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a b s t r a c t

ARCH and GARCH models have been used recently in model-based signal processing

applications, such as speech and sonar signal processing. In these applications, additive

noise is often inevitable. Conventional methods for parameter estimation of ARCH

and GARCH processes assume that the data are clean. The parameter estimation

performance degrades greatly when the measurements are noisy. In this paper, we

propose a new method for parameter estimation and state smoothing of complex

GARCH processes in the presence of additive noise. Simulation results show the

advantage of the proposed method in noisy environments.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Parameter estimation is the backbone of all model-
based signal processing algorithms. Having variability
clustering and heavy tail property, autoregressive condi-
tional heteroscedasticity (ARCH) and generalized ARCH
(GARCH) models have recently been used in speech signal
modeling. In speech enhancement in the short time
Fourier transform (STFT) domain, the most important
quantity which is to be estimated correctly is the spectral
variance, since having the true value of this quantity, one
can use the minimum mean square error (MMSE) [1] or
log spectral amplitude (LSA) [2] estimators, which are
optimum in MMSE and LSA sense, respectively, in order to
estimate the speech spectral component. Cohen [3]
modeled the speech signal in the STFT domain as a
complex GARCH process and used this model for speech
enhancement. He showed that the time varying variance
of the speech signal can be estimated using a GARCH
ll rights reserved.

ousazadeh),
model with Gaussian innovations. Furthermore, decision-
directed method of Ephraim and Malah [1] can be derived
using GARCH modeling. In his work, the GARCH model is
used to estimate the spectral variance of the speech
signals. Tahmasbi et al. [4] used the GARCH model for the
voice activity detection (VAD). Abdolahi et al. [5] used the
parameters of the GARCH model for speech recognition in
Persian isolated digits. In all of the above-mentioned
applications, it is assumed that the parameters of the
GARCH model are known or can be estimated from a clean
database.

Parameter estimation methods for ARCH and GARCH
models, such as quasi-maximum likelihood (QML) [6],
two stage least squares (TSLS) [7], and constrained two
stage least squares (CTSLS) [8], rely on the clean data.
Since these models are mostly used in econometric where
data can be assumed noise free, there was no effort to
estimate the parameters of these models in presence of
additive noise. In many speech signal processing algo-
rithms, these methods are inefficient since the additive
noise is inevitable. Hence, new methods for estimating
ARCH and GARCH parameters in presence of noise are
required. Poyiadjis et al. [9] introduced a method for ML
parameter estimation of general state-space models using
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particle methods. The drawback of their method is its very
high computational load, which makes this approach
inapplicable to speech signal processing.

In this paper, we propose a new ML based estimation
method for estimating the parameters of GARCH model in
presence of additive noise. We find the probability density
function (pdf) of the observation data given the para-
meters and compute the maximum of this function.
Specifically, we compute the gradient vector and the
Hessian matrix of the probability density function of the
data, and subsequently find the maximum of the prob-
ability density function numerically using the Newton
method. The reminder of this paper is organized as
follows. In Section 2, we formulate the problem. In
Section 3, we introduce our method and an adaptive
version thereof. In Section 4, we apply our method for
hidden state estimation. Finally in Section 5, we examine
the performance of our method using simulations.

2. Problem formulation

A complex GARCH process of order (p,q) is defined as
follows:

xt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ktjt�1

q
� vt ð1Þ

ktjt�1 ¼ c01þ
Xp

i ¼ 1

aixt�i � x�t�iþ
Xq

j ¼ 1

bjkt�jjt�j�1 ð2Þ

where xt is a k�1 complex vector, 1 denotes a vector of
ones, � denotes a term-by-term multiplication, � denotes
the conjugate transpose operator, k is the dimension of
the model and vt’s are independent identically distributed
complex Gaussian random vectors with zero mean and
identity covariance matrix, i.e.

vt � CN ð0,IÞ ð3Þ

An ARCH model is a special case of the GARCH model with
bj ¼ 0 8j.

It is worth mentioning that this model is a special case
of a more complicated general model in which the c0 is a
k�1 vector and ai’s and bj’s are k� k matrices. Although it
initially seems that the general model might be more
successful in applications such as speech modeling
(because it models the speech in each frequency bin
using different GARCH models) one should take into
account that the general model consists of k2+k para-
meters with k=512 or 1024 in speech processing applica-
tions. This large number of parameters makes the general
model inapplicable in practice. Another issue which must
be considered is that the process is really a vector process
(not k separate scalar processes) because as we will see
latter, all the vectors are combined with each other in
order to jointly estimate the parameters using ML
method.

Suppose that the observation signal is an ARCH or
GARCH process corrupted with an additive zero-mean
white complex Gaussian noise, i.e.

yt ¼ xtþnt ð4Þ

nt � CN ð0,s2IÞ ð5Þ
where nt is the additive noise sequence. We assume that
the noise variance s2 is unknown, and must be estimated
from observations. Our objective is to find constrained
estimates of the GARCH parameters and the noise
variance (i.e. estimation of the vector of the parameters
h¼ ½c0,a1, . . . ,ap,b1, . . . ,bq,s2�T , under the stationarity con-
ditions of the model). The stationarity conditions for the
complex GARCH model are given by [3]

c040 ð6Þ

a1,a2, . . . ,ap,b1,b2, . . . ,bpZ0 ð7Þ

Xp

i ¼ 1

aiþ
Xq

j ¼ 1

bjo1 ð8Þ

3. ML estimation of the parameters

In order to find the maximum likelihood estimate of
the parameters, we must compute the logarithm of the
likelihood function of the observations. Let
yt0 ¼ fytjt¼ 0,1,2, . . . ,tg be the set of observations up to
sample number t. Using Bayes’ formula, the logarithm of
the likelihood function can be written as

log½f ðyN�1
0 ; hÞ� ¼

XN�1

t ¼ 1

log½f ðytjy
t�1
0 ; hÞ�þ log½f ðy0; hÞ� ð9Þ

where N is the number of available observations. It should
be noted that for a large sample data size the second term
on the right side of (9) makes negligible contribution to the
pdf and can be ignored. Let xt0 ¼ fxtjt¼ 0,1,2, . . . ,tg be the
clean signal up to sample number t. We denote the one-
frame-ahead conditional variance of the clean signal as

ktjt�1 ¼ Efxt � x�t jx
t�1
0 ; hg ð10Þ

It is worth mentioning that in [3], it is shown that ktjt�1

can be used as an estimate of the speech spectral variance.
As in [3] we assume that the past estimated conditional
variances are sufficient statistics for the conditional
variance estimation, i.e.

Efxt � x�t jy
t
0; hg ¼ Efxt � x�t jk̂tjt�1,yt ; hg ð11Þ

Here, we assume that the order of the model is (1,1). We
choose this order because this order is mostly used in the
speech processing applications. Note that the one-frame-
ahead conditional variance ktjt�1 can be estimated recur-
sively in the minimum mean square error (MMSE) sense as
follows:

k̂tjt�1 ¼ Efktjt�1jy
t�1
0 ; hg

¼ Efc01þa1xt�1 � x�t�1þb1kt�1jt�2jy
t�1
0 ; hg

¼ c01þa1Efxt�1� x�t�1jy
t�1
0 ; hgþb1Efkt�1jt�2jy

t�1
0 ; hg

¼ c01þa1Efxt�1 � x�t�1jy
t�1
0 ; hgþb1k̂t�1jt�2

¼ c01þa1Efxt�1 � x�t�1jyt�1,k̂t�1jt�2; hgþb1k̂t�1jt�2:

ð12Þ

In order to compute Efxt�1 � x�t�1jyt�1,k̂t�1jt�2; hg note that
this is the estimation of the a posteriori second order
moment of vector xt�1 with a priori known covariance, i.e.
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R̂
t�1

x ¼ diagðk̂t�1jt�2Þ. Using the fact that xt�1 is a zero
mean complex Gaussian random vector corrupted with a
Gaussian noise we have [10, Eq. (14)]

ut�1 ¼ Efxt�1 � x�t�1jyt�1,k̂t�1jt�2; hg

¼ R̂
t�1

x ðR̂
t�1

x þs
2IÞ�1
½diagðs2IÞ

þ R̂
t�1

x ðR̂
t�1

x þs
2IÞ�1yt�1 � y�t�1� ð13Þ

In order to compute (9) note that

ðxtjy
t�1
0 ; hÞ � CN ð0,diagðk̂tjt�1ÞÞ ð14Þ

ðntjy
t�1
0 ; hÞ � CN ð0,s2IÞ ð15Þ

ðyt ¼ xtþntjy
t�1
0 ; hÞ � CN ð0,s2Iþdiagðk̂tjt�1ÞÞ ð16Þ

From (9)–(16) the log-likelihood function of the current
observation conditioned on past observations, i.e.
f ðytjy

t�1
0 ; hÞ, can be written as

log½f ðytjy
t�1
0 ; hÞ� ¼ log

1

pkjR̂
t

xþs2Ij

" #
�y�t ðR̂

t

xþs
2IÞ�1yt

ð17Þ

where j � j is the determinant operation. The log-likelihood
function of the observation can be computed using (9) and
(17). To find the maximum of the log-likelihood function
of the observation we must find the gradient and the
Hessian matrix of this function.

The gradient of this function can be calculated by using

g¼rlog½f ðyN�1
0 ; hÞ� ¼r

XN�1

t ¼ 1

log½f ðytjy
t�1
0 ; hÞ�

¼
XN�1

t ¼ 1

rlog½f ðytjy
t�1
0 ;hÞ� ð18Þ

In order to compute the gradient of the log-likelihood
function of the current observation conditioned on past
observations, i.e. rlog½f ðytjy

t�1
0 ; hÞ�, note that

log
1

pkjR̂
t

xþs2Ij

" #
¼�logpk�log½jR̂

t

xþs
2Ij�

¼ �logpk�log
Yk

i ¼ 1

ðl̂i,tjt�1þs2Þ

" #

¼�logpk�
Xk

i ¼ 1

log½l̂i,tjt�1þs2� ð19Þ

and

y�t ðR̂
t

xþs
2IÞ�1yt ¼

Xk

i ¼ 1

yi,ty
�
i,t

l̂i,tjt�1þs2
ð20Þ

where yi,t and l̂i,tjt�1 are the i-th elements of yt, and k̂tjt�1,
respectively. The gradient of the log-likelihood function of
the current observation conditioned on past observations,
can be computed as follows:

@

@c0
log½f ðytjy

t�1
0 ; hÞ� ¼�

Xk

i ¼ 1

l̂i,tjt�1þs2�yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
2

ð21Þ

@

@a1
log½f ðytjy

t�1
0 ; hÞ� ¼ �

Xk

i ¼ 1

l̂i,tjt�1þs2�yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
2

ui,t�1 ð22Þ
@

@b1
log½f ðytjy

t�1
0 ; hÞ� ¼�

Xk

i ¼ 1

l̂i,tjt�1þs2�yi,ty
�
i,t

ðl̂ i,tjt�1þs2Þ
2

l̂i,t�1jt�2

ð23Þ

@

@s2
log½f ðytjy

t�1
0 ; hÞ� ¼ �

Xk

i ¼ 1

l̂i,tjt�1þs2�yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
2

1þa1
@ui,t�1

@s2

� �

ð24Þ

where ui,t�1 is the i-th element of ut�1. l̂i,t�1jt�2 and ui,t�1

can be evaluated by (12) and (13), respectively, and the
partial derivative of ui,t�1 with respect to s2 can be
computed as follows:

@ui,t�1

@s2
¼

l̂
2

i,t�1jt�2ðl̂i,t�1jt�2þs2�2yi,t�1y�i,t�1Þ

ðl̂ i,t�1jt�2þs2Þ
3

ð25Þ

The Hessian matrix can be computed as follows:

H¼r2log½f ðyN�1
0 ; hÞ� ¼r2

XN�1

t ¼ 1

log½f ðyt jy
t�1
0 ; hÞ�

¼
XN�1

t ¼ 1

r
2log½f ðytjy

t�1
0 ; hÞ� ¼

XN�1

t ¼ 1

r
2Ht ð26Þ

where the second partial derivative of the log-likelihood
function of the current observation conditioned on the
past observations, i.e. Ht ¼r

2log½f ðytjy
t�1
0 ; hÞ�, can be

computed as follows:

Ht ¼

@2ðgÞ
@c2

0

@2ðgÞ
@c0@a1

@2ðgÞ
@c0@b1

@2ðgÞ
@c0s2

@2ðgÞ
@a1@c0

@2ðgÞ
@a2

1

@2ðgÞ
@a1@b1

@2ðgÞ
@a1s2

@2ðgÞ
@b1@c0

@2ðgÞ
@b1@a1

@2ðgÞ
@b2

1

@2ðgÞ
@b1@s2

@2ðgÞ
@s2@ðc0Þ

2

@2ðgÞ
@s2@a1

@2ðgÞ
@s2@b1

@2ðgÞ
@ðs2Þ

2

2
666666666666664

3
777777777777775

ð27Þ

where

g¼ log½f ðytjy
t�1
0 ; hÞ� ð28Þ

@2ðgÞ
@ðc2

0Þ
2
¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

ð29Þ

@2ðgÞ
@c0@a1

¼
@2ðgÞ
@a1@c0

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

ui,t�1 ð30Þ

@2ðgÞ
@c0@b1

¼
@2ðgÞ
@b1@c0

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

l̂i,t�1jt�2 ð31Þ

@2ðgÞ
@c0@s2

¼
@2ðgÞ
@s2@c0

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂ i,tjt�1þs2Þ
3

1þa1
@ui,t�1

@s2

� �

ð32Þ

@2ðgÞ
@a2

1

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

u2
i,t�1 ð33Þ

@2ðgÞ
@a1@b1

¼
@2ðgÞ
@b1@a1

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

l̂i,t�1jt�2ui,t�1

ð34Þ
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Table 2
Algorithm for ML parameter estimation of noisy complex GARCH model,

under stationarity conditions.

Initialization:

Chose h0 which satisfies the stationarity conditions

Let u1 ¼ k̂1j0 ¼ 0;

1) Find the subspace of active constraints and form Mq.

2) Calculate P¼ I�MT
q ðMqMT

q Þ
�1Mq , and d=Pg using (18)–(25).

3) If da0, find r1 and r2 satisfying

max fr1 : hþr1d is feasibleg

max flogðf ðyN
1 ; hþr2dÞÞ : 0rr2 rr1g

using (9). Set h to hþr2d

5) If d=0, find k¼ ðMqMT
q Þ
�1Mqg.

(a) If kj Z0 for all j corresponding to active inequalities, stop;

h satisfies the Kuhn–Tucker conditions.

(b) Otherwise, delete the row from Mq, corresponding to the

inequality with the most negative component of k and return to 2.

S. Mousazadeh, I. Cohen / Signal Processing 90 (2010) 2947–29532950
@2ðgÞ
@a1@s2

¼
@2ðgÞ
@s2@a1

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

1þa1
@ui,t�1

@s2

� �
ui,t�1

�
Xk

i ¼ 1

@ui,t�1

@s2

l̂ i,tjt�1þs2�yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
2

ð35Þ

@2ðgÞ
@b1@s2

¼
@2ðgÞ
@s2@b1

¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

1þa1
@ui,t�1

@s2

� �
l̂i,t�1jt�2

ð36Þ

@2ðgÞ
@ðs2Þ

2
¼
Xk

i ¼ 1

l̂i,tjt�1þs2�2yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
3

1þa1
@ui,t�1

@s2

� �

�a1

Xk

i ¼ 1

l̂ i,tjt�1þs2�yi,ty
�
i,t

ðl̂i,tjt�1þs2Þ
2

@2ui,t�1

@ðs2Þ
2

ð37Þ

@2ui,t�1

@ðs2Þ
2
¼�2

l̂
2

i,t�1jt�2ðl̂i,t�1jt�2þs2�3yi,t�1y�i,t�1Þ

ðl̂ i,t�1jt�2þs2Þ
4

ð38Þ

With these values of the gradient vector and Hessian
matrix, we can use numerical optimization methods such
as Newton [11] or gradient projection method [11] to find
the maximum of the log-likelihood function with or
without considering stationarity conditions. The algo-
rithm for estimating the parameters without considering
the stationarity conditions is summarized in Table 1.

In order to introduce the algorithm for estimating the
parameters under the stationarity conditions, note that
the constraints in (8) and positiveness of s2 can be
written as Mhrl where M¼ ½�I4�4,½0,1,1,0�T �T ,
l¼ ½0,0,0,0,1�T and arb means that each element of
the vector a is less than or equal to the corresponding
element in the vector b. Our final algorithm is summar-
ized in Table 2. In this algorithm, Mq is constructed from
M by eliminating the rows corresponding to inactive
constraints.

It is worth mentioning that if the covariance matrix of
the additive noise is known, i.e. the signal to noise ratio
(SNR) is known a priori, the proposed method can be used
in the same manner by eliminating the last element of the
gradient vector and the last column and the last row of
the Hessian matrix.
Table 1
Algorithm for ML parameter estimation of noisy complex GARCH model

without considering stationarity conditions.

Initialization:

Choose h0;

Let u1 ¼ k1j0 ¼ 0k�1 and I=0;

while g40

Compute ut for t=1,2,y,N�1 using (13);

Compute k̂tjt�1 for t=1,2,y,N�1 using (12);

Compute g and H using (18) and (26), respectively.

hIþ1 ¼ hIþgH�1g;

I= I+1;

end (while)
Another issue that must be addressed here is the case
of additive colored noise. Suppose that nt � CN ð0,RnÞ

where Rn is a known matrix with s2
i on its diagonal. The

off-diagonal entries are assumed to be zero as in all noise
modeling procedures in the STFT domain for speech signal
processing. In this case the terms s2I and l̂ i,tjt�1þs2 in
the above formulas must be replaced by Rn and
l̂i,tjt�1þs2

i , respectively.

3.1. Recursive ML

A standard approach to recursive ML (RML) estimation
considers a series of log-likelihood functions log½f ðyk

0; hÞ�,
where log½f ðyk

0;hÞ� ¼
Pk

t ¼ 1 log½f ðytjyt�1
0 ; hÞ� [12]. Under

suitable regularity conditions described in [13] it can be
shown that the average log-likelihood converges to the
following limit:

lðhÞ ¼ lim
k-1

1

kþ1

Xk

t ¼ 1

log½f ðytjyt�1
0 ; hÞ� ð39Þ

It can be shown that lðhÞ admits h� as a global maximum
where h� is the global maximum of the log-likelihood
function [12]. The function lðhÞ does not have an analytical
expression and we do not have access to it. Nevertheless,
identification of h� can still be achieved based on the
ergodicity property in (39), which provides us with a set
of accessible functions f ðytjyt�1

0 ; hÞ that converge to lðhÞ.
One way to exploit this in order to maximize lðhÞ, is to use
a stochastic approximation (SA) algorithm to update the
parameter estimate at time n using the recursion

hn ¼ hn�1þgnrlog½f ðynjy
n�1
0 ;hÞ� ð40Þ

where hn�1 is the parameter estimate at time n�1 and
rlog½f ðynjy

n�1
0 ; hÞ� can be computed by (21)–(23), pro-

vided that the step size gn is a positive non-increasing
sequence, such that

P1
n ¼ 1 gn ¼1 and

P1
n ¼ 1 g2

no1. It
can be shown that hn will converge to the set of (global or
local) maxima of lðhÞ. It is worth mentioning that this
method (RML) can be used for adaptive parameter
estimation (varying parameters). In order to achieve this
goal one should use the RML with constant step size
(i.e. gn ¼ g). The choice of g will be a trade-off between
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Table 3
MSE in parameter estimation for different methods (SNRin=�10 dB).

MSE MLClean MLNoisy PKN PUN MMSEE

c0 0.0003 13.9474 0.0196 7.0087 –

a1 0.0010 0.1506 0.1161 0.1385 –

b1 0.0024 0.1258 0.0530 0.0901 –

SNRout 0.3656 �4.8379 0.3357 �3.5234 0.4991

Table 4
MSE in parameter estimation for different methods (SNRin=�5 dB).

MSE MLClean MLNoisy PKN PUN MMSEE

c0 0.0003 0.8057 0.0051 0.3590 –

a1 0.0010 0.1314 0.0628 0.0881 –

b1 0.0024 0.1595 0.0830 0.0931 –

SNRout 1.2229 �0.7952 1.1940 0.1835 1.4405

Table 5
MSE in parameter estimation for different methods (SNRin=0.0 dB).

MSE MLClean MLNoisy PKN PUN MMSEE

c0 0.0003 0.0316 0.0009 0.0223 –

a1 0.0010 0.0740 0.0171 0.0513 –

b1 0.0024 0.0401 0.0278 0.0387 –

SNRout 3.1225 2.6878 3.1128 2.8427 3.3009
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tracking capability (large g) and low estimation noise
around the parameter (small g).

4. State smoothing

After the estimation of the parameters of the complex
GARCH model these estimated parameters can be used to
estimate the hidden state of the model, xt, in the MMSE
sense. In order to do this, note that the MMSE optimal
estimator in a Bayesian framework is the conditional
mean

x̂t ¼ Efxtjy
t
0g ¼ Efxt jk̂tjt�1,ytg ð41Þ

Because xt conditioned on k̂tjt�1 and yt is a zero mean
complex Gaussian vector with covariance matrix equals to
diag ðk̂tjt�1Þ, the solution of the conditional expectation in
(41) is the well-known Wiener filter. Hence, the condi-
tional mean in (41) can be calculated using (12) and (13),
the estimated parameters (i.e. ĥ ¼ ½ĉ0,â1,b̂1,ŝ2

�T ), and the
following equation:

x̂t ¼ R̂
t

xðR̂
t

xþ ŝ
2IÞ�1yt ð42Þ

5. Simulations

In this section, we analyze the performance of our
proposed method using three different experiments. In
the first experiment, we use a two dimensional (k=2)
GARCH(1,1) process corrupted with zero-mean complex
Gaussian white noise with three different signal to noise
ratios (SNR, i.e. �10, �5 and 0 dB). The number of
available data was set to N=1000 samples. The process vt

is zero-mean Gaussian white process with identity
covariance matrix. The parameters of the GARCH(1,1)
are h¼ ½0:10,0:40,0:30�T . We compare the performance of
the proposed method with that of two different ML
methods. The first method denoted by MLClean, employs
the clean data (unavailable in practical situations) for
estimating the parameters. The second method denoted
by MLNoisy, employs the noisy data for estimating the
parameters assuming that the data are clean. The
proposed method is examined under two different
situations. The first situation denoted by PUN, employs
the noisy data for estimating the parameters assuming
that the corrupting noise variance s2 is unknown. The
second situation denoted by PKN, employs noisy data for
estimating the parameter assuming that the corrupