Often, voice activity detection al-
gorithms such as those presented in [3], [4], [5], [6], [7] and
[8] assume that noise is slowly varying with respect to speech.
In the presence of highly non-stationary noise and transients,
such as keyboard typing, door knocking, and office noise [9],
[10], [11], [12], [13] this assumption does not hold, and the
performance of these algorithms significantly deteriorates. A
different type of prior assumptions, used for voice activity
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detection, relate to specific characteristics of the speech signal,
e.g. the periodicity of the signal in the frequency domain for
voiced phonemes [14] and the tendency to increase one’s vocal
intensity in the presence of noise with low Signal to Noise
Ratio (SNR) [15]. Recently, a Voice Activity Detector (VAD)
for non-stationary environments was presented in [16], where
transient effects are reduced by averaging estimates of noise
statistics over short time windows. This detector is based on a
spectral clustering method for the detection of voice activity
and was shown to outperform competing state of the art detec-
tors. Yet, its performance in presence of transients is limited,
because transients are not estimated along with the noise due to
their fast varying nature.
Nowadays, video calls are becoming a standard way to com-

municate, and modern products, e.g. smartphones and laptops,
have integral microphones and cameras. The availability of
a video signal, in addition to the audio signal, can be highly
beneficial for voice activity detection, especially in challenging
acoustic environments, since the video signal is invariant to
acoustic noise in general, and transients in particular.
Existing voice activity detection methods, which are based

on visual data, focus on the analysis of the region of the mouth,
and in particular the lips. However, their main drawback is their
dependency on the detection of the lips, which often rely on
artificial markers and whose accuracy may be degraded due to
skin color or illumination conditions. For example, in the studies
presented in [17] and [18], the detection is based on features,
which are constructed from contours of the lips. However, the
extraction of the contours requires that the lips would be marked
using a blue makeup. In [19], the presented VAD exploits the
shape and color of the lips, which are obtained assuming that the
lips are marked by key points. Another approach for extracting
the lips, which assumes that the color of lips is significantly
different from the color of skin, was proposed in [20] and [21].
Another approach to visual voice activity detection relies on

the dynamics of the region of the mouth. In [19], a second
algorithm based on the movements of lips was presented as
well. This algorithm focuses on the analysis of the region of the
mouth, which is enhanced using a retinal filter. Although ex-
hibiting good performance, the detection was found to be sen-
sitive to lips movements in speech absent intervals. In [22], a
similar approach based on motion estimation in the region of
mouth was presented. Motion fields are used as features to char-
acterize the change of the position of the mouth over time and
a Hidden Markov Model (HMM) is used for the classification.
Such a motion estimation approach was also utilized in [23].
There, the energy in the mouth region is defined using optical
flow and serves as a feature for a classifier based on an HMM.
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A VAD based on intensity values in the region of the mouth was
presented in [24], where the detection is based on the number of
low intensity pixels, which are modeled using a Gaussian model
for speech and non-speech hypotheses. Although high detection
rates were reported, the algorithm may be limited in real time
applications because the entire speech sequence is required in
advance to estimate the noise statistics.
Although VADs based on video signals have an advantage

over VADs based on audio signals in noisy conditions, they
usually fail to compete with audio based detectors, since a
trivial classifier based on the energy of the audio signal can ob-
tain near perfect performance in quiet environments. Therefore,
a bimodal VAD may combine the advantages of both audio and
video signals. A study which compares several Audio-Visual
Voice Activity Detectors (AV-VAD) was presented in [25],
where the detectors are categorized according to classification
and fusion schemes. The AV-VADs are incorporated in a
Speech Recognition System (SRS) and are evaluated according
to the recognition scores. The highest recognition score was
achieved using an AV-VAD where the features are the log
of the power of the audio signal and the vertical variance of
the optical flow vectors for the video signal. The modalities
are fused in the features level using a weighted sum and the
combined audio-visual feature is compared to a threshold for
the classification. Another approach for AV-VAD which is
also designed for incorporation in an SRS was presented in
[26]. The audio signal is represented by a feature based on a
likelihood score for silence which is evaluated in the SRS based
on recognition scores, and the video features are based on the
width and the height of the lips. The modalities are merged in
the features level, and the classification is based on a supervised
learning procedure, which assumes a Gaussian Mixture Model
(GMM) in the features domain. Another AV-VAD which is also
based on a supervised learning procedure was presented in [27],
where the video signal is analyzed using a Bayesian approach
to detect the lips, followed by an HMM to model the lips
movements. The audio signal, which is assumed to be acquired
in a microphone array, is used to compute a spatio-temporal
coherence of the source. Then, another HMM is used for speech
presence estimation. Finally, the two modalities are combined
at the classification stage using a tree based classifier.
In this paper, we present an algorithm for audio-visual voice

activity detection. The inputs to the algorithm are audio and
video signals recorded in a single microphone and a single video
camera, respectively. The algorithm is based on a supervised
learning procedure, and we consider a training data set which
comprises speech signals contaminated by different types of
noise and transients, and is labeled according to the presence
and the absence of speech. The algorithm comprises two steps:
first, a low dimensional representation of the signals of each
modality is constructed by applying dimensionality reduction
to high dimensional features of each modality. The audio fea-
tures are based on weighted Mel-Frequency Cepstral Coeffi-
cients (MFCC) [28] and are designed to separate the stationary
from the non-stationary parts of the signal. The video features
are based on motion vectors, which capture well both the shape
of the mouth and its dynamics. By adopting similar concepts
to the spectral clustering algorithm presented in [16], we ex-

