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Spectral Enha44. Spectral Enhancement Methods

I. Cohen, S. Gannot

In this chapter, we focus on the statistical methods
that constitute a speech spectral enhancement
system and describe some of their fundamental
components. We begin in Sect. 44.2 by formu-
lating the problem of spectral enhancement. In
Sect. 44.3, we address the time–frequency corre-
lation of spectral coefficients for speech and noise
signals, and present statistical models that con-
form with these characteristics. In Sect. 44.4, we
present estimators for speech spectral coefficients
under speech presence uncertainty based on var-
ious fidelity criteria. In Sect. 44.5, we address the
problem of speech presence probability estima-
tion. In Sect. 44.6, we present useful estimators
for the a priori signal-to-noise ratio (SNR) un-
der speech presence uncertainty. We present the
decision-directed approach, which is heuristically
motivated, and the recursive estimation approach,
which is based on statistical models and follows
the rationale of Kalman filtering. In Sect. 44.7,
we describe the improved minima-controlled
recursive averaging (IMCRA) approach for noise
power spectrum estimation. In Sect. 44.8, we pro-
vide a detailed example of a speech enhancement
algorithm, and demonstrate its performance in en-
vironments with various noise types. In Sect. 44.9,
we survey the main types of spectral enhance-
ment components, and discuss the significance of
the choice of statistical model, fidelity criterion,
a priori SNR estimator, and noise spectrum esti-
mator. Some concluding comments are made in
Sect. 44.10.
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The problem of spectral enhancement of noisy speech
signals from a single microphone has attracted consider-
able research effort for over 30 years. It is a problem with
numerous applications ranging from speech recognition,
to hearing aids and hands-free mobile communication.
In this chapter, we present the fundamental compo-
nents that constitute a speech spectral enhancement
system. We describe statistical models that take into

consideration the time correlation between successive
spectral components of the speech signal, and present
estimators for the speech spectral coefficients based on
various fidelity criteria. We address the problem of a pri-
ori SNR estimation under speech presence uncertainty,
and noise power spectrum estimation. We also provide
a detailed design example of a speech enhancement
algorithm.
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874 Part H Speech Enhancement

44.1 Spectral Enhancement

Spectral enhancement of noisy speech has been a chal-
lenging problem for many researchers for over 30 years,
and is still an active research area (see e.g., [44.1–
3] and references therein). This problem is often
formulated as the estimation of speech spectral com-
ponents from a speech signal degraded by statistically
independent additive noise. In this chapter we con-
sider spectral enhancement methods for single-channel
set-ups, assuming that only one-microphone noisy out-
put is available for the estimation. The situation of
one-microphone setups is particularly difficult under
nonstationary noise and a low signal-to-noise ratio
(SNR), since no reference signal is available for the
estimation of the background noise.

A variety of different approaches for spectral en-
hancement of noisy speech signals have been introduced
over the years. One of the earlier methods, and perhaps
the most well-known approach, is spectral subtrac-
tion [44.4, 5], in which an estimate of the short-term
power spectral density of the clean signal is obtained
by subtracting an estimate of the power spectral den-
sity of the background noise from the short-term power
spectral density of the degraded signal. The square
root of the resulting estimate is considered an esti-
mate of the spectral magnitude of the speech signal.
Subsequently, an estimate of the signal is obtained by
combining the spectral magnitude estimate with the
complex exponential of the phase of the noisy signal.
This method generally results in random narrowband
fluctuations in the residual noise, also known as mu-
sical tones, which is annoying and disturbing to the
perception of the enhanced signal. Many variations have
been developed to cope with the musical residual noise
phenomena [44.4, 6–9], including spectral subtraction
techniques based on masking properties of the human
auditory system [44.10, 11].

The spectral subtraction method makes minimal
assumptions about the signal and noise, and when
carefully implemented, produces enhanced signals that
may be acceptable for certain applications. Statisti-
cal methods [44.12–16] are designed to minimize the
expected value of some distortion measure between
the clean and estimated signals. This approach re-
quires the presumption of reliable statistical models
for the speech and noise signals, the specification
of a perceptually meaningful distortion measure, and
a mathematically tractable derivation of an efficient
signal estimator. A statistical speech model and per-
ceptually meaningful distortion measure, which are the

most appropriate for spectral enhancement, have not
yet been determined. Hence, statistical methods for
spectral enhancement mainly differ in their statistical
model [44.12, 14, 15], distortion measure [44.17–19],
and the particular implementation of the spectral en-
hancement algorithm [44.2].

Spectral enhancement based on hidden Markov pro-
cesses (HMPs) try to circumvent the assumption of
specific distributions for the speech and noise pro-
cesses [44.20–23]. The probability distributions of the
two processes are first estimated from long training
sequences of clean speech and noise samples, and
then used jointly with a given distortion measure to
derive an estimator for the speech signal. Normally,
vectors generated from a given sequence of states
are assumed to be statistically independent. However,
the HMP can be extended to take into account the
time–frequency correlation of speech signals by using
nondiagonal covariance matrices for each subsource,
and by assuming that a sequence of vectors gener-
ated from a given sequence of states is a nonzero-order
autoregressive process [44.21, 24]. HMP-based speech
enhancement relies on the type of training data [44.25].
It works best with the type of noise used during
training, and often worse with other types of noise.
Furthermore, improved performance generally entails
more-complex models and greater computational re-
quirements. While hidden Markov models have been
successfully applied to automatic recognition of clean
speech signals [44.26, 27], they were not found to be
sufficiently refined models for speech enhancement ap-
plications [44.3].

Subspace methods [44.28–31] attempt to decompose
the vector space of the noisy signal into a signal-
plus-noise subspace and a noise subspace. Spectral
enhancement is performed by removing the noise
subspace and estimating the speech signal from the re-
maining subspace. The signal subspace decomposition
can be achieved by either using the Karhunen–Loève
transform (KLT) via eigenvalue decomposition of
a Toeplitz covariance estimate of the noisy vector [44.28,
30], or by using the singular value decomposition of
a data matrix [44.32, 33]. Linear estimation in the
signal-plus-noise subspace is performed with the goal
of minimizing signal distortion while masking the resid-
ual noise by the signal. A perceptually motivated signal
subspace approach takes into account the masking prop-
erties of the human auditory system and reduces the
perceptual effect of the residual noise [44.34, 35].
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Spectral Enhancement Methods 44.2 Problem Formulation 875

44.2 Problem Formulation

Let x(n) and d(n) denote speech and uncorrelated addi-
tive noise signals, respectively, where n is a discrete-time
index. The observed signal y(n), given by y(n) = x(n)+
d(n), is transformed into the time-frequency domain
by applying the short-time Fourier transform (STFT).
Specifically,

Ytk =
N−1∑

n=0

y(n + tM)h(n)e−i 2π
N nk , (44.1)

where t is the time frame index (t = 0, 1, . . . , k) is the
frequency bin index (k = 0, 1, . . . , N −1), h(n) is an
analysis window of size N (e.g., Hamming window),
and M is the framing step (number of samples separating
two successive frames). Given an estimate X̂tk for the
STFT of the clean speech (Fig. 44.1), an estimate for the
clean speech signal is obtained by applying the inverse
STFT,

x̂(n) =
∑

t

N−1∑

k=0

X̂tkh̃(n − tM)ei 2π
N k(n−tM) , (44.2)

where h̃(n) is a synthesis window that is biorthogonal
to the analysis window h(n) [44.36], and the inverse
STFT is efficiently implemented by using the weighted
overlap-add method [44.37] (see also Sect. 44.8).

The spectral enhancement problem is generally for-
mulated as deriving an estimator X̂tk for the speech
spectral coefficients, such that the expected value
of a certain distortion measure is minimized. Let
d(Xtk, X̂tk) denote a distortion measure between Xtk and
its estimate X̂tk, and let ψt represent the information set
that can be employed for the estimation at frame t (e.g.,
the noisy data observed through time t). Let Htk

1 and Htk
0

denote, respectively, hypotheses of signal presence and
absence in the noisy spectral coefficient Ytk:

Htk
1 : Ytk = Xtk + Dtk

Htk
0 : Ytk = Dtk .
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Fig. 44.1 Spectral enhancement approach

Let p̂tk = P(Htk
1 |ψt) denote an estimate for the signal

presence probability, λ̂tk = E{|Xtk|2|Htk
1 , ψt} denote an

estimate for the variance of a speech spectral coefficient
Xtk under Htk

1 , and σ̂2
tk = E{|Ytk|2|Htk

0 , ψt} denote an
estimate for the variance of a noise spectral coefficient
Dtk . Then, we consider an estimator for Xtk which min-
imizes the expected distortion given p̂tk , λ̂tk, σ̂2

tk and the
noisy spectral coefficient Ytk:

min
X̂tk

E
{

d
(

Xtk, X̂tk

) ∣∣∣ p̂tk, λ̂tk, σ̂
2
tk, Ytk

}
. (44.3)

In particular, restricting ourselves to a squared error
distortion measure of the form

d
(
Xtk, X̂tk

)= ∣∣g(X̂tk)− g̃(Xtk)
∣∣2 , (44.4)

where g(X) and g̃(X) are specific functions of X (e.g.,
X, |X|, log |X|, ei � X ), the estimator X̂tk is calculated
from

g(X̂tk) = E
{
g̃(Xtk)

∣∣ p̂tk, λ̂tk, σ̂
2
tk, Ytk

}

= p̂tk E
{
g̃(Xtk)

∣∣Htk
1 , λ̂tk, σ̂

2
tk, Ytk

}

+ (1− p̂tk)E
{
g̃(Xtk)

∣∣Htk
0 , Ytk

}
. (44.5)

Hence, the design of a particular estimator for Xtk
requires the following specifications:

• Functions g(X) and g̃(X), which determine the fi-
delity criterion of the estimator• A conditional probability density function (pdf)
p(Xtk|λtk, Htk

1 ) for Xtk under Htk
1 given its variance

λtk, which determines the statistical model• An estimator λ̂tk for the speech spectral variance
• An estimator σ̂2

tk for the noise spectral variance
• An estimator p̂tk|t−1 = P(Htk

1 |ψt−1) for the a priori
signal presence probability, where ψt−1 represents
the information set known prior to having the mea-
surement Ytk
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876 Part H Speech Enhancement

Given the a priori signal presence probability p̂tk|t−1, the
(a posteriori) signal presence probability can be obtained
from Bayes’ rule:

p̂tk = P
(
Htk

1

∣∣Ytk, ψt−1
)

=
[

1+
(
1− p̂tk|t−1

)
p
(
Ytk|Htk

0 , ψt−1
)

p̂tk|t−1 p
(
Ytk|Htk

1 , ψt−1
)

]−1

.

(44.6)

In the following sections we present statistical
models for speech signals in the STFT domain, and
address the estimation problem of the speech spectral
coefficient Xtk given λ̂tk, σ̂2

tk, and p̂tk. Then we con-
sider the estimation of the speech spectral variance λtk,
the noise spectral variance σ2

tk , and the speech presence
probability P(Htk

1 ), and describe an example of a speech
enhancement algorithm.

44.3 Statistical Models

In this section, we present statistical models that take into
account the time correlation between successive spec-
tral components of the speech signal. To see graphically
the relation between successive spectral components
of a speech signal, in comparison with a noise sig-
nal, we present scatter plots for successive spectral
magnitudes, and investigate the sample autocorrelation
coefficient sequences (ACSs) of the STFT coefficients
along time trajectories (the frequency bin index k
is held fixed). We consider a speech signal that is
constructed from six different utterances, without inter-
vening pauses. The utterances, half from male speakers
and half from female speakers, are taken from the
TIMIT database [44.38]. (A corpus of phonemically
and lexically transcribed speech of American English
speakers of different sexes and dialects. The speech was
recorded at Texas Instruments (TI) and transcribed at
Massachusetts Institute of Technology (MIT), hence the
corpus’ name.) The speech signal is sampled at 16 kHz,
and transformed into the STFT domain using Ham-
ming analysis windows of 512 samples (32 ms) length,
and 256 samples framing step (50% overlap between
successive frames).

Figure 44.2 shows an example of scatter plots for
successive spectral magnitudes of white Gaussian noise
(WGN) and speech signals. It implies that 50% overlap
between successive frames does not yield a signifi-
cant correlation between the spectral magnitudes of
the WGN signal. However, successive spectral mag-
nitudes of the speech signal are highly correlated.
Figure 44.3 shows the ACSs of the speech spectral
components along time trajectories, for various fre-
quency bins and framing steps. The 95% confidence
limits [44.39] are depicted as horizontal dotted lines.
In order to prevent an upward bias of the autocovari-
ance estimates due to irrelevant (nonspeech) spectral
components, the ACSs are computed from spectral

components whose magnitudes are within 30 dB of
the maximal magnitude. Specifically, the sample auto-
correlation coefficients of the spectral magnitudes are
calculated by

ρm =
∑
t∈T

(
Atk − Ak

)(
At+m,k − Ak

)

∑
t∈T

(
Atk − Ak

)2
, (44.7)

where Atk � |Xtk| denotes the magnitude of Xtk,

Ak = 1

|T |
∑

t∈T

Atk

denotes the sample mean, m is the lag in frames,
and T represents the set of relevant spectral compo-
nents

T =
{

t
∣∣∣Atk ≥ 10−30/20 max

t
{Atk}

}
.

The corresponding sample autocorrelation coefficients
of the spectral phases are obtained by

�m =
∑
t∈T

ϕtkϕt+m,k

∑
t∈T

ϕ2
tk

, (44.8)

where ϕtk denotes the phase of Xtk. Figure 44.4 shows
the variation of the correlation between successive spec-
tral magnitudes on frequency and on overlap between
successive frames. Figures 44.3 and 44.4 demonstrate
that, for speech signals, successive spectral magni-
tudes are highly correlated, while the correlation is
generally larger at lower frequencies, and increases as
the overlap between successive frames increases. As
a comparison, the variation of ρ1 on the overlap be-
tween frames is also shown for a realization of WGN
(Fig. 44.4b, dotted line). It implies that, for a suf-
ficiently large framing step (M ≥ N/2, i. e., overlap
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Spectral Enhancement Methods 44.3 Statistical Models 877

between frames ≤ 50%), successive spectral compo-
nents of the noise signal, but clearly not of the speech
signal, can be assumed uncorrelated. For smaller fram-
ing steps, the correlation between successive spectral
noise components also has to be taken into consid-
eration. Furthermore, since the length of the analysis
window cannot be too large (its typical length is
20–40 ms [44.12]), adjacent Fourier expansion coef-
ficients of the noise signal, Dtk and Dt,k+1, as well
as adjacent coefficients of the speech signal, Xtk and
Xt,k+1, are also correlated to a certain degree. Neverthe-
less, it is commonly assumed that expansion coefficients
in different frequency bins are statistically indepen-
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Fig. 44.2a,b Scatter plots for successive spectral magni-
tudes of (a) a white Gaussian noise signal, and (b) a speech
signal at a center frequency of 500 Hz (k = 17). The overlap
between successive frames is 50% (after [44.15])

dent [44.12, 15, 16, 40]. This allows one to formulate
independent estimation problems for each frequency bin
k, which greatly simplifies the resulting algorithms. In
view of this discussion, we employ statistical models
in the STFT domain that rely on the following set of
assumptions [44.41].

1. The noise spectral coefficients {Dtk} are zero-mean
statistically independent Gaussian random variables.
The real and imaginary parts of Dtk are independent
and identically distributed (iid) random variables
N (0, σ2

tk/2).
2. Given {λtk} and the state of speech presence in each

time–frequency bin (Htk
1 or Htk

0 ), the speech spectral
coefficients {Xtk} are generated by

Xtk =√
λtkVtk , (44.9)

where {Vtk|Htk
0 } are identically zero, and {Vtk|Htk

1 }
are statistically independent complex random vari-
ables with zero mean, unit variance, and iid real and
imaginary parts:

Htk
1 : E{Vtk} = 0, E

{|Vtk|2
} = 1 ,

Htk
0 : Vtk = 0 . (44.10)

3. The pdf of Vtk under Htk
1 is determined by the

specific statistical model. Let VRtk = Re{Vtk} and
VItk = Im{Vtk} denote, respectively, the real and
imaginary parts of Vtk. Let p(Vρtk|Htk

1 ) denote the
pdf of Vρtk (ρ ∈ {R, I}) under Htk

1 . Then, for a Gaus-
sian model

p
(
Vρtk|Htk

1

) = 1√
π

exp
(− V 2

ρtk

)
, (44.11)

for a gamma model

p
(
Vρtk|Htk

1

)

= 4√3
2
√

π
4√2

|Vρtk|−1/2 exp

(
−

√
3|Vρtk |√

2

)
, (44.12)

and for a Laplacian model

p
(
Vρtk|Htk

1

) = exp(−2|Vρtk|) . (44.13)

4. The sequence of speech spectral variances
{λtk|t = 0, 1, . . . } is a random process, which is gen-
erally correlated with the sequence of speech spectral
magnitudes {Atk|t = 0, 1, . . . }. However, given λtk,
Atk is statistically independent of At′k′ for all t �= t′
and k �= k′.

Clearly, the first assumption does not hold when the over-
lap between successive frames is too large (Fig. 44.4b,
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Fig. 44.3a–d Sample autocorrelation coefficient sequences (ACSs) of clean-speech STFT coefficients along time trajec-
tories, for various frequency bins and framing steps. The dotted lines represent 95% confidence limits. (a) ACS of the
spectral magnitude at frequency bin k = 17 (center frequency 500 Hz), framing step M = N/2 (50% overlap between
frames). (b) ACS of the spectral phase, k = 17, M = N/2. (c) ACS of the spectral magnitude, k = 65 (center frequency
2 kHz), M = N/2. (d) ACS of the spectral magnitude, k = 17, M = N/4 (75% overlap between frames) (after [44.15])

dotted line). Therefore, we assume that the STFT is
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implemented in accordance with this assumption (e.g.,
the overlap is not greater than 50%). The second as-
sumption implies that the speech spectral coefficients
{Xtk|Htk

1 } are conditionally zero-mean statistically in-
dependent random variables given their variances {λtk}.
The real and imaginary parts of Xt under Ht

1 are
conditionally iid random variables given λtk, satisfy-
ing

p
(
Xρtk|λtk, Htk

1

) = 1√
λtk

p

(
Vρtk = Xρtk√

λtk

∣∣∣∣ Htk
1

)
,

(44.14)

where ρ ∈ {R, I}. The last assumption allows one
to take into account the time correlation between

Fig. 44.4a,b Variation of the correlation coefficient be-
tween successive spectral magnitudes. (a) Typical variation
of ρ1 with frequency for a speech signal and 50% overlap
between frames. (b) Typical variation of ρ1 with overlap
between frames for a speech signal at center frequencies of
1 kHz (solid line) and 2 kHz (dashed line), and for a real-
ization of white Gaussian noise (dotted line) (after [44.15])
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Spectral Enhancement Methods 44.4 Signal Estimation 879

successive spectral coefficients of the speech signal,
while still considering the scalar estimation problem
formulated in (44.3). Note that successive spectral co-

efficients are correlated, since the random processes
{Xtk|t = 0, 1, . . . } and {λtk|t = 0, 1, . . . } are not inde-
pendent.

44.4 Signal Estimation

In this section, we derive estimators for Xtk using various
fidelity criteria, assuming that p̂tk , λ̂tk, and σ̂2

tk are given.
Fidelity criteria that are of particular interest for speech
enhancement applications are minimum mean-squared
error (MMSE) [44.5], MMSE of the spectral amplitude
(MMSE-SA) [44.12], and MMSE of the log-spectral am-
plitude (MMSE-LSA) [44.17,42]. The MMSE estimator
is derived by substituting into (44.5) the functions

g(X̂tk) = X̂tk

g̃(Xtk) =
⎧
⎨

⎩
Xtk , under Htk

1

GminYtk , under Htk
0 ,

(44.15)

where Gmin � 1 represents a constant attenuation fac-
tor, which retains the noise naturalness during speech
absence [44.2, 42].

The MMSE-SA estimator is obtained by using the
functions

g(X̂tk) = |X̂tk| ,

g̃(Xtk) =
⎧
⎨

⎩
|Xtk| , under Htk

1

Gmin|Ytk| , under Htk
0 .

(44.16)

The MMSE-LSA estimator is obtained by using the
functions

g(X̂tk) = log |X̂tk| ,

g̃(Xtk) =
⎧
⎨

⎩
log |Xtk| , under Htk

1

log(Gmin|Ytk|) , under Htk
0 .

(44.17)

The last two estimators are insensitive to the estima-
tion error of ϕtk, the phase of Xtk. Therefore, they are
combined with the following constrained optimization
problem [44.12]:

min
ϕ̂tk

E{|eiϕtk − eiϕ̂tk |2} subject to |eiϕ̂tk | = 1 .

(44.18)

This yields an estimator for the complex exponential of
the phase, constrained not to affect the spectral magni-
tude estimate. Alternatively, an estimate for the spectral

phase ϕ̂tk can be obtained by minimizing the expected
value of the following distortion measure [44.12]

dϕ

(
ϕtk, ϕ̂tk

)
� 1− cos

(
ϕtk − ϕ̂tk

)
. (44.19)

This measure is invariant under modulo 2π transfor-
mation of the estimation error ϕtk − ϕ̂tk, and for small
estimation errors it closely resembles the squared-
error distortion measure, since 1 − cos β ≈ β2/2 for
β � 1. The constrained optimization problem (44.18)
and the distortion measure (44.19) both yield an es-
timator eiϕ̂tk = Ytk/|Ytk|, which is simply the complex
exponential of the noisy signal [44.12].

44.4.1 MMSE Spectral Estimation

Let

ξtk �
λtk

σ2
tk

, γρtk �
Y2

ρtk

σ2
tk

, (44.20)

represent the a priori and a posteriori SNRs, respectively
(ρ ∈ {R, I}), and let GMSE(ξ, γρ) denote a gain function
that satisfies

E
{

Xρtk
∣∣Htk

1 , λtk, σ
2
tk, Yρtk

}= GMSE(ξtk, γρtk)Yρtk .

(44.21)

Then, substituting (44.15) and (44.21) into (44.5), we
have

X̂tk = p̂tk
[
GMSE

(
ξ̂tk, γ̂Rtk

)
YRtk

+ iGMSE
(
ξ̂tk, γ̂Itk

)
YItk

]+ (1− p̂tk)GminYtk .

(44.22)

The specific expression for GMSE(ξ, γρ) depends on the
particular statistical model:

GMSE(ξ, γρ) = 1

Yρ

∫
Xρ p

(
Xρ|H1, λ, σ2, Yρ

)
dXρ

= 1

Yρ

∫
Xρ

p
(

Yρ |Xρ,σ2
)

p(Xρ |λ,H1)

p
(

Yρ |λ,σ2
) dXρ .

For a Gaussian model, the gain function is independent
of the a posteriori SNR. It is often referred to as Wiener
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880 Part H Speech Enhancement

filter, given by [44.5]

GMSE(ξ) = ξ

1+ ξ
. (44.23)

For a gamma model, the gain function is given by [44.40]

GMSE(ξ, γρ) = 1√
8γρ

[
exp

(
C2

ρ−
4

)
D−1.5(Cρ−)

− exp

(
C2

ρ+
4

)
D−1.5(Cρ+)

]

×

[
exp

(
C2

ρ−
4

)
D−0.5(Cρ−)

+ exp

(
C2

ρ+
4

)
D−0.5(Cρ+)

]−1

,

(44.24)

where Cρ+ and Cρ− are defined by

Cρ± �
√

3

2
√

ξ
±√

2γρ , (44.25)

and Dp(z) denotes the parabolic cylinder func-
tion [44.44, (9.240)]. For a Laplacian speech model,
the gain function is given by [44.45]

GMSE(ξ, γρ)

= 1√
γρ

[Lρ+erfcx(Lρ+)− Lρ−erfcx(Lρ−)]

× [erfcx(Lρ+)+ erfcx(Lρ−)]−1 , (44.26)

where Lρ+ and Lρ− are defined by

Lρ± �
1√
ξ

±√
γρ , (44.27)

and erfcx(x) is the scaled complementary error function,
defined by

erfcx(x)� ex2 2√
π

∞∫

x

e−t2
dt . (44.28)

Note that when the signal is surely absent (i. e., when
p̂tk = 0), the resulting estimator X̂tk reduces to a constant
attenuation of Ytk (i. e., X̂tk = GminYtk). This retains the
noise naturalness, and is closely related to the spectral
floor proposed by Berouti et al. [44.6].

Figure 44.5 displays parametric gain curves describ-
ing GMSE(ξ, γρ) for several values of γρ , which result
from (44.23), (44.24), and (44.26). It shows that the

spectral gains are monotonically increasing functions
of the a priori SNR when the a posteriori SNR is kept
constant. For gamma and Laplacian models, the spec-
tral gains are also monotonically increasing functions
of the a posteriori SNR, when the a priori SNR is kept
constant.
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Fig. 44.5a–c Parametric gain curves describing the MMSE
gain function GMSE(ξ, γρ) for different speech models.
(a) Gain curve for a Gaussian model, obtained by (44.23).
(b) Gain curves for a gamma model, obtained by (44.24).
(c) Gain curves for a Laplacian model, obtained by (44.26)
(after [44.43])
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44.4.2 MMSE Log-Spectral
Amplitude Estimation

In speech enhancement applications, estimators that
minimize the mean-squared error of the log-spectral am-
plitude have been found advantageous to MMSE spectral
estimators [44.12, 17, 46]. An MMSE-LSA estimator is
obtained by substituting (44.17) into (44.5). It is diffi-
cult, or even impossible, to find analytical expressions
for an MMSE-LSA estimator under a gamma or Lapla-
cian model. However, assuming a Gaussian model and
combing the resulting amplitude estimate with the phase
of the noisy spectral coefficient Ytk yields [44.42]

X̂tk = [
GLSA(ξ̂tk, γ̂tk)

] p̂tk G1− p̂tk
min Ytk , (44.29)

where γ̂tk denotes an estimate for the a posteriori SNR

γ̂tk = γ̂Rtk + γ̂Itk , (44.30)

and GLSA(ξ, γ ) represents the LSA gain function under
Htk

1 which was derived by Ephraim and Malah [44.17]

GLSA(ξ, γ )� ξ

1+ ξ
exp

⎛

⎝1

2

∞∫

ϑ

e−x

x
dx

⎞

⎠ , (44.31)

where ϑ is defined by ϑ � ξγ/(1+ ξ). Similar to the
MMSE spectral estimator, the MMSE-LSA estimator
reduces to a constant attenuation of Ytk when the signal
is surely absent (i. e., p̂tk = 0 implies X̂tk = GminYtk).
However, the characteristics of these estimators when
the signal is present are readily distinctive. Figure 44.6
displays parametric gain curves describing GLSA(ξ, γ )
for several values of γ . For a fixed value of the
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Fig. 44.6 Parametric gain curves describing the MMSE
log-spectral amplitude gain function GLSA(ξ, γ ) for
a Gaussian model, obtained by (44.31)

a posteriori SNR, the LSA gain is a monotonically in-
creasing function of ξ . However, for a fixed value of
ξ , the LSA gain is a monotonically decreasing func-
tion of γ . Note that the gain function GMSE(ξ, γρ) for
a Gaussian model is independent of the a posteriori
SNR, while for gamma and Laplacian speech models
GMSE(ξ, γρ) is an increasing function of the a pos-
teriori SNR (Fig. 44.5). The behavior of GLSA(ξ, γ )
is related to the useful mechanism that counters the
musical noise phenomenon [44.47]. Local bursts of
the a posteriori SNR, during noise-only frames, are
pulled down to the average noise level, thus avoid-
ing local buildup of noise whenever it exceeds its
average characteristics. As a result, the MMSE-LSA
estimator generally produces lower levels of residual
musical noise, when compared with the MMSE spectral
estimators.

44.5 Signal Presence Probability Estimation

In this section, we derive an efficient estimator p̂tk|t−1
for the a priori speech presence probability. This estima-
tor employs a soft-decision approach to compute three
parameters based on the time–frequency distribution of
the estimated a priori SNR ξ̂tk. The parameters exploit
the strong correlation of speech presence in neighboring
frequency bins of consecutive frames.

Let ζtk denote a recursive average of the a priori SNR
with a time constant αζ ,

ζtk = αζζt−1,k + (1−αζ )ξ̂t−1,k . (44.32)

By applying local and global averaging windows in
the frequency domain, we obtain respectively local and
global averages of the a priori SNR

ζ
χ
tk =

wχ∑

i=−wχ

hχ (i)ζt,k−i , (44.33)

where the superscript χ designates either local or global,
and hχ is a normalized window of size 2wχ +1. We de-
fine two parameters, Plocal

tk and Pglobal
tk , which represent

the relation between the above averages and the like-

Part
H

4
4
.5



882 Part H Speech Enhancement

��
����	!&����

��
�	�'!$!���(��)*��

����	!+�����, +!����)-

��
����	!&����

����	
��

����	!$!�

��
����	!$!�� ��

����	!$!�

�� .	


.	
��

Fig. 44.7 Block diagram for computing Pframe (a parame-
ter representing the likelihood of speech in a given frame)
(after [44.42])

lihood of speech in the k-th frequency bin of the t-th
frame. These parameters are given by

Pχ
tk =

⎧
⎪⎪⎨

⎪⎪⎩

0 , if ζ
χ
tk ≤ ζmin

1 , if ζ
χ
tk ≥ ζmax

log(ζχ
tk/ζmin)

log(ζmax/ζmin) , otherwise ,

(44.34)

where ζmin and ζmax are empirical constants, maxi-
mized to attenuate noise while maintaining weak speech
components.

In order to attenuate noise further in noise-only
frames, we define a third parameter, Pframe

t , which is
based on the speech energy in neighboring frames. An
averaging of ζtk in the frequency domain (possibly over
a certain frequency band) yields

ζ frame
t = mean

1≤k≤N/2
{ζtk} . (44.35)

To prevent clipping of speech onsets or weak compo-
nents, speech is assumed whenever ζ frame

t increases over
time. Moreover, the transition from H1 to H0 is delayed,

Table 44.1 Values of the parameters used in the imple-
mentation of the speech presence probability estimator, for
a sampling rate of 16 kHz

αζ = 0.7 ζmin = −10 dB ζp min = 0 dB

wlocal = 1 ζmax = −5 dB ζp max = 10 dB

wglobal = 15 pmin = 0.005

hlocal, hglobal: Hann windows

which reduces the misdetection of weak speech tails, by
allowing for a certain decrease in the value of ζ frame

t .
Figure 44.7 describes a block diagram for computing
Pframe

t , where

µt �

⎧
⎪⎪⎨

⎪⎪⎩

0 , if ζ frame
t ≤ ζ

peak
t ζmin

1 , if ζ frame
t ≥ ζ

peak
t ζmax

log(ζ frame
t /ζ

peak
t /ζmin)

log(ζmax/ζmin) , otherwise ,

(44.36)

represents a soft transition from speech to noise, ζpeak
t is

a confined peak value of ζ frame
t , and ζp min and ζp max are

empirical constants that determine the delay of the tran-
sition. Typical values of parameters used for a sampling
rate of 16 kHz are summarized in Table 44.1.

The proposed estimate for the a priori speech pres-
ence probability is obtained by

p̂tk|t−1 = Plocal
tk Pglobal

tk Pframe
t . (44.37)

Accordingly, p̂tk|t−1 is smaller if either previous frames,
or recent neighboring frequency bins, do not contain
speech. When p̂tk|t−1 → 0, the conditional speech pres-
ence probability p̂tk → 0 by (44.6), and consequently the
signal estimator X̂tk reduces to X̂tk = GminYtk. There-
fore, to reduce the possibility of speech distortion we
generally restrict p̂tk|t−1 to be larger than a threshold
pmin (pmin > 0).

44.6 A Priori SNR Estimation

In this section, we address the problem of estimating the

speech spectral variance λtk assuming that p̂tk|t−1 and σ̂2
tk

are given. We present the decision-directed, causal and
noncausal estimators for the a priori SNR ξtk = λtk/σ

2
tk

under speech presence uncertainty. The a priori SNR
ξtk is estimated for each spectral component and each

analysis frame due to the nonstationarity of the speech
signal.

44.6.1 Decision-Directed Estimation

Ephraim and Malah [44.12] proposed a decision-
directed approach, which provides a very useful
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estimation method for the a priori SNR [44.47,48]. Ac-
cordingly, if speech presence is assumed (ptk ≡ 1), then
the expression

Ξtk = α
|X̂t−1,k|2
σ̂2

t−1,k

+ (1−α) max
{
γ̂tk −1, 0

}

(44.38)

can be substituted for the a priori SNR. The first term,
|X̂t−1,k|2/σ̂2

t−1,k , represents the a priori SNR resulting
from the processing of the previous frame. The second
term, max{γ̂tk −1, 0}, is a maximum-likelihood esti-
mate for the a priori SNR, based entirely on the current
frame. The parameter α (0 < α < 1) is a weighting factor
that controls the trade-off between noise reduction and
transient distortion brought into the signal [44.12, 47].
A larger value of α results in a greater reduction of
the musical noise phenomena, but at the expense of
attenuated speech onsets and audible modifications of
transient components. As a compromise, a value 0.98 of
α was determined by simulations and informal listening
tests [44.12].

Under speech presence uncertainty, according
to [44.12, 49], the expression in (44.38) estimates
a nonconditional a priori SNR ηtk � E{|Xtk|2}/σ2

tk . The
a priori SNR ξtk = E{|Xtk|2|Htk

1 }/σ2
tk is related to ηtk by

ηtk = E{|Xtk|2|Htk
1 }P(Htk

1 )

σ2
tk

= ξtk ptk|t−1 . (44.39)

Therefore the estimate for ξtk should supposedly be
given by

ξ̂tk = Ξtk

p̂tk|t−1
. (44.40)

However, the division by p̂tk|t−1 may deteriorate the per-
formance of the speech enhancement system [44.50,51].
In some cases, it introduces interaction between the es-
timated ptk|t−1 and the a priori SNR, that adversely
affects the total gain for noise-only bins, resulting in an
unnaturally structured residual noise [44.52]. To some
extent, the noise structuring can be eliminated by uti-
lizing a voice activity detector (VAD) and applying
a uniform attenuation factor to frames that do not con-
tain speech [44.49]. Yet, VADs are difficult to tune and
their reliability is often insufficient for weak speech
components and low input SNR.

Let X̂tk|H1 = X̂tk| p̂tk=1 denote an estimate for X̂tk
under the hypothesis of speech presence. Then an al-
ternative a priori SNR estimator under speech presence

uncertainty is given by [44.42]

ξ̂tk = α
|X̂t−1,k|H1 |2

σ̂2
t−1,k

+ (1−α) max
{
γ̂tk −1, 0

}
.

(44.41)

Notice that for p̂t−1,k|t−2 �= 1, this yields a different
estimate than either Ξtk or Ξtk/ p̂tk|t−1. In [44.50, 51],
it was suggested to simply estimate the a priori SNR
by Ξtk, rather than Ξtk/ p̂tk|t−1. However, the use of
X̂t−1,k|H1 in (44.41) boosts the gain up when speech is
present, which provides a compensation for not dividing
by p̂tk|t−1.

To show that under speech presence uncertainty it
is advantageous to estimate the a priori SNR by the
expression in (44.41) rather than by Ξtk/ p̂tk|t−1, we as-
sume that an estimate p̂tk|t−1 for the a priori speech
presence probability is given, and that Ξtk and ξ̂tk have
been calculated by (44.38) and (44.41), respectively. By
definition, if Htk

1 is true, then the spectral estimate X̂tk

should degenerate to X̂tk|H1 , and the a priori SNR esti-
mate should coincide with Ξtk. On the contrary, if Htk

0 is
true, then X̂tk should reduce to GminYtk , or equivalently
the a priori SNR estimate should be as small as possible.
Indeed, if Htk

1 is true then

ξ̂tk|H1 ≈ Ξtk|H1 ≤ Ξtk

p̂tk|t−1

∣∣∣∣
H1

, (44.42)

where we have used that under Htk
1 the spectral estimate

X̂t−1,k is approximately the same as X̂t−1,k|H1 (if Htk
1

is true then Ht−1,k
1 is likely to be true as well, due to

the strong correlation of speech presence in successive
frames). On the other hand, if Htk

0 is true, then p̂tk|t−1 is
expected to approach zero, and ξ̂tk is likely to be much
smaller than Ξtk/ p̂tk|t−1:

ξ̂tk|H0 ≈ αG2
min � Ξtk

p̂tk|t−1

∣∣∣∣
H0

≈ αG2
min

p̂tk|t−1
. (44.43)

Therefore, under speech presence uncertainty the
decision-directed a priori SNR estimator is more favor-
ably modified as in (44.41), rather than dividing Ξtk by
the a priori speech presence probability p̂tk|t−1.

44.6.2 Causal Recursive Estimation

In this section, we present a causal conditional estima-
tor ξ̂tk|t = λ̂tk|t/σ̂2

tk for the a priori SNR given the noisy
measurements up to frame t. The estimator combines
two steps, a propagation step and an update step, fol-
lowing the rational of Kalman filtering, to predict and
update the estimate for λtk recursively as new data arrive.
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Let Xτ
0 = {Xtk|t = 0, . . . , τ, k = 0, . . . , N −1} rep-

resent the set of clean-speech spectral coefficients up
to frame τ , and let λtk|τ � E{|Xtk|2|Htk

1 ,Xτ
0} denote

the conditional variance of Xtk under Htk
1 given the

clean spectral coefficients up to frame τ . Assuming that
an estimate λ̂tk|t−1 for the one-frame-ahead conditional
variance of Xtk is available, an estimate for λtk|t can
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be obtained by calculating its conditional mean under
Htk

1 given Ytk and λ̂tk|t−1. By definition, λtk|t = |Xtk|2.
Hence,

λ̂tk|t = E
{|Xtk|2

∣∣Htk
1 , λ̂tk|t−1, Ytk

}

= E
{

X2
Rtk

∣∣Htk
1 , λ̂tk|t−1, YRtk

}

+ E
{

X2
Itk

∣∣Htk
1 , λ̂tk|t−1, YItk

}
, (44.44)

where we have used that XRtk is independent of YItk, and
XItk is independent of YRtk. Let GSP(ξ, γρ) represent the
MMSE gain function in the spectral power domain for
Yρtk �= 0 [44.43]:

E
{

X2
ρtk

∣∣Htk
1 , λ̂tk|t−1, Yρtk

}= GSP
(
ξ̂tk|t−1, γρtk

)
Y2

ρtk ,

(44.45)

where ρ ∈ {R, I}. Then the specific expression for
GSP(ξ, γρ) depends on the particular statistical model.
For a Gaussian model, the spectral power gain function
is given by

GSP(ξ, γρ) = ξ

1+ ξ

(
1

2γρ

+ ξ

1+ ξ

)
. (44.46)

For a gamma model [44.43],

GSP(ξ, γρ) = 3

8γρ

[
exp

(
C2

ρ−
4

)
D−2.5(Cρ−)

+ exp

(
C2

ρ+
4

)
D−2.5(Cρ+)

]

×

[
exp

(
C2

ρ−
4

)
D−0.5(Cρ−)

+ exp

(
C2

ρ+
4

)
D−0.5(Cρ+)

]−1

,

(44.47)

Fig. 44.8a–c Parametric gain curves describing the
MMSE spectral power gain function GSP(ξ, γρ) for differ-
ent speech models. (a) Gain curves for a Gaussian model,
obtained by (44.46). (b) Gain curves for a gamma model,
obtained by (44.47). (c) Gain curves for a Laplacian model,
obtained by (44.48) (after [44.43])
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where Cρ± are defined by (44.25). For a Laplacian
model [44.43],

GSP(ξ, γρ)

= 1

γρ

[erfcx(Lρ+)+ erfcx(Lρ−)]−1

×

[(
L2

ρ+ +0.5
)
erfcx(Lρ+)

+ (
L2

ρ− +0.5
)
erfcx(Lρ−)

− (Lρ+ + Lρ−)√
π

]
, (44.48)

where Lρ± are defined by (44.27). Figure 44.8 shows
parametric gain curves, which describe the functions
GSP(ξ, γρ) for several values of γρ , resulting from
(44.46), (44.47), and (44.48). When γρ is kept constant,
GSP(ξ, γρ) is a monotonically increasing function of ξ .
When ξ is kept constant, GSP(ξ, γρ) is a monotonically
decreasing function of γρ for a Gaussian model, but is
not a monotonic function of γρ for gamma or Laplacian
models.

Equation (44.45) does not hold in the case Yρtk → 0,
since GSP(ξ, γρ) → ∞ as γρ → 0, and the conditional
variance of Xρtk is generally not zero. For Yρtk = 0
(or practically for Yρtk smaller in magnitude than
a predetermined threshold) we use the following ex-
pressions [44.43]: for a Gaussian model

E
{

X2
ρtk

∣∣Htk
1 , λ̂tk|t−1, Yρtk = 0

}= ξ̂tk|t−1

1+ ξ̂tk|t−1
σ2

tk ,

(44.49)

for a gamma model

E
{

X2
ρtk

∣∣Htk
1 , λ̂tk|t−1, Yρtk = 0

}

=
3D−2.5

( √
3

2
√

ξ̂tk|t−1

)

8D−0.5

( √
3

2
√

ξ̂tk|t−1

)σ2
tk (44.50)

and for a Laplacian model

E
{

X2
ρtk

∣∣Htk
1 , λ̂tk|t−1, Yρtk = 0

}

=
√

2

π

exp

(
1

2ξ̂tk|t−1

)
D−3

(√
2

ξ̂tk|t−1

)

erfcx

(
1√

ξ̂tk|t−1

) σ2
tk . (44.51)

From (44.45–44.51), we can define a function
f (ξ, σ2, Y2

ρ ) such that

1

σ2
tk

E
{

X2
ρtk

∣∣Htk
1 , λ̂tk|t−1, Yρtk

}

= f
(
ξ̂tk|t−1, σ

2
tk, Y2

ρtk

)
(44.52)

for all Yρtk. Substituting (44.52) into (44.44), we obtain
an estimate for ξtk|t given by

ξ̂tk|t = f
(
ξ̂ tk|t−1, σ̂

2
tk, Y2

Rtk

)
+ f

(
ξ̂tk|t−1, σ̂

2
tk, Y2

Itk

)
.

(44.53)

Equation (44.53) is the update step of the recursive esti-
mation, since we start with an estimate ξ̂tk|t−1 that relies
on the noisy observations up to frame t −1, and then
update the estimate by using the additional information
Ytk .

To formulate the propagation step, we assume
that we are given at frame t −1 estimates for the
speech spectral coefficient Xt−1,k and its spectral vari-
ance λt−1,k, conditioned on Yt−1

0 = {Yτk|τ = 0, . . . , t −
1, k = 0, . . . , N −1}. Then, these estimates can be prop-
agated in time to obtain an estimate for λtk. Since λtk is
correlated with both λt−1,k and |Xt−1,k|, it was proposed
in [44.15] to use an estimate of the form

λ̂tk|t−1

= max
{
(1−µ)λ̂t−1,k|t−1 +µ

∣∣X̂t−1,k|H1

∣∣2, λmin
}

,

(44.54)

where µ (0 ≤ µ ≤ 1) is related to the degree of nonsta-
tionarity of the random process {λtk|t = 0, 1, . . . }, and
λmin is a lower bound on the variance of Xtk. In the
case of a pseudostationary process, µ is set to a small
value, since λ̂tk|t−1 ≈ λ̂t−1,k|t−1. In the case of a non-
stationary process, µ is set to a larger value, since the
variances at successive frames are less correlated, and
the relative importance of λ̂t−1,k|t−1 to predict λ̂tk|t−1
decreases. Dividing both sides of (44.54) by σ̂2

t−1,k , we
obtain the propagation step

ξ̂tk|t−1

= max

{
(1−µ)ξ̂t−1,k|t−1 +µ

|X̂t−1,k|H1 |2
σ̂2

t−1,k

, ξmin

}
,

(44.55)

where ξmin is a lower bound on the a priori SNR.
The steps of the causal recursive a priori SNR es-

timation are summarized in Table 44.2. The algorithm
is initialized at frame t = −1 with X̂−1,k|H1 = 0 and
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Table 44.2 Summary of the causal recursive a priori SNR
estimation

Initialization:

X̂−1,k|H1 = 0, ξ̂−1,k|−1 = ξmin , for all k.

For all short-time frames t = 0, 1, . . .

For all frequency bins k = 0, . . . , N −1

Propagation step:

Compute ξ̂tk|t−1 using (44.55)

Update step:

Compute ξ̂tk|t using (44.53)

Spectral estimation:

Compute X̂tk|H1 = X̂tk
∣∣

p̂tk=1

using, e.g., (44.22) or (44.29)

ξ̂−1,k|−1 = ξmin for all k. Then, for t = 0, 1, . . . , the
propagation and update steps are iterated to obtain esti-
mates for the nonstationary a priori SNR. The spectral
gain function employed for the computation of X̂tk|H1

is determined by the particular choice of the distortion
measure.

44.6.3 Relation Between Causal
Recursive Estimation
and Decision-Directed Estimation

The causal conditional estimator ξ̂tk|t for the a priori
SNR is closely related to the decision-directed estima-
tor of Ephraim and Malah [44.12]. The decision-directed
estimator under speech presence uncertainty is given
by (44.41) where α (0 ≤ α ≤ 1) is a weighting factor
that controls the trade-off between the noise reduc-
tion and the transient distortion introduced into the
signal.
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Fig. 44.9 SNRs in successive short-time frames: a pos-
teriori SNR γtk (dotted line), decision-directed a priori
SNR ξ̂DD

tk|t (dashed line), and causal recursive a priori SNR

estimate ξ̂RE
tk|t (solid line) (after [44.15])

The update step (44.53) of the causal recursive esti-
mator under a Gaussian model can be written as [44.15]

ξ̂tk|t = αtk ξ̂tk|t−1 + (1−αtk)(γ̂tk −1) , (44.56)

where αtk is given by

αtk � 1− ξ̂2
tk|t−1

(
1+ ξ̂tk|t−1

)2
. (44.57)

Substituting (44.55) into (44.56) and (44.57) with µ ≡ 1,
and applying the lower-bound constraint to ξ̂tk|t rather
than ξ̂tk|t−1, we have

ξ̂tk|t

= max

{
αtk

∣∣X̂t−1,k|H1

∣∣2

σ̂2
t−1,k

+ (1−αtk)
(
γ̂tk −1

)
, ξmin

}
,

(44.58)

αtk = 1−
∣∣X̂t−1,k|H1

∣∣4
(
σ̂2

t−1,k + ∣∣X̂t−1,k|H1

∣∣2)2
. (44.59)

The expression (44.58) with αtk ≡ α is actually a prac-
tical form of the decision-directed estimator,

ξ̂DD
tk|t = max

{
α

∣∣X̂t−1,k|H1

∣∣2

σ̂2
t−1,k

+ (1−α)
(
γ̂tk −1

)
, ξmin

}
,

(44.60)

that includes a lower-bound constraint to further reduce
the level of residual musical noise [44.47]. Accord-
ingly, a special case of the causal recursive estimator
with µ ≡ 1 degenerates to a decision-directed estima-
tor with a time-varying frequency-dependent weighting
factor αtk.

It is interesting to note that the weighting factor αtk,
given by (44.59), is monotonically decreasing as a func-
tion of the instantaneous SNR, |X̂t−1,k|H1 |2/σ̂2

t−1,k .
A decision-directed estimator with a larger weight-
ing factor is indeed preferable during speech absence
(to reduce musical noise phenomena), while a smaller
weighting factor is more advantageous during speech
presence (to reduce signal distortion) [44.47]. The above
special case of the causal recursive estimator conforms to
such a desirable behavior. Moreover, the general form of
the causal recursive estimator provides an additional de-
gree of freedom for adjusting the value of µ in (44.55) to
the degree of spectral nonstationarity. This may produce
even further improvement in the performance.

The different behaviors of the causal recursive es-
timator ξ̂RE

tk|t (Table 44.2) and the decision-directed

estimator ξ̂DD
tk|t (44.60) are illustrated in the example
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Spectral Enhancement Methods 44.6 A Priori SNR Estimation 887

of Fig. 44.9. The analyzed signal contains only white
Gaussian noise during the first and last 20 frames, and
in between it contains an additional sinusoidal compo-
nent at the displayed frequency with 0 dB SNR. (Note
that the SNR is computed in the time domain, whereas
the a priori and a posteriori SNRs are computed in the
time–frequency domain. Therefore, the latter SNRs may
increase at the displayed frequency well above the av-
erage SNR.) The signal is transformed into the STFT
domain using half-overlapping Hamming windows. The
a priori SNR estimates, ξ̂RE

tk|t and ξ̂DD
tk|t , are obtained by

using the parameters ξmin = −25 dB, α = 0.98, µ = 0.9.
The spectral estimate X̂tk|H1 is recursively obtained by
applying GLSA(ξ̂tk|t, γ̂tk) to the noisy spectral measure-
ments (44.29, 31).

Figure 44.9 shows that, when the a posteriori SNR
γtk is sufficiently low, the causal recursive a priori SNR
estimate is smoother than the decision-directed esti-
mate, which helps reducing the level of musical noise.
When γtk increases, the response of the a priori SNR
ξ̂RE

tk|t is initially slower than ξ̂DD
tk|t , but then builds up

faster to the a posteriori SNR. When γtk is sufficiently
high, ξ̂DD

tk|t follows the a posteriori SNR with a delay of

one frame, whereas ξ̂RE
tk|t follows the a posteriori SNR

instantaneously. When γtk decreases, the response of
ξ̂RE

tk|t is immediate, while that of ξ̂DD
tk|t is delayed by

one frame. As a consequence, when compared with
the decision-directed estimator, the causal recursive es-
timator produces a lower level of musical noise while
not increasing the audible distortion in the enhanced
signal [44.15].

44.6.4 Noncausal Recursive Estimation

In some important applications, e.g., digital voice
recording, surveillance, speech recognition and speaker
identification, a delay of a few short-term frames be-
tween the enhanced speech and the noisy observation is
tolerable. In such cases, a noncausal estimation approach
may produce less signal distortion and less musical
residual noise than a causal estimation approach. In
this section, we present a noncausal conditional es-
timator ξ̂tk|t+L for the a priori SNR, given the noisy
measurements up to frame t + L , where L > 0 denotes
the admissible time delay in frames. Similar to the causal
estimator, the noncausal estimator combines update and
propagation steps to recursively estimate λtk as new data
arrive. However, future spectral measurements are also
employed in the process to better predict the spectral
variances of the clean speech.

Let λ′
tk|t+L � E{|Xtk|2|Yt−1

0 ,Yt+L
t+1 } denote the

conditional spectral variance of Xtk given Yt+L
0 ex-

cluding the noisy measurement at frame t. Let
λtk|[t+1,t+L] � E{|Xtk|2|Yt+L

t+1 } denote the conditional
spectral variance of Xtk given the subsequent noisy mea-
surements Yt+L

t+1 . Then, similar to (44.53), the estimate

for ξtk given ξ̂ ′
tk|t+L � λ̂′

tk|t+L/σ̂2
tk and Yt can be updated

by

ξ̂tk|t+L = f
(
ξ̂ ′

tk|t+L , σ̂2
tk, Y2

Rtk

)

+ f
(
ξ̂ ′

tk|t+L , σ̂2
tk, Y2

Itk

)
. (44.61)

To obtain an estimate for λ′
tk|t+L , we employ the es-

timates X̂t−1,k|H1 and λ̂t−1,k|t+L−1 from the previous
frame, and derive an estimate for λtk from the measure-
ments Yt+L

t+1 . Suppose an estimate λ̂tk|[t+1,t+L] is given,
we propagate the estimates from frame t −1 to frame t
by [44.15, 53]

λ̂′
tk|t+L

= max

{
µ
∣∣X̂t−1,k|H1

∣∣2 + (1−µ)
[
µ′λ̂t−1,k|t+L−1

+ (1−µ′)λ̂tk|[t+1,t+L]
]
, λmin

}
, (44.62)

where µ (0 ≤ µ ≤ 1) is related to the stationarity of the
random process {λtk|t = 0, 1, . . . }, and µ′ (0 ≤ µ′ ≤ 1)
is associated with the reliability of the estimate
λ̂tk|[t+1,t+L] in comparison with that of λ̂t−1,k|t+L−1.
Dividing both sides of (44.62) by σ̂2

t−1,k , we have the
following backward–forward propagation step:

ξ̂ ′
tk|t+L

= max

{
µ

∣∣X̂t−1,k|H1

∣∣2

σ̂2
t−1,k

+ (1−µ)
[
µ′ξ̂t−1,k|t+L−1

+ (1−µ′)ξ̂tk|[t+1,t+L]
]
, ξmin

}
. (44.63)

An estimate for the a priori SNR ξtk given the measure-
ments Yt+L

t+1 is obtained by

ξ̂tk|[t+1,t+L] =

⎧
⎪⎨

⎪⎩

1
L

L∑
n=1

γ̂t+n,k −β f , if positive ,

0 , otherwise ,

(44.64)

where β f (β f ≥ 1) is an oversubtraction factor to com-
pensate for a sudden increase in the noise level. This
estimator is an anticausal version of the maximum-
likelihood a priori SNR estimator suggested in [44.12].
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Table 44.3 Summary of the noncausal recursive a priori
SNR estimation

Initialization:

X̂−1,k|H1 = 0, ξ̂−1|L−1 = ξmin .

For all short-time frames t = 0, 1, . . .

For all frequency bins k = 0, . . . , N −1

Backward estimation:

Compute ξ̂tk|[t+1,t+L] using (44.64)

Backward–forward propagation:

Compute ξ̂ ′
tk|t+L using (44.63)

Update step:

Compute ξ̂tk|t+L using (44.61)

Spectral estimation:

Compute X̂tk|H1 = X̂tk
∣∣

p̂tk=1

using, e.g., (44.22) or (44.29)

The steps of the noncausal recursive a priori SNR
estimation are summarized in Table 44.3. The algorithm
is initialized at frame t = −1 with X̂−1,k|H1 = 0 and
ξ̂−1|L−1 = ξmin. Then, for t = 0, 1, . . . , the propagation
and update steps are iterated to obtain estimates for the
a priori SNR and the speech spectral components.

Figure 44.10 demonstrates the behavior of the
noncausal recursive estimator in the same example
of Fig. 44.9. The noncausal a priori SNR estimate
ξ̂RE

tk|t+3 is obtained with the parameters ξmin = −25 dB,
µ = µ′ = 0.9, β f = 2, and L = 3 frames delay. A com-
parison of Figs. 44.9 and 44.10 indicates that the
differences between the causal and noncausal recur-
sive estimators are primarily noticeable during onsets
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Fig. 44.10 SNRs in successive short-time frames: a pos-
teriori SNR γtk (dotted line), decision-directed a priori
SNR ξ̂DD

tk|t (dashed line), and noncausal recursive a priori

SNR estimate ξ̂RE
tk|t+3 with three-frame delay (solid line)

(after [44.15])

of signal components. Clearly, the causal a priori
SNR estimator, as well as the decision-directed esti-
mator, cannot respond too fast to an abrupt increase
in γtk , since it necessarily implies an increase in the
level of musical residual noise. By contrast, the non-
causal estimator, having a few subsequent spectral
measurements at hand, is capable of discriminating
between speech onsets and irregularities in γtk cor-
responding to noise only. Therefore, in comparison
with the decision-directed estimator, the noncausal
a priori SNR estimator produces even lower lev-
els of musical noise and signal distortion [44.15,
53].

44.7 Noise Spectrum Estimation

In this section, we derive an estimator for the noise
power spectrum under speech presence uncertainty.
The noise estimate is obtained by averaging past
spectral power values of the noisy measurement, and
multiplying the result by a constant factor that com-
pensates the bias. The recursive averaging is carried
out using a time-varying frequency-dependent smooth-
ing parameter that is adjusted by the speech presence
probability.

44.7.1 Time-Varying Recursive Averaging

A common noise estimation technique is to average past
spectral power values of the noisy measurement recur-
sively during periods of speech absence, and hold the

estimate during speech presence. Specifically,

Htk
0 : σ2

t+1,k = αdσ
2
tk + (1−αd)|Ytk|2

Htk
1 : σ2

t+1,k = σ2
tk , (44.65)

where αd (0 < αd < 1) denotes a smoothing parameter.
Under speech presence uncertainty, we can employ the
conditional speech presence probability, and carry out
the recursive averaging by

σ2
t+1,k = p̃tkσ

2
tk

+ (1− p̃tk)
[
αdσ

2
tk + (1−αd)|Ytk|2

]
,

(44.66)

where p̃tk is an estimator for the conditional speech
presence probability ptk = P(Htk

1 |Ytk). Equivalently, the
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recursive averaging can be obtained by

σ2
t+1,k = α̃tkσ

2
tk + (

1− α̃tk
)|Ytk|2 , (44.67)

where

α̃tk � αd + (1−αd) p̃tk (44.68)

is a time-varying frequency-dependent smoothing pa-
rameter. The smoothing parameter α̃tk is adjusted by the
speech presence probability, which is estimated based
on the noisy measurement.

Here we make a distinction between the estimator
p̂tk in (44.3), used for estimating the clean speech, and
the estimator p̃tk, which controls the adaptation of the
noise spectrum. Clearly, deciding speech is absent (H0)
when speech is present (H1) is more destructive when
estimating the speech than when estimating the noise.
Hence, different decision rules are employed [44.42],
and generally we tend to employ estimators that sat-
isfy p̂tk ≥ p̃tk. Given an estimator p̃tk|t−1 for the a priori
speech presence probability, the conditional speech pres-
ence probability estimate can be obtained from Bayes’
rule, which under a Gaussian model reduces to [44.12]

p̃tk =
⎡
⎢⎣1+

(
1− p̃tk|t−1

)(
1+ ξ̂tk

)

p̃tk|t−1 exp
(

ξ̂tk γ̂tk

1+ξ̂tk

)

⎤
⎥⎦

−1

. (44.69)

In the next subsection we present an estimator p̃tk|t−1
that enables noise spectrum estimation during speech ac-
tivity. Both p̃tk|t−1 and p̂tk|t−1 are biased toward higher
values, since deciding that speech is absent when speech
is present results ultimately in the attenuation of speech
components. Whereas, the alternative false decision, up
to a certain extent, merely introduces some level of resid-
ual noise. Accordingly, we include a bias compensation
factor in the noise estimator

σ̂2
t+1,k = βσ2

t+1,k (44.70)

such that the factor β (β ≥ 1) compensates the bias when
speech is absent

β �
σ2

tk

E
{
σ2

tk

}
∣∣∣∣∣
ξtk=0

. (44.71)

The value of β is completely determined by the particular
estimator for the a priori speech absence probabil-
ity [44.54]. We note that the noise estimate is based
on a variable time segment in each subband, which
takes into account the probability of speech presence.
The time segment is longer in subbands that contain

frequent speech portions, and shorter in subbands that
contain frequent silence portions. This feature has been
considered [44.55] a desirable characteristic of the noise
estimator, which improves its robustness and tracking
capability.

44.7.2 Minima-Controlled Estimation

In this section, we present an estimator p̃tk|t−1 that is
controlled by the minima values of a smoothed power
spectrum of the noisy signal. In contrast to the mini-
mum statistics (MS) and related methods [44.56, 57],
the smoothing of the noisy power spectrum is carried out
in both time and frequency. This takes into account the
strong correlation of speech presence in neighboring fre-
quency bins of consecutive frames [44.42]. Furthermore,
the procedure comprises two iterations of smoothing and
minimum tracking. The first iteration provides a rough
voice activity detection in each frequency band. Then,
the smoothing in the second iteration excludes relatively
strong speech components, which makes the minimum
tracking during speech activity robust, even when using
a relatively large smoothing window. A larger smooth-
ing window decreases the variance of the minima values,
but also widens the peaks of the speech activity power.
An alternative solution is to modify the smoothing in
time and frequency based on a smoothed a posteriori
SNR [44.56].

Let αs (0 < αs < 1) be a smoothing parameter, and
let b denote a normalized window function of length
2w+1, i. e.,

∑w
i=−w bi = 1. The frequency smoothing

of the noisy power spectrum in each frame is defined by

Sf
tk =

w∑

i=−w

bi |Yt,k−i |2 . (44.72)

Subsequently, smoothing in time is performed by a first-
order recursive averaging:

Stk = αsSt−1,k + (1−αs)Sf
tk . (44.73)

In accordance with the MS method, the minima values
of Stk are picked within a finite window of length D, for
each frequency bin:

Smin
tk �min{Sτk | t − D +1 ≤ τ ≤ t} . (44.74)

It follows [44.56] that there exists a constant factor Bmin,
independent of the noise power spectrum, such that

E
{

Smin
tk

∣∣ξtk = 0
}= B−1

minσ
2
tk . (44.75)

The factor Bmin represents the bias of a minimum noise
estimate, and generally depends on the values of D, αs,
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w and the spectral analysis parameters (type, length and
overlap of the analysis windows). The value of Bmin
can be estimated by generating a white Gaussian noise,
and computing the inverse of the mean of Smin

tk . This
also takes into account the time–frequency correlation
of the noisy periodogram |Ytk|2. Notice that the value of
Bmin is fixed, whereas in [44.56] it is estimated for each
frequency band and each frame.

Let γmin
tk and ζtk be defined by

γmin
tk � |Ytk|2

BminSmin
tk

,

ζtk �
Stk

BminSmin
tk

. (44.76)

Under a Gaussian model, the probability density func-
tions of γmin

tk and ζtk, in the absence of speech, can be
approximated by exponential and chi-square densities,
respectively [44.54]:

p
(
γmin

tk | Htk
0

) ≈ e−γmin
tk u

(
γmin

tk

)
, (44.77)

p
(
ζtk | Htk

0

) ≈ 1
(

2
m

)m/2
Γ
(m

2

)ζ
m/2−1
tk

× exp

(
−mζtk

2

)
u(ζtk) , (44.78)

where Γ (·) is the gamma function, and m is the equiva-
lent degrees of freedom. Based on the first iteration
smoothing and minimum tracking, a rough decision
about speech presence is given by

Itk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 , if γmin
tk < γ0 and ζtk < ζ0

(speech is absent)

0 , otherwise
(speech is present) .

(44.79)

The thresholds γ0 and ζ0 are set to satisfy a certain
significance level ε:

P
(
γmin

tk ≥ γ0 | Htk
0

)
< ε , (44.80)

P
(
ζtk ≥ ζ0 | Htk

0

)
< ε . (44.81)

From (44.77) and (44.78) we have

γ0 = − log(ε) , (44.82)

ζ0 = 1

m
F−1

χ2;m(1− ε) , (44.83)

where Fχ2;m(x) denotes the standard chi-square cumu-
lative distribution function, with m degrees of freedom.
Typically, we use ε = 0.01 and m = 32, so γ0 = 4.6 and
ζ0 = 1.67.

The second iteration of smoothing is conditional on
the rough speech activity detection of the first iteration.
It includes only the power spectral components, which
have been identified as containing primarily noise. We
set the initial condition for the first frame by S̃0,k = Sf

0,k.
Then, for t > 0 the smoothing in frequency, employing
the above voice activity detector, is obtained by

S̃f
tk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w∑
i=−w

bi It,k−i |Yt,k−i |2
w∑

i=−w

bi It,k−i

, if
w∑

i=−w

It,k−i �= 0

S̃t−1,k , otherwise .

(44.84)

Smoothing in time is given, as before, by a first-order
recursive averaging

S̃tk = αs S̃t−1,k + (1−αs)S̃f
tk . (44.85)

The minima values of S̃tk are picked within a finite
window of length D, for each frequency bin

S̃min
tk �min

{
S̃τk | t − D +1 ≤ τ ≤ t

}
.

Accordingly, S̃min
tk represents minima tracking that is

conditional on the rough speech activity detection of
the first iteration. We note that keeping the strong
speech components out of the smoothing process en-
ables improved minimum tracking. In particular, a larger
smoothing parameter (αs) and smaller minima search
window (D) can be used. This reduces the variance of
the minima values [44.56], and shortens the delay when
responding to a rising noise power, which eventually
improves the tracking capability of the noise estimator.

Let γ̃min
tk and ζ̃tk be defined by

γ̃min
tk � |Ytk|2

Bmin S̃min
tk

,

ζ̃tk �
Stk

Bmin S̃min
tk

. (44.86)

Since we use a relatively small significance level in the
first iteration (ε = 0.01), the influence of the voice ac-
tivity detector in noise-only periods can be neglected.
That is, the effect of excluding strong noise components
from the smoothing process is negligible. Accordingly,
the conditional distributions of γ̃min

tk and ζ̃tk, in the ab-
sence of speech, are approximately the same as those of
γmin

tk and ζtk (44.77, 78).
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Fig. 44.11 Block diagram of the IMCRA noise spectrum
estimation

An estimator for the a priori speech presence proba-
bility is given by

p̃tk|t−1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 , if γ̃min
tk ≤ 1

and ζ̃tk < ζ0
(
γ̃min

tk −1
)
/(γ1 −1) , if 1 < γ̃min

tk < γ1

and ζ̃tk < ζ0

1 , otherwise .

(44.87)

The threshold γ1 is set to satisfy a certain significance
level ε1 (ε1 > ε):

P
(
γ̃min

tk > γ1
∣∣Htk

0

)
< ε1 ⇒ γ1 ≈ − log(ε1) .

(44.88)

Typically ε1 = 0.05, and γ1 = 3.
The a priori speech presence probability estimator

assumes that speech is present ( p̃tk|t−1 = 1) whenever
ζ̃tk ≥ ζ0 or γ̃min

tk ≥ γ1. That is, whenever the local meas-
ured power, Stk, or the instantaneous measured power,

Table 44.4 Values of the parameters used in the implemen-
tation of the IMCRA noise estimator, for a sampling rate of
16 kHz

w = 1 αs = 0.9 αd = 0.85 β = 1.47

Bmin = 1.66 ζ0 = 1.67 γ0 = 4.6 γ1 = 3

D = 120 b: Hann window

|Ytk|2, are relatively high compared to the noise power
Bmin S̃min

tk ≈ σ2
tk. The estimator assumes that speech is

absent ( p̃tk|t−1 = 0) whenever both the local and instan-
taneous measured powers are relatively low compared
to the noise power (γ̃min

tk ≤ 1 and ζ̃tk < ζ0). In between,
the estimator provides a soft transition between speech
absence and speech presence, based on the value of γ̃min

tk .
The main objective of combining conditions on both

γ̃min
tk and ζ̃tk is to prevent an increase in the estimated

noise during weak speech activity, especially when the
input SNR is low. Weak speech components can often be
extracted using the condition on ζ̃tk. Sometimes, speech
components are so weak that ζ̃tk is smaller than ζ0. In that
case, most of the speech power is still excluded from the
averaging process using the condition on γ̃min

tk . The re-
maining speech components can hardly affect the noise
estimator, since their power is relatively low compared
to that of the noise.

A block diagram of the improved minima-controlled
recursive averaging (IMCRA) [44.54] noise spectrum
estimation is described in Fig. 44.11. Typical values of
parameters used in the implementation of the IMCRA
noise estimator for a sampling rate of 16 kHz are sum-
marized in Table 44.4. The noise spectrum estimate, σ̂2

tk ,
is initialized at the first frame by σ̂2

0,k = |Y0,k|2. Then, at
each frame t (t ≥ 0), it is used, together with the current
observation Ytk , for estimating the noise power spectrum
at the next frame, t +1. The bias compensation factor β

is given by [44.54]

β = γ1 −1− e−1 + e−γ1

γ1 −1−3e−1 + (γ1 +2)e−γ1
. (44.89)

In particular, for γ1 = 3, we have β = 1.47. The value
of α̃tk is updated for each frequency bin and time frame,
using the speech presence probability p̃tk , and (44.68).

44.8 Summary of a Spectral Enhancement Algorithm

In this section, we present an example of a speech en-
hancement algorithm, which is based on an MMSE

log-spectral amplitude estimation under a Gaussian
model, IMCRA noise estimation, and decision-directed
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Table 44.5 Summary of a speech enhancement algorithm

Initialization at the first frame for all frequency-bins k = 1, . . . , N/2:

σ̂2
0k = |Y0k|2; σ2

0k = |Y0k|2; S0k = Sf
0k; Smin

0k = Sf
0k; Smin _sw

k = Sf
0k; S̃0k = Sf

0k; S̃min
0k = Sf

0k; S̃min _sw
k = Sf

0k; ζ0k = 0.

Let � = 0. % � is a counter for frames within a subwindow (0 ≤ � ≤ V ).

For all short-time frames t = 0, 1, . . .

For all frequency bins k = 1, . . . , N/2

Compute the a posteriori SNR γ̂tk using (44.20) and (44.30), and the a priori SNR ξ̂tk using (44.41), with the initial
condition ξ̂0k = α+ (1−α) max

{
γ̂0k −1, 0

}
.

Compute the conditional spectral estimate under the hypothesis of speech presence X̂tk|H1 = GLSA
(
ξ̂tk, γ̂tk

)
Ytk using

(44.29) and (44.31).

Compute the smoothed power spectrum Stk using (44.72) and (44.73), and update its running minimum: Smin
tk =

min
{

Smin
t−1,k, Stk

}; Smin _sw
k = min

{
Smin _sw

k , Stk
}
.

Compute the indicator function Itk for the voice activity detection using (44.76) and (44.79).

Compute the conditional smoothed power spectrum S̃tk using (44.84) and (44.85), and update its running minimum:
S̃min

tk = min
{

S̃min
t−1,k, S̃tk

}; S̃min _sw
k = min

{
S̃min _sw

k , S̃tk
}
.

Compute the a priori speech presence probability p̃tk|t−1 using (44.86) and (44.87), the speech presence probability p̃tk
using (44.69), and the smoothing parameter α̃tk using (44.68).

Update the noise spectrum estimate σ̂2
t+1,k using (44.67) and (44.70).

Compute Plocal
tk and Pglobal

tk using (44.32–44.34), and Pframe
t using the block diagram in Fig. 44.7.

Compute the a priori speech presence probability p̂tk|t−1 using (44.37), and the speech presence probability p̂tk using
(44.69) by substituting p̃tk|t−1 with p̂tk|t−1.

Compute the speech spectral estimate X̂tk using (44.29).

Let � = �+1.

If � = V

For all frequency bins k

Store Smin _sw
k , set Smin

tk to the minimum of the last U stored values of Smin _sw
k , and let Smin _sw

k = Stk .

Store S̃min _sw
k , set S̃min

tk to the minimum of the last U stored values of S̃min _sw
k , and let S̃min _sw

k = S̃tk .

Let � = 0.

a priori SNR estimation. The performance of the algo-
rithm is demonstrated on speech signals degraded by
various additive noise types.

The implementation of the speech enhancement al-
gorithm is summarized in Table 44.5. For each time
frame t we recursively estimate the STFT coefficients of
the clean speech {Xtk|k = 1, . . . , N/2} from the noisy
STFT coefficients {Ytk|k = 1, . . . , N/2}, where N is
the length of the analysis window. We typically use
a Hamming window of 32 ms length and a framing step
of 8 ms (i. e., N = 512 and M = 128 for a sampling
rate of 16 kHz). In the first frame (t = 0) we compute
{Y0k|k = 0, . . . , N −1} by applying the discrete Fourier
transform to a short-time section of the noisy data

y0 =
[

y(0)h(0) y(1)h(1) . . . y(N −1)h(N −1)
]T

,

where h(n) is the analysis window. In the following
frames (t > 0), the section of noisy data is updated with

M additional samples

yt = [
y(tM)h(0) y(1+ tM)h(1)

. . . y(N −1+ tM)h(N −1)
]T

,

and subsequently {Ytk|k = 0, . . . , N −1} is computed
by applying the discrete Fourier transform to yt . Since
the speech signal x(n) is assumed to be real, once we esti-
mate {Xtk|k = 1, . . . , N/2}, the spectral coefficients for
N/2 < k ≤ N −1 are obtained by X̂tk = X̂∗

t,N−k, where
∗ denotes complex conjugation. The DC component X̂to
is set to zero, and a sequence {x̂t(n)|n = 0, . . . , N −1}
is obtained by applying the inverse discrete Fourier
transform to {X̂tk|k = 0, . . . , N −1}:

x̂t(n) = 1

N

N−1∑

k=0

X̂tk ei 2π
N nk . (44.90)
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Employing the weighted overlap-add method [44.37],
we compute the following sequence

ot(n) =

⎧
⎪⎪⎨

⎪⎪⎩

ot−1(n + M)+ Nh̃(n)x̂t(n) ,

for 0 ≤ n ≤ N − M −1

Nh̃(n)x̂t(n) , for N − M ≤ n ≤ N −1 ,

(44.91)

where h̃(n) is the synthesis window. Then, according to
(44.2), for each frame t, we obtain M additional samples
of the enhanced speech signal:

x̂(n + tM) = ot(n) , n = 0, . . . , M −1 . (44.92)

The synthesis window h̃(n) should satisfy the com-
pleteness condition [44.36]

∑

t

h̃(n − tM)h(n − tM) = 1

N
for all n . (44.93)

Given analysis and synthesis windows that satisfy
(44.93), any signal x(n) ∈ �2(�) can be perfectly re-
constructed from its STFT coefficients Xtk. However,
for M < N (over-redundant STFT representation) and
for a given analysis window h(n), there might be an
infinite number of solutions to (44.93). A reasonable
choice of a synthesis window is the one with minimum
energy [44.36, 58], given by

h̃(n) = h(n)

N
∑
�

h2(n −�M)
. (44.94)

The estimator for the a priori speech presence
probability, p̃tk|t−1 in (44.87), requires two iterations
of time–frequency smoothing (Stk , S̃tk) and minimum
tracking (Smin

tk , S̃min
tk ). The minimum tracking is imple-

mented by the method proposed in [44.56, 59], which
provides a flexible balance between the computational
complexity and the update rate of the minima values.
Accordingly, we divide the window of D samples into
U subwindows of V samples (UV = D). Whenever V
samples are read, the minimum of the current subwin-
dow is determined and stored for later use. The overall
minimum is obtained as the minimum of past samples
within the current subwindow and the U previous sub-
window minima. Typical values of D and V correspond
to 960 ms and 120 ms, respectively. That is, for a fram-
ing step of 8 ms (i. e., M = 128 for a sampling rate of
16 kHz) we set D = 120, V = 15, and U = 8.

To demonstrate the performance of the speech en-
hancement algorithm, utterances are taken from the
TIMIT database [44.38], degraded by various noise

types from the Noisex92 database [44.60], and enhanced
by the algorithm in Table 44.5. A clean utterance from
a female speaker is shown in Fig. 44.12. The speech sig-
nal is sampled at 16 kHz and degraded by the various
noise types, which include white Gaussian noise, car
interior noise, F16 cockpit noise, and babble noise. Fig-
ure 44.13 shows the noisy speech signals with SNR of
5 dB. The corresponding enhanced speech signals are
shown in Fig. 44.14.

The performance is evaluated by three objective
quality measures and informal listening tests. The first
quality measure is the segmental SNR (SegSNR), in dB,
defined by [44.61]

SegSNR = 1

T

T−1∑

t=0

C(SNRt) , (44.95)

where T denotes the number of frames in the signal, and

SNRt = 10 log10

tM+N−1∑
n=tM

x2(n)

tM+N−1∑
n=tM

[x(n)− x̂(n)]2

(44.96)

represents the SNR in the t-th frame. The operator
C confines the SNR at each frame to the percep-
tually meaningful range between 35 dB and −10 dB
(Cx �min[max(x,−10), 35]). The operator C prevents
the segmental SNR measure from being biased in ei-
ther a positive or negative direction due to a few silent
or unusually high-SNR frames, which do not contribute
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Fig. 44.12 Speech spectrogram and waveform of a clean
speech signal: ‘This is particularly true in site selection’
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894 Part H Speech Enhancement

significantly to the overall speech quality [44.62, 63].
The second quality measure is log-spectral distortion
(LSD), in dB, which is defined by

LSD = 1

T

T−1∑

t=0

⎡

⎣ 2

N

N/2∑

k=1

(
LXtk −LX̂tk

)2

⎤

⎦

1
2

,

(44.97)

where LXtk �max{20 log10 |Xtk|, δ} is the log spectrum
confined to about 50 dB dynamic range (that is, δ =
max

tk
{20 log10 |Xtk|}−50). The third quality measure is

the perceptual evaluation of speech quality (PESQ) score
(ITU-T P.862).
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Fig. 44.13a–d Speech spectrograms and waveforms of the speech signal shown in Fig. 44.12 degraded by various noise
types with SNR = 5 dB. (a) White Gaussian noise (SegSNR = −0.46 dB, LSD = 12.67 dB, PESQ = 1.74); (b) car interior
noise (SegSNR = 0.30 dB, LSD = 3.48 dB, PESQ = 2.47); (c) F16 cockpit noise (SegSNR = −0.33 dB, LSD = 7.99 dB,
PESQ = 1.76); (d) babble noise (SegSNR = 0.09 dB, LSD = 5.97 dB, PESQ = 1.87)

The experimental results for the noisy and enhanced
signals are given in the captions of Figs. 44.13 and
44.14. The improvement in SegSNR, reduction in LSD,
and increase in PESQ scores are summarized in Ta-
ble 44.6. Generally, the improvement in SegSNR and
reduction in LSD are influenced by the variability of
the noise characteristics in time and the initial SegSNR
and LSD of the noisy signal. The faster the noise spec-
trum varies in time, the less reliable the noise spectrum
estimator, and consequently the lower the quality gain
that can be achieved by the speech enhancement sys-
tem. Furthermore, the lower the SegSNR, respectively
the LSD, for the noisy signal, the higher is the SegSNR
improvement, respectively the lower is the LSD reduc-
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Fig. 44.14a–d Speech spectrograms and waveforms of the signals shown in Fig. 44.13 after enhancement with the
algorithm in Table 44.5. (a) White Gaussian noise (SegSNR = 5.78 dB, LSD = 5.10 dB, PESQ = 2.34); (b) car interior
noise (SegSNR = 9.52 dB, LSD = 2.67 dB, PESQ = 3.00); (c) F16 cockpit noise (SegSNR = 5.21 dB, LSD = 4.27 dB,
PESQ = 2.29); (d) babble noise (SegSNR = 4.23 dB, LSD = 4.30 dB, PESQ = 2.13)

tion, that can be achieved by the speech enhancement
system.

For car interior noise, most of the noise energy is
concentrated in the lower frequencies. Therefore, the
noise reduction is large in the low frequencies, and
small in the high frequencies. Accordingly, in each
frame, the total noise reduction is higher than that
obtainable for the case of WGN. Since the SegSNR
is mainly affected by the amount of noise reduc-
tion in each frame, the improvement in SegSNR is
more significant for car interior noise. However, the
reduction in LSD for the car interior noise is less sub-
stantial, since the initial LSD for the noisy signal is
small.

The characteristics of babble noise vary more
quickly in time when compared to the other noise

Table 44.6 Segmental SNR improvement, log-spectral dis-
tortion reduction and PESQ score improvement for various
noise types, obtained by using the speech enhancement
algorithm in Table 44.5

Noise SegSNR LSD PESQ score
type improvement reduction improvement

WGN 6.24 7.57 0.60

Car 9.22 0.81 0.53

F16 5.54 3.72 0.53

Babble 4.14 1.67 0.26
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896 Part H Speech Enhancement

types. Therefore, the IMCRA noise spectrum estima-
tor is least reliable for babble noise, and the speech
enhancement performance is inferior to that achievable
in slowly time-varying noise environments. Accord-
ingly, the improvement in SegSNR is smaller for babble
noise, when compared with the improvement achieved in

more-stationary noise environment with the same initial
SegSNR. Similarly, the reduction in LSD, and improve-
ment in PESQ score, are smaller for babble noise, when
compared with those achieved in more-stationary noise
environment with the same initial LSD, respectively
PESQ score, levels.

44.9 Selection of Spectral Enhancement Algorithms

In this section, we discuss some of the fundamental com-
ponents that constitute a speech spectral enhancement
system. Specifically, we address the choice of a statisti-
cal model, fidelity criterion, a priori SNR estimator, and
noise spectrum estimator.

44.9.1 Choice of a Statistical Model
and Fidelity Criterion

The Gaussian model underlies the design of many
speech enhancement algorithms, e.g., [44.12, 17, 18, 42,
64–66]. This model is motivated by the central limit the-
orem, as each Fourier expansion coefficient is a weighted
sum of random variables resulting from the random se-
quence [44.12]. When the span of correlation within the
signal is sufficiently short compared to the size of the
frames, the probability distribution function of the spec-
tral coefficients asymptotically approaches Gaussian as
the frame’s size increases. The Gaussian approximation
is in the central region of the Gaussian curve near the
mean. However, the approximation can be very inac-
curate in the tail regions away from the mean [44.67].
Porter and Boll [44.46] pointed out that a priori speech
spectra do not have a Gaussian distribution, but gamma-
like distribution. They proposed to compute the optimal
estimator directly from the speech data, rather than from
a parametric model of the speech statistics.

Martin [44.40] considered a gamma speech model,
in which the real and imaginary parts of the clean speech
spectral components are modeled as iid gamma random
variables. He assumed that distinct spectral components
are statistically independent, and derived MMSE estima-
tors for the complex speech spectral coefficients under
Gaussian and Laplacian noise modeling. He showed
that, under Gaussian noise modeling, the gamma speech
model yields a greater improvement in the segmental
SNR than the Gaussian speech model. Under Lapla-
cian noise modeling, the gamma speech model results
in lower residual musical noise than the Gaussian speech
model. Martin and Breithaupt [44.45] showed that when

modeling the real and imaginary parts of the clean
speech spectral components as Laplacian random vari-
ables, the MMSE estimators for the complex speech
spectral coefficients have similar properties to those es-
timators derived under gamma modeling, but are easier
to compute and implement.

Breithaupt and Martin [44.68] derived, using the
same statistical modeling, MMSE estimators for the
magnitude-squared spectral coefficients, and compared
their performance to that obtained by using a Gaus-
sian speech model. They showed that improvement in
the segmental SNR comes at the expense of additional
residual musical noise. Lotter and Vary [44.69] derived
a maximum a posteriori (MAP) estimator for the speech
spectral amplitude, based on a Gaussian noise model and
a superGaussian speech model. They proposed a para-
metric pdf for the speech spectral amplitude, which
approximates, with a proper choice of the parameters,
the gamma and Laplacian densities. Compared with the
MMSE spectral amplitude estimator of Ephraim-Malah,
the MAP estimator with Laplacian speech modeling
demonstrates improved noise reduction.

The Gaussian, gamma, and Laplacian models pre-
sented in Sect. 44.3 take into account the time correlation
between successive speech spectral components. Spec-
tral components in the STFT domain are assumed to
be statistically correlated along the frequency axis, as
well as along time trajectories, due to the finite length
of the analysis frame in the STFT and the overlap be-
tween successive frames [44.15]. Experimental results
of speech enhancement performance show [44.16, 43]
that the appropriateness of the Gaussian, gamma, and
Laplacian speech models are greatly affected by the
particular choice of the a priori SNR estimator. When
the a priori SNR is estimated by the decision-directed
method, the gamma model is more advantageous than
the Gaussian model. However, when the a priori SNR is
estimated by the noncausal recursive estimation method,
the Laplacian speech model yields a higher segmental
SNR and a lower LSD than the other speech models,
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while the level of residual musical noise is minimal when
using a Gaussian speech model. Furthermore, the dif-
ferences between the Gaussian, gamma, and Laplacian
speech models are smaller when using the noncausal
a priori estimators than when using the decision-directed
method.

It is worthwhile noting that estimators that mini-
mize the MSE distortion of the spectral amplitude or
log-spectral amplitude are more suitable for speech
enhancement than MMSE estimators. Moreover, it is
difficult, or even impossible, to derive analytical ex-
pressions for MMSE-LSA estimators under gamma or
Laplacian models. Therefore, the MMSE-LSA estimator
derived under a Gaussian model is often preferred over
the MMSE estimators derived under the other speech
models [44.2].

44.9.2 Choice of an A Priori SNR Estimator

Ephraim and Malah [44.12, 70] proposed three differ-
ent methods for the a priori SNR estimation. First,
maximum-likelihood estimation, which relies on the as-
sumption that the speech spectral variances are slowly
time-varying parameters. This results in musical residual
noise, which is annoying and disturbing to the percep-
tion of the enhanced signal. Second, decision-directed
approach which is particularly useful when combined
with the MMSE spectral, or log-spectral, magnitude
estimators [44.12, 17, 47]. This results in perceptually
colorless residual noise, but is heuristically motivated
and its theoretical performance is unknown due to its
highly nonlinear nature. Third, maximum a posteri-
ori estimation, which relies on a first-order Markov
model for generating a sequence of speech spectral vari-
ances. It involves a set of nonlinear equations, which
are solved recursively by using the Viterbi algorithm.
The computational complexity of the MAP estimator is
relatively high, while it does not provide a significant
improvement in the enhanced speech quality over the
decision-directed estimator [44.70].

The decision-directed approach has become over
the last two decades the most acceptable esti-
mation method for the variances of the speech
spectral coefficients. However, the parameters of the
decision-directed estimator have to be determined by
simulations and subjective listening tests for each par-
ticular setup of time–frequency transformation and
speech enhancement algorithm. Furthermore, since the
decision-directed approach is not supported by a sta-
tistical model, the parameters are not adapted to the
speech components, but are set to specific values in ad-

vance. Ephraim and Malah recognized the limits of their
variance estimation methods, and concluded that better
speech enhancement performance may be obtained if
the variance estimation could be improved [44.12, 70].

The causal estimator for the a priori SNR combines
two steps, a propagation step and an update step, follow-
ing the rational of Kalman filtering, to predict and update
the estimate for the speech spectral variance recursively
as new data arrive. The causal a priori SNR estimator
is closely related to the decision-directed estimator of
Ephraim and Malah. A special case of the causal esti-
mator degenerates to a decision-directed estimator with
a time-varying frequency-dependent weighting factor.
The weighting factor is monotonically decreasing as
a function of the instantaneous SNR, resulting effec-
tively in a larger weighting factor during speech absence,
and a smaller weighting factor during speech presence.
This slightly reduces both the musical noise and the sig-
nal distortion. Nevertheless, the improvement in speech
enhancement performance obtained by using the causal
recursive over using the decision-directed method is
not substantial. Therefore, if the delay between the
enhanced speech and the noisy observation needs to
be minimized, the decision-directed method is perhaps
preferable due to its computational simplicity. However,
in applications where a few-frames delay is tolerable,
e.g., digital voice recording, surveillance, and speaker
identification, the noncausal recursive estimation ap-
proach is more advantageous than the decision-directed
approach.

The noncausal a priori SNR estimator employs
future spectral measurements to predict the spectral vari-
ances of clean speech better. A comparison of the causal
and noncausal estimators indicates that the differences
are primarily noticeable during speech onset. The causal
a priori SNR estimator, as well as the decision-directed
estimator, cannot respond too quickly to an abrupt in-
crease in the instantaneous SNR, since this necessarily
implies an increase in the level of musical residual noise.
In contrast, the noncausal estimator, having a few sub-
sequent spectral measurements at hand, is capable of
discriminating between speech onsets and noise irregu-
larities. Experimental results show that the advantages
of the noncausal estimator are particularly perceived
during onsets of speech and noise only frames. On-
sets of speech are better preserved, while a further
reduction of musical noise is achieved [44.15, 53]. Fur-
thermore, the differences between the Gaussian, gamma,
and Laplacian speech models are smaller when using
the noncausal recursive estimation approach than when
using the decision-directed method [44.43].
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44.9.3 Choice of a Noise Estimator

Traditional noise estimation methods are based on recur-
sive averaging during sections that do not contain speech
and holding the estimates during sections which contain
speech. However, these methods generally require VADs
and the update of the noise estimate is restricted to peri-
ods of speech absence. Additionally, VADs are difficult
to tune and their reliability severely deteriorates for weak
speech components and low input SNR [44.65, 71, 72].
Alternative techniques, based on histograms in the
power spectral domain [44.55,73,74], are computation-
ally expensive, require much more memory resources,
and do not perform well in low-SNR conditions. Fur-
thermore, the signal segments used for building the
histograms are typically several hundred milliseconds
long, and thus the update rate of the noise estimate is
essentially moderate.

A useful noise estimation approach known as the
minimum statistics [44.59] tracks the minima values of
a smoothed power estimate of the noisy signal, and mul-
tiplies the result by a factor that compensates the bias.
However, the variance of this noise estimate is about
twice as large as the variance of a conventional noise
estimator [44.59]. Moreover, this method may occasion-
ally attenuate low-energy phonemes, particularly if the
minimum search window is too short [44.75]. These
limitations can be overcome, at the price of higher com-
plexity, by adapting the smoothing parameter and the
bias compensation factor in time and frequency [44.56].

A computationally efficient minimum tracking
scheme is presented in [44.57]. Its main drawbacks
are the slow update rate of the noise estimate in the
case of a sudden rise in the noise energy level, and
its tendency to cancel the signal [44.71]. Other closely
related techniques are the lower-energy envelope track-

ing [44.55] and the quantile-based [44.76] estimation
methods. Rather than picking the minima values of
a smoothed periodogram, the noise is estimated based
on a temporal quantile of a nonsmoothed periodogram
of the noisy signal. Unfortunately, these methods suffer
from the high computational complexity associated with
the sorting operation, and the extra memory required for
keeping past spectral power values.

The IMCRA noise estimator [44.54], presented in
Sect. 44.7, combines the robustness of the minimum
tracking with the simplicity of recursive averaging.
Rather than employing a voice activity detector and
restricting the update of the noise estimator to pe-
riods of speech absence, the smoothing parameter is
adapted in time and frequency according to the speech
presence probability. The noise estimate is thereby con-
tinuously updated even during weak speech activity.
The estimator is controlled by the minima values of
a smoothed periodogram of the noisy measurement.
It combines conditions on both the instantaneous and
local measured power, and provides a soft transition
between speech absence and presence. This prevents
an occasional increase in the noise estimate during
speech activity. Furthermore, carrying out the smooth-
ing and minimum tracking in two iterations allows larger
smoothing windows and smaller minimum search win-
dows, while reliably tracking the minima even during
strong speech activity. This yields a reduced variance of
the minima values and shorter delay when responding
to a rising noise power, which eventually improves the
tracking capability of the noise estimator. In nonstation-
ary noise environments and under low-SNR conditions,
the IMCRA approach is particularly useful [44.54]. It
facilitates a lower estimation error, and when integrated
into a speech enhancement system, yields improved
speech quality and lower residual noise.

44.10 Conclusions

We have described statistical models for speech and
noise signals in the STFT domain, and presented esti-
mators for the speech spectral coefficients under speech
presence uncertainty. The statistical models take into
consideration the time correlation between successive
spectral components of the speech signal. The spec-
tral estimators involve estimation of the noise power
spectrum, calculation of the speech presence probabil-
ity, and evaluation of the a priori SNR under speech
presence uncertainty. We discussed the behavior of the

MMSE-LSA spectral gain function and its advantage
for the mechanism that counters the musical noise phe-
nomenon. Local bursts of the a posteriori SNR during
noise-only frames are pulled down to the average noise
level, thus avoiding local buildup of noise whenever it
exceeds its average characteristics. The estimator for
the a priori speech presence probability exploits the
strong correlation of speech presence in neighboring
frequency bins of consecutive frames, which enables
further attenuation of noise components while avoid-
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ing clipping of speech onsets and misdetection of weak
speech tails.

We have presented estimators for the a priori
SNR under speech presence uncertainty, and showed
that a special case of a causal recursive estima-
tor degenerates to a decision-directed estimator with
a time-varying frequency-dependent weighting factor.
Furthermore, in applications where a delay of a few
short-term frames between the enhanced speech and
the noisy observation is tolerable, a noncausal estima-
tion approach may produce less signal distortion and
less musical residual noise than a causal estimation
approach.

We described the IMCRA approach for the noise
power spectrum estimation, and provided a detailed ex-
ample of a speech enhancement algorithm. We showed
that the improvement in SegSNR and reduction in LSD
are influenced by the variability of the noise characteris-
tics in time and the initial SegSNR and LSD of the noisy
signal. The faster the noise spectrum varies in time, the
less reliable the noise spectrum estimator, and conse-
quently the lower the quality gain that can be achieved
by the speech enhancement system. Furthermore, the
lower the initial quality of the noisy signal, the larger
the improvement that can be achieved by the speech
enhancement system.
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