ploit diffusion maps [29], a manifold learning method, which is
applied separately and similarly to the features computed from
each modality. Diffusion maps provides a low dimensional rep-
resentation of the signals which is suitable for merging data cap-
tured from different types of sensors [30]. In addition, it captures
the intrinsic structure of the data and provides a good distance
metric to separate speech and non-speech frames. Second, a
measure for voice activity is defined based on the diffusionmap-
ping. This measure incorporates both a supervised clustering
procedure, which is based on a GMM, and an unsupervised pro-
cedure that exploits the variability of consecutive frames. The
GMM is used to separate speech and non-speech clusters ac-
cording to the labeled training data, and the unsupervised pro-
cedure separates the two clusters by assuming high variability
between adjacent speech frames. The computed measures for
voice activity from the two modalities are merged into a single
bimodal measure, which is in turn used to estimate the speech
presence indicator.
The proposed algorithm is tested in the presence of highly

non-stationary noise and transients. Experimental results
demonstrate the improved performance of the single modal
versions of the proposed algorithm over state-of-the-art single
modal VADs. In addition, we show that the proposed AV-VAD
outperforms each of the single modal versions of the algorithm,
demonstrating the effectiveness of the bimodal approach. The
algorithm is implemented in a frame-by-frame manner with a
low computational load, which makes it applicable for online
applications.
The remainder of the paper is organized as follows. In

Section II we formulate the problem. The construction of the
low dimensional representation of the signals is described in
Section III. The estimation of the speech presence indicator is
described in Section IV, and experimental results demonstrating
the performance of the proposed algorithm are presented in
Section V.

II. PROBLEM FORMULATION

Let be a measured audio signal given by:

(1)

where , and are speech, background noise and
transient interference, respectively.
The signal is processed in overlapping time frames of length
. Let be the th audio frame, and let

be an audio data set of time frames.
The video signal is assumed to comprise the region of the

mouth, which is cropped out from a recorded front side video
of a speaker. Note that the identification of the mouth region ex-
tends the scope of this paper. Nevertheless, we briefly describe
in Section V the procedure performed in our experiments as a
preprocessing stage. Let be the video data set
comprising consecutive video frames , where
and are the width and the height of the frame, respectively.
We assume that for each frame index , and are aligned.

Namely, both frames represent data captured by different sen-
sors at the same time. The alignment is achieved by setting the
length of the audio frame to correspond the video frame rate.
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Let and be two hypotheses denoting speech absence
and presence, respectively. According to the hypotheses, we de-
fine a speech indicator as

(2)

The goal in this paper is to estimate , i.e., to classify each
frame as a speech or a non-speech frame.
We consider two audio-visual data sets. A training data set

of size frames, and a test data set of
size . Each data set consists of both speech and non-speech
intervals which are contaminated with noise and transients and
are labeled according to the presence and absence of speech. The
training data set is used to construct a low dimensional model
of the data in a batch manner, and to train an estimator in a
supervised manner, for the speech presence indicator. The test
set is used for the evaluation of the proposed algorithm.

III. LOW DIMENSIONAL REPRESENTATION

The proposed algorithm is based on the representation of the
audio-visual signal in a low dimensional domain where speech
frames are separated from the non-speech frames. This repre-
sentation is constructed using amanifold learningmethodwhich
is applied in a high dimensional feature space of each modality.
Multiple notations for a frame are used throughout this

paper. Frame of the input signal is denoted by , the
corresponding high dimensional feature vector is denoted by

, and the low dimensional representation (obtained by
manifold learning) is denoted by .

A. Features Extraction

1) Audio Features: The proposed audio features are based
on spectral representation of speech using MFCCs and the
Short-Time Fourier Transform (STFT). These features were
found to perform well for voice activity detection in challenging
conditions, e.g. with a highly non-stationary noise [16]. Let

be a column vector consisting of the MFCCs of
frame , where is the number of the coefficients. MFCCs are
widely used in the field of speech recognition, since they suc-
cessfully represent the spectrum of speech in a compact form
using the perceptually meaningful Mel-frequency scale [28].
However, the MFCC representation of a speech frame may be
similar to the representation of a non-speech frame comprising
highly non-stationary noise. To improve the separation between
the signal and the background noise, the MFCCs of each frame
are weighted by a scalar which is based on noise estimation in
the frame, such that a low value is assigned when merely the
background noise is present [16].
Traditionally, the input signal is assumed to contain only

speech and stationary noise. Thus, speech and noise are sepa-
rated assuming that stationary noise components in the STFT
domain are slowly varying with respect to speech [31], [32].
However, transients vary faster than speech, and hence, they
are mistakenly identified as (non-stationary) speech [9], [10].
Therefore, the weights which are based on the noise estimation
method presented in [32], in this case, only separate speech and
transients from the stationary (or quasi-stationary) noise. Next,

we describe the computation of such weights and explain how
to reduce the effect of transients on the frame representation.
Let be the STFT representation of the audio signal
, where is the frequency bin index, and is the time frame

index. Accordingly, the representation of (1) in the STFT do-
main is given by:

(3)

where , and are the STFTs of ,
and , respectively. The corresponding variances are

given by , ,
and , where denotes an expected
value.
Similarly to the hypotheses and , let and

be hypotheses for a stationary signal (background noise) and a
non-stationary signal (speech and transients), respectively. The
corresponding conditional Probability Density Functions (PDF)
are given by and , respectively. The log
likelihood ratio between the non-stationary signal and the noise
in the th frequency bin of frame is defined by:

(4)

Let be the a priori Non-Stationary Signal to Noise Ratio
(NSSNR), which is given by:

(5)

and is estimated according to [31], and let be the a pos-
teriori NSSNR:

(6)

The estimation of both the a priori and the a posteriori NSSNRs
is based on the spectral variance of the background noise,

, which is estimated using the improved minima con-
trolled recursive (IMCRA) method [32].
Assuming that the non-stationary signal and noise have a

complex uncorrelated Gaussian distribution in the STFT do-
main (using only speech and stationary noise model) it can be
shown that the log likelihood ratio in (4) is given by [33], [3]:

(7)

Let be the arithmetic mean of the log likelihood ratio over
all frequency bins of frame . To reduce the dynamical range
of , which is large, since, for example, when the background
noise is absent, in (4), the weight of each
frame is given by normalizing as:

(8)

where is a normalization parameter. Now, receives
values close to 1 when speech or transients are present and
values close to 0 when only background noise is present in the
frame.
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The audio feature vector of frame is defined by col-
lecting the weighted MFCCs of adjacent frames:

...
(9)

It is worthwhile noting that was previously used for voice
activity detection in [3] and [4]. However, since and
cannot exclusively indicate speech activity in the presence of
transients, is used in this paper as a feature that separates
speech and transients from background noise. Transient effects
are attenuated by taking into account several consecutive time
frames. This reduces the influence of transients on a frame rep-
resentation since the typical duration of a transient is assumed
to be of the order of a single time frame. Thus, for ,
the coordinates of in the presence of speech are expected to
be more consistent than in the presence of transients. In prac-
tice, we assign relatively small values to , since large in-
duces a high dimension of features and requires a large number
of training samples to construct the low dimensional model.
Recall that the main advantage of the visual signal is its re-

sistance to the acoustic environmental interferences including
transients. Thus, to further improve the robustness to transients,
we incorporate the visual signal.
2) Visual Features: The proposed visual features are based

onmotion vectors which were previously exploited for voice ac-
tivity detection in [22] and [23], and are calculated using Lucas-
Kanade method [34], [35]. Let denote the ( )th pixel
of frame , and let and denote the horizontal
and the vertical components of the motion vector (i.e. the ve-
locity) of the corresponding pixel. We form a vector

by concatenating the absolute values of the velocities of
each pixel, which are given by .
The video signal is characterized both by spatial informa-

tion, i.e., the shape of the mouth, and by temporal information,
i.e., the movement of the mouth. The shape of the mouth in-
dicates on the presence of speech as the pronunciation of most
of the phonemes is associated with open mouth [24]. However,
the shape of the mouth cannot exclusively indicate on the pres-
ence of speech since, for example, the mouth can be completely
closed in particular speech frames. Thus, temporal information
may serve as a complement, i.e., the mouth movement may cor-
rectly indicate on the presence of speech. To capture both spa-
tial and temporal information, motion vectors are calculated in
a spatio-temporal neighborhood of each pixel in a frame.
Yet, small movements of the mouth may naturally occur

during non-speech intervals, thereby wrongly indicating speech
presence. To further improve the temporal characterization of
speech, we collect adjacent frames in time, and form
the following feature vector :

(10)
Similarly to the parameter in (9), the parameter is set to
a small value to confine the dimensions of the video features.

B. Diffusion Maps
Speech production is usually associated with a small set of

physical constraints, e.g. the positions of lips, jaw and tongue,
which control the shape of the vocal tract [36]. A common prac-
tice is to use a parametric model for the production of speech,
where the parameters are related to the physical constraints [37].
Assuming a set of such parameters implies that speech can
be represented in a dimensional space. Instead of assuming
a rigid parametric model, in this work we exploit a data driven
approach to learn a low dimensional representation of speech.
Our main assumption is that the high dimensional feature vec-
tors are not spread across the entire space, but rather lie on a
manifold of a significantly lower dimension. In particular, since
the features are specifically designed to emphasize the charac-
teristics of speech, we assume that the manifold, i.e., the geo-
metric structure of the features, is associated with the physical
constraints of the production of speech. Therefore, the dimen-
sion of the manifold does not depend on the dimensions of the
feature space which is dictated by the sensor (microphone or
camera) that captures the signal.
In order to capture this low dimensional geometric struc-

ture, we use diffusion maps [29], which is a manifold learning
method, that provides a parameterization of the data on the man-
ifold through the embedding of the high dimensional feature
vectors into a low dimensional space. In this work, diffusion
maps is implemented by first constructing an empirical model of
the manifold of the data using a training set, and then, the model
of the manifold is extended to the test set in a frame-by-frame
manner.
1) Construction of the Empirical Model Using the Training

Set: Diffusion maps is applied similarly and separately to the
feature vectors of each modality. Let be the feature vector
(audio or visual) of the th frame. A pairwise similarity kernel
function between the th frame and the th frame is
defined as:

(11)

where is the norm and is the kernel bandwidth chosen
according to [30]. Since the feature vectors are not uniformly
distributed on the manifold, the kernel is normalized to provide
a density invariant mapping [29]:

(12)

where is the kernel normalization factor given by:

(13)

where is a training set of (audio or video) feature
vectors. Based on the kernel, a weighted symmetric graph is
constructed, where each feature vector is viewed as a node,
and the weight of the edge connecting nodes and is given
by . We now define a Markov chain on the graph by
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normalizing the kernel once again. Let be a
row stochastic Markov matrix, which is given by

(14)

where

(15)

As a result, the nodes of the graph may be seen as the
states of a Markov chain with the transition probability matrix
. Finally, eigenvalue decomposition is applied to , yielding

eigenvalues , which are sorted in a descending order, and
corresponding eigenvectors . The eigenvalues of are in
the range of [0,1] due to the row normalization [29]. Moreover,

and its associated eigenvector is an all-ones vector.
This constant eigenvector is ignored since it does not contain
any information [38].
The largest eigenvalues of (excluding the trivial) and

their corresponding eigenvectors are used for the parameter-
ization of the feature vectors on the manifold. We form a matrix

whose columns consist of the eigenvectors and
the eigenvalues of the transition probability matrix:

(16)

From (16), the diffusionmapping of the feature vector is given
by the th row of the matrix :

(17)

Thus, we obtain an embedding of each feature vector into
a dimensional Euclidean space. According to our assump-
tion that there exists a low dimensional intrinsic structure of the
data, the spectrum of the transition probabilitymatrix (the eigen-
values) decays fast. Therefore, entries in (16) corresponding to
small eigenvalues are negligible and may be set to a small
value, thereby providing significant dimensionality reduction.
This property will be illustrated in Section V.
2) Online Processing of the Test Set: In Section III-B1, we

construct a low dimensional empirical model for the training
feature vectors in a batch manner. In this section, we show how
to extend the model to new incoming frames. The extension is
performed in a frame-by-framemanner similarly to the Nyström
method [30], [39].
Let and be a new incoming test frame and its corre-

sponding feature vector, respectively, and let be a
weighting vector. The th entry of the extended diffusion maps,
, is given by:

(18)

where is the transpose of the weighting vector and is
the th column of . The extension may be seen as a weighted
nearest neighbor interpolation, where consists of the inter-
polation weights. The th entry of the weighting vector repre-
sents the similarity between the incoming test frame and the
th training frame . Thus, the closer the extended frame is to

a particular training frame in the features domain, the higher
the weight of the diffusion maps entry of the training frame
is in the extension. Traditionally, when the Nyström method is
used to extend eigenvectors of a matrix, in our case ,
is given by . However, due to the normalization applied in
(12)–(15), can not be properly calculated in a frame-by-
frame manner. Therefore, the “true” interpolation weights are
approximated by a Gaussian kernel with the following correc-
tion [30]. Let be a vector whose th entry is given by
a Gaussian kernel:

(19)

where is the kernel bandwidth. Similarly, let
be a similarity matrix defined on the training set, whose ( )th
entry is also given by the Gaussian kernel:

(20)

The weighting vector is given by:

(21)

where the inverse matrix is used to correct the Gaussian
weights. The weights are designed to provide a consistent exten-
sion of the diffusion maps. Namely, by substituting a training
frame instead of the test frame into (19), the interpola-
tion weight is degenerated to the Kronecker delta function, i.e.,

, and the extended value coincides with the true value,
i.e., .
Based on equation (18), the low dimensional representation

of the test frame is given by:

(22)

This procedure is applied separately to each incoming test frame
with a computational cost which is linear with the size of the
training set, , making diffusion maps adequate for real time
applications.

C. Diffusion Distance
Let denote the diffusion distance between a pair of

feature vectors and , which is given by [38], [29]:

(23)

where is the unique stationary distribution of the Markov
chain and is given by:

(24)

The diffusion distance reflects the connectivity of the nodes
(feature vectors) in the graph: Short distances are obtained for
highly connected nodes due to high values of transition proba-
bilities between the nodes [29]. The diffusion distance is known
to be more robust to noise compared to the Euclidean distance,
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since it integrates information from many features, whereas the
Euclidean distance takes into account only two individual fea-
tures. In addition, the diffusion distance is unit-less as it is cal-
culated through transition probabilities. Therefore, it is suitable
for merging data captured in different types of sensors.
When all the eigenvalues and the eigenvectors are used for

the construction of diffusion maps in (17), i.e., , the
distance in the diffusion maps domain equals the diffusion

distance [29], [38]. Yet, even relatively small values of (the
dimension of the diffusion maps) provide an accurate approxi-
mation of the diffusion distance due to the fast spectrum decay:

(25)

This approximation allows for an efficient computation of the
diffusion distance from the embedding of the feature vectors.
The new representation is particularly suitable for estimating

the speech presence indicator both because of the specific choice
of the feature vectors that characterize speech, and because of
the properties of the diffusion mapping. The later provides a low
dimensional representation that captures the essence of the data
and a good distancemetric to compare embedded signal samples
based on their intrinsic structure.

IV. ESTIMATION OF THE SPEECH PRESENCE INDICATOR

A. Unimodal Estimation of Speech Presence Indicator

Based on the low dimensional representation of the signals,
we propose a continuous measure for voice activity, such
that the clustering is achieved by comparing the measure to
a threshold. This allows to control the tradeoff between false
alarms and correct detections and the algorithmmay be adjusted
to the particular application at hand.
Let be the measure for voice activity in frame .

comprises two components representing two different aspects
of speech presence. The first, denoted by , is supervised
and relies on the diffusion distance between a test frame and
the labeled training frames. The second, denoted by ,
is derived using an unsupervised procedure and further exploits
the dynamics of the signals.

is computed using a GMM procedure applied in the
diffusion maps domain. Let be a Gaussian mixture PDF,
given by:

(26)

where is the number of Gaussian components,
are the mixture weights that sum to one, and

is the PDF of the th Gaussian component, given
by:

(27)

where is the dimension of and is the determi-
nant of . We assume two such GMMs, one for the speech
absence hypothesis, , and the other for the speech presence

hypothesis, . In order to estimate the parameters
of each GMM, we use the training set, which

is separated according to its labeling into two clusters, one for
each hypothesis. The parameters of each GMM are estimated
using the corresponding cluster by the expectation-maximiza-
tion (EM) algorithm [40]. Let and be the
Gaussian mixture PDFs of the speech and the non-speech clus-
ters, respectively. Given a test frame , a bounded likelihood
ratio between the conditional densities is calculated:

(28)

where is a constant value which is used to confine the dy-
namical range of the likelihood ratio. A likelihood ratio above
this value, indicates voice activity with a high probability. In
practice, we set , and empirically found small in-
fluence on the performance of the algorithm for a wide range of
values. According to (28), the closer is to the speech training
cluster, the higher level is.
The supervised measure for voice activity is defined by:

(29)

Recall that in (9) and in (10), the use of the temporal neigh-
borhood to characterize speech was limited to keep reasonable
values of the dimensions of the features. In (29), the temporal
neighborhood is exploited without these limitations, and
is averaged over ( ) consecutive frames to smooth the
measure of voice activity and improve the estimation of speech
presence indicator. For example in non-speech intervals, short
term interruptions such as transients may provide instantaneous
high values of , yet, smoothing the measure over the temporal
neighborhood provides correct low levels of voice activity.
Before we turn to describe the construction of the second

voice activity measure, , we note that integration of these
measures requires them to be in the same range of values, which
is set for simplicity to [0,1]. The factor ( in (29)
properly keeps the values of in this range. In this context,
we remark that instead of using to confine the dynamical
range of in (28), a different approach is to apply a log to the
likelihood ratio. However, this approach does not confine the
values of the measure to a finite range as is necessary for the
integration between the measures. Another approach to get a fi-
nite value range for is to use the class posterior of the GMM
of the speech cluster. While this approach provides values in
the range of [0,1], it was empirically found to provide inferior
results compared to the performance of the proposed measure,

. One explanation to the inferior results is that this approach
only exploits the training data of the speech cluster while the
training data of the non-speech cluster is discarded.
The unsupervised activity measure exploits the vari-

ability between consecutive frames in the test set in terms of
diffusion distance and is defined by:

(30)



738 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015

where is the maximal diffusion distance between a pair
of frames in the training set, and is a normalization
factor, which is used to keep the values of (given a large
enough training set), in the range of [0,1], similarly to the value
range of . In speech absence periods, audio frames tend to
be similar to their adjacent frames as background noise varies
slower than speech. A similar property is observed in video
frames, as a slower mouth movement is assumed in speech ab-
sence periods compared to periods when speech is present. Ac-
cordingly, is expected to provide lower levels of voice ac-
tivity when speech is absent compared to when it is present, for
both modalities. According to (30) the variability of the frames
is measured in two non-overlapping windows: a causal window
and an anti-causal window, both of size . The func-
tion is used to reduce false detection at the beginning and at the
end of speech intervals. For example, correct low values of ac-
tivity are received right after the end of a speech interval due to
low values of variability in the anti-causal window despite high
levels of variability in the causal window. Speech presence es-
timation based on is viewed as an unsupervised procedure
since the training data is used only for the construction of diffu-
sion maps without its labeling.
The integrated activity measure of frame is given by:

(31)

The performance of the supervised measure highly depends
on the similarity of the tested signal to the training set. However,
tested frames may be close to the wrong cluster in the training
set due to differences, e.g., between speakers or acoustic con-
ditions, in the tested and the training sets. For the unsupervised
measure, the training set is utilized only for the construction of
diffusion maps, and therefore it is more resistant to such dif-
ferences. As a result, the integration between the measures pro-
vides an improved measure as we will show in Section V.

B. Bimodal Estimation of Speech Presence Indicator
Let and be the measures of voice activity from

the audio and video signals, respectively. We compute the bi-
modal activity according to:

(32)

where is in the range of [0,1] and controls the given weight to
the two modalities. The setting of this parameter is application
dependent. When the audio signal is relatively clean, should
be set close to 1. To quantify the quality of the audio signal, the
estimate of the SNR in the audio signal may be used to adjust
over time. Further adaption of may prevent failure of the

algorithm in challenging real scenarios. For example, may be
set to 1 for frames where a speaker moves his head out of the
frame, thereby making the video signal irrelevant.
In this work, for simplicity we set . Combining the

modalities this way was derived in [41] through a Bayesian
model under restrictive assumptions that the modalities are sta-
tistically independent and that a posteriori probability of each
modality remains close to the priors. Nevertheless, it was empir-
ically found to outperform other fixed functions for combining
the two modalities (such as a product, minimum, maximum, and

median) due to better resistance to estimation errors. This simple
combination empirically showed good results as illustrated in
Section V. Adaptive setting of will be addressed in a future
work.
A different approach for combining the modalities can be

achieved by concatenating the diffusion maps of each modality
into a single super-vector [38], [30]. As a result, the speech pres-
ence indicator can be estimated in a unified diffusion maps do-
main, and in (31) represents a bimodal measure for speech
presence. However, this approach does not allow to control the
given weight to each one of the two modalities, as can be done
by in (32).
The proposed measure of voice activity gets

values in the range of [0,1], and hence, it can be viewed as
a generalized a posteriori probability for speech. Finally, the
estimate of the speech presence indicator is computed by
comparing to a threshold :

(33)

Future frames which are used in (9), (10), (29) and (30) induce
a lag in online processing. The number of lagged frames, ,
is given by:

(34)

The effect of the lag on real time processing is discussed in
Section V.
Algorithm 1 summarizes the proposed VAD. For simplicity,

the algorithm is presented under the assumption that future
frames are available.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
The experimental setup simulates a video call made from a

smartphone. The data set comprises 11 speakers reading aloud
an article. During the experiments, the speakers make natural
pauses every few sentences. As a results, the typical lengths of
the recorded speech and non-speech intervals range from

ms to s.
The video is recorded using a frontal camera of a smartphone

(Samsung I9100, [fps], resolution), providing
front side videos of the speakers. The video is converted to gray
scale to reduce the computational load. A bounding box of the
mouth ( pixels) is cropped out of the videos.
Although cropping the bounding box of the mouth extends

the scope of this work, we shortly explain the procedure per-
formed in our experiments as a preprocessing stage. The crop-
ping is based on nostrils tracking, which are manually marked
in the first frame, and are then searched in the following frames
in a small area around their previous location. The search is per-
formed under the assumption that the pixels, where the nostrils
are located, have lower intensity values relatively to skin and
lips pixels due to shading. Such a method for nostrils tracking
was previously explored in [42].
The bounding box of the mouth is downsampled by a factor

of 10 to reduce the computational load in the calculation of the
motion vectors, and and are set to 11 and 9 (all the used
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Algorithm 1 Audio-visual voice activity detection

procedure Training
Input: training data-
Output: diffusion maps- ; estimate of the
PDFs, and , for the GMM

1: for do
2: Calculate the feature vectors ,
3: end for
4: Do for each modality separately:
5: Calculate the transition probability matrix using

(11)–(15)
6: Apply eigenvalue decomposition on and obtain the

eigenvalues and the eigenvectors
7: Build diffusion maps ( for

audio and for video) using (16) and (17)
8: Train the GMMs using the labeling and estimate

and
end procedure
procedure Test
Input: test data-
Output: speech presence indicator estimate-

1: Get a new frame ,
2: Calculate the feature vectors ,
3: Extend the diffusion maps , using (18) and (22)
4: Do for each modality separately:
5: Calculate the first voice activity measure using

the PDFs of the GMM according to (28) and (29)
6: Calculate the second voice activity measure

according to (30)

7: Integrate the measures:
8: Merge the modalities:

9: if then
10: Decide
11: else
12: Decide
13: end if
14: Go back to 1

end procedure

parameters values are presented in Table I). An example of a
speech frame image and an illustration of the correspondingmo-
tion vectors are presented in Fig. 1, demonstrating that motion
vectors capture the shape of the mouth and its movement with
respect to the previous frame.
The audio is recorded by the microphone of the smartphone

and is processed in 8 [kHz] (higher processing rates have shown
no advantage). The recordings are performed in a quiet room
(estimated audio SNR of [dB]) and are regarded as a
clean audio signal. The audio signal is processed using short
time frames of length with 50% overlap. Such a con-
figuration aligns the rates of the audio and video signals.

Fig. 1. Motion vectors in a speech interval and the corresponding video frame.

TABLE I
ALGORITHM PARAMETERS

The training data set is created by collecting 30 [sec] long data
sequences of 6 speakers (the total training data set is 180 [sec],
4542 frames). We empirically find that a 180 [sec] long signal
both contains sufficient amount of training data and the eigen-
value decomposition can be efficiently applied to (using Intel
Core i5-2500 CPU and 4 GB RAM). To make the calculation
more efficient, may be processed in blocks similarly to [16].
The algorithm is trained for challenging acoustic environ-

ments: various background noise types, which include white
Gaussian noise, musical instruments noise, and babble noise,
and various transient interferences, such as metronome, key-
board typing, and hammering, taken from [43], are added to the
training audio signal of each speaker. The algorithm is trained
for 0 and 5 dB SNR values, and the transients are normalized
to have maximal amplitude twice larger than the maximal am-
plitude of speech. The training data of each speaker contains all
possible combinations of background noise and transients. This
training setup extends the setup in [16], where merely a single
background noise and a single transient type were used for the
training in each experiment.
The algorithm is tested using 60 s long data sequences of

each of the 11 speakers. To prevent over fitting, for each tested
speaker the algorithm is retrained with training data which do
not contain the tested speaker.

B. Qualitative Evaluation

The 20 largest eigenvalues of the audio and video sets,
in (16), are plotted in a decreasing order in Fig. 2, demonstrating
fast decay of the spectrum. A spectral gap can be seen between
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Fig. 2. Twenty largest eigenvalues of transition probability matrix, (a) audio,
(b) video.

the fourth and fifth eigenvalues for the audio signal. This gap,
heuristically implies that the intrinsic dimension of the signal is
4 [44]. Consequently, we set the dimension of diffusion maps to

in (17) for each modality. The choice of 8 parameters
(4 for each modality) for representing a frame yields a signifi-
cant dimensionality reduction of the data, and hence, allows for
low computational complexity of the estimation procedure. In
addition, these parameters capture just the essence of the data
without noise and other nuisance factors, thereby allowing ac-
curate detection of voice activity. The difference in the visual
data representation from most of the previous studies, such as
[24] and [27], is that in this work the parameters representing
the mouth movement are obtained implicitly in a data-driven
manner and are not defined in advance.
Themeasures of voice activity in (29) and in (30) are

calculated using past and future frames. This
configuration induces a lag of frames in (34), which
is ms for fps frame rate. Our experiments showed
that lower values of lag may be set at the expense of a small
degradation of the performance. In addition, for the evaluation
of we set the number of Gaussians to 5 to model both the
speech and the non-speech clusters. To set this value, we empiri-
cally evaluated the performance of the algorithm using different
number of Gaussians to model the speech and the non-speech
clusters. We empirically found that the use of a small number of
Gaussians for each one of the clusters provides good classifica-
tion results, which could be explained by the compact represen-
tation of the data using diffusionmaps. Our experiments showed
no advantage of a higher number of Gaussians neither for the
speech nor for the non-speech clusters. The number of Gaus-
sians for the non-speech cluster is similar to that of the speech
cluster due to the challenging conditions during non-speech in-
tervals which include transients for the audio signal and non-
speech lips movements for the video signal.
An example of the obtained voice activity detection is shown

in Fig. 3. The input signal (black solid line) in this example is
contaminated with a 10 dB babble noise and keyboard typing
transients. Despite the frequent appearance of the transients, we
observe an accurate speech presence indicator estimation when
compared to the marked ground truth. We note that in this ex-
ample, the threshold in (33) is empirically chosen to provide
best estimation results. Although it is not in the scope of this
work, in practice, the threshold may be set using the training
data by evaluating the performance of the algorithm using a val-
idation set.

Fig. 3. Qualitative assessment of AV-VAD, with babble noise with 10 dB SNR
and keyboard typing transient interferences. (a) Input signal- black solid line,
ground truth - red stars graph, speech presence estimation using the proposed
method - blue squares graph, the locations of the transients - green circles graph.
(b) A spectrogram of the input signal.

C. Performance Evaluation Measure

For voice activity detection, the ground truth may be appli-
cation dependent. For example, in speech recognition applica-
tions, isolated phonemes may be useful, and hence, the voice de-
tection should ideally have a fine resolution in the order of few
tens of milliseconds. On the other hand, in videoconferencing
systems, where a central processing unit switches between cam-
eras according to a dominant speaker [2], frequent switching
between speakers should be avoided, and hence, coarser voice
activity detection is required.
In addition, the ground truth depends on the modality (audio

or video). Speech onsets, for example, may be accompanied
with air aspiration, which is helpful for visual speech per-
ception, and therefore, is considered as speech for the video
signal but not for the audio signal. Another example is voiced
phonemes. While the ends of voice phonemes are audible, they
are not visual due to the lack of a mouth movement.
Therefore, we extend the definition of the speech indicator in

(2). Similarly to the hypotheses and , let and be
the hypotheses for speech absence and speech presence in the
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audio signal, respectively. Accordingly, let be an audio
speech indicator, given by:

(35)

The audio speech indicator is manually marked using a spectro-
gram of a clean speech signal with a resolution of 100 [msec].
Similarly, let and be the hypotheses for speech absence
and speech presence in the video signal, respectively. Accord-
ingly, let be a video speech indicator given by:

(36)

The video speech indicator is manually marked as speech
present when mouth moves during speech intervals (a natural
mouth movement when speech is absent is neglected). The
unified speech indicator which is defined in (2) is given
by:

(37)

where is an “or” function. This setting may be adequate for
applications such as audio-visual speech coding, where speech
should be counted for each one of the sensors.
The quantitative performance is evaluated in three experi-

ments. In the first and second experiments, unimodal versions
of the proposed algorithm are compared to the state of the art
and recently presented VADs. To evaluate the performance of
the unimodal versions, in (32) is replaced with the
single modality activity measure defined in (31): for
audio and for video. For these experiments, the ground
truth is given by (35) and (36) for evaluation based on only
the audio signal and only the video signal, respectively. In the
third experiment, the proposed AV-VAD is compared to the
single modality versions using the audio-visual ground truth
given by (37).

D. VAD Evaluation
The performance of the proposed algorithm based on the

audio signal is compared to the methods presented in [3], [4],
[5], [14] and [16]. Similarly to the proposed algorithm, in the
algorithms presented in [4] and [16], the likelihood ratio is
calculated in past and future frames. This allows for activity
level smoothing and is more adequate for the ground truth
setting in this work. However, in the VAD presented in [3], [5]
and [14] the likelihood ratio is calculated for a single frame,
which makes the detection less adequate to this application.
To make a fair comparison, we smooth the VADs in [3], [5]
and [14] with a median filter of length 19, which significantly
improves their performance.
The proposed algorithm based on the video is compared to

the method presented in [24]. Unlike the proposed algorithm,
the VAD presented in [24] is not designed to perform in real
time, as the parameters of the noise statistics in [24] are esti-
mated in a batch manner. For simplicity of the implementation,
these parameters are estimated using the ground truth of the test
data set. We remark that estimation using the training set was
also performed as suggested in [23]. Although it allows real time
processing, our experiments show significant degradation of the

Fig. 4. Audio algorithms. Probability of detection vs probability of false
alarm. Test for babble noise with 10 dB SNR and keyboard typing transient
interferences.

Fig. 5. Audio algorithms. Probability of detection vs probability of false alarm.
Test for musical instruments noise with 10 dB SNR and hammering transient
interferences.

performance of the competing algorithm, and hence, these re-
sults are not presented in the figures. In addition, we also eval-
uated the algorithm presented in [27]. We found that the proce-
dure that separates the lips from the skin performed poorly on
some of the videos in our data set, probably due to the lightening
conditions. As a result, the overall performance of the algorithm
was not comparable to the other two algorithms, and hence, is
not presented in the figures.
Figs. 4–8 present the obtained Receiver Operating Charac-

teristic (ROC) curves, which are generated by spanning the
threshold over all possible activity values. The maximal per-
formance of each method is presented in Tables II and III and
is obtained using the threshold which provides the best results
in terms of correct detection rate plus correct rejection rate.
In Figs. 4 and 5, we present the results of the evaluation of the

algorithms based on the audio signal, where the curves marked
by “Chang,” “Ramirez,” “Sohn,” “Ishizuka” and “Mousazadeh”
relate to the methods presented in [5], [4], [3], [14] and [16],
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TABLE II
AUDIO ALGORITHMS RESULTS IN TERMS OF CORRECT DETECTION RATE PLUS CORRECT REJECTION RATE IN PERCENTS

TABLE III
AUDIO-VISUAL ALGORITHMS RESULTS IN TERMS OF CORRECT DETECTION RATE PLUS CORRECT REJECTION RATE IN PERCENTS

Fig. 6. Video algorithms. Probability of detection vs probability of false alarm.
Best results in terms of correct detection rate plus correct rejection rate: Siatras-
77.5%, Proposed Audio-90.6%.

respectively. In Fig. 4, the algorithm is tested for babble noise
with 10 dB SNR and keyboard typing transients and in Fig. 5 for
musical instruments noise with 10 dB SNR and hammering
transients.
It can be seen in Fig. 4 that the methods “Chang,” “Ramirez”

and “Sohn,” where the likelihood ratio is estimated assuming
slow variation of the noise spectrum, provide inferior results in
the presence of keyboard transient which is estimated as speech

Fig. 7. Audio, video and audio-visual algorithms. Probability of detection vs
probability of false alarm. Test for babble noise with 10 dB SNR and keyboard
transient interferences.

due to the fast variation of its spectrum. In Fig. 5, the perfor-
mance of the method “Ishizuka” are degraded since musical in-
struments noise may be mistakenly detected as speech due to its
periodic nature in the frequency domain, and the performance
of the method “Mousazadeh” are degraded since the spectral
clustering method poorly separates between the speech and the
non-speech clusters. It can be seen in both figures that the pro-
posed algorithm outperforms the competing audio VADs for the



DOV et al.: AUDIO-VISUAL VAD USING DIFFUSION MAPS 743

Fig. 8. Audio, video and audio-visual algorithms. Probability of detection vs
probability of false alarm. Test for musical instruments noise with 10 dB SNR
and hammering transient interferences.

different types of background noises and transients. We empha-
size that the presented results of the proposed algorithm are
achieved with a single training set consisting of the different
types of background noises and transients. Namely, the type of
the tested background noise and transient are not known in ad-
vance. The improved performance of the proposed algorithm
based on the audio signal are further demonstrated in Table II for
different types of background noises and transients and different
SNR values.
The results of the algorithms based on the video signal are

presented in Fig. 6, where the curve marked by “Siatras” relates
to the method presented in [24]. It can be seen that the proposed
algorithm outperforms the VAD in [24] for all possible values of
false alarm rates. In addition, a high slope of the ROC curve of
the proposed VAD is observed for low false alarm rates, thereby
providing fast convergence to high detection rates.
In the third experiment, we evaluate the performance of the

proposed AV-VAD and compare it to the performance of the
algorithm using single modalities. In addition, we compare the
proposed algorithm to the AV-VAD presented in [25].
The performances of the algorithms are presented in Figs. 7,

8 and in Table III. In Fig. 7, the algorithms are tested for babble
noise with 10 dB SNR and keyboard typing transients, and
in Fig. 8 the algorithms are tested for musical instruments
noise with 10 dB SNR and hammering transients. It can be
seen in both figures that the proposed algorithm outperforms
the method presented in [25] which is marked in the plots by
“Tamura.” While the modalities in the proposed method are
merged in (32) similarly to the merging scheme in [25], the
main difference between the methods is that in this study, the
representation of each modality is learned from the data and
therefore, allows improved separation between the speech and
the non-speech frames. In addition, due to the noisy acoustic
conditions, the audio and the video versions of the proposed
algorithm provide comparable results. In particular, they com-
plement each other such that the audio version better performs
for low values of false alarm, and the video version is better for
the high values. The proposed bimodal algorithm embodies the

advantages of each of the modalities, and provides best perfor-
mance for each false alarm value. In Table III we also evaluate
the performance of versions of the proposed algorithm where
the speech indicator is estimated based solely on the supervised
activity measure, presented in (29), or the unsupervised
activity measures, presented in (30). It can be seen in the
table that these measures complement each other. In particular
for babble noise with 15 dB SNR and scissors transient, the
unsupervised measure provides relatively low results since this
type of transient is characterized by higher variability over
time, compared to the other transients, which leads to false
alarms. Yet, this transient is successfully separated from the
speech signal in the diffusion maps domain and the supervised
measure allows for an accurate classification. The proposed
algorithm, which is based on the integrated measure in (31),
performs better than the versions of the algorithm which are
based solely on or , and provides the best performance
for the different types of noises and transients.

VI. CONCLUSIONS
We have presented an algorithm for audio-visual voice

activity detection. The algorithm is based on a low dimensional
representation of the audio and the video signals which is
constructed by applying diffusion mapping to features which
are specifically designed to separate speech from non-speech
frames. This representation of the signals is robust to noise, and
facilitates a measure for voice activity that takes into account
both training labeled data as well as the temporal variability
of the signals. In addition, since diffusion maps are unit-less,
the low dimensional representation is particularly suitable for
processing data captured in different types of sensors. Ex-
perimental results have demonstrated that the proposed VAD
based merely on the audio or the video signal outperforms
state-of-the-art VADs. In addition, it has been shown that the
proposed algorithm based on both the audio and the video
outperforms each of the unimodal VADs and provides accurate
voice activity detection in adverse noisy environments.
In the present study, equal weights are assigned to the two

modalities in the merging scheme. In future research, we intend
to develop adaptive merging schemes, which incorporate esti-
mates of the quality of the (audio and video) signals. Another
future research direction is further improving the separation be-
tween speech and transients. This may be achieved by including
estimates of the transients (e.g., as proposed in [9]).
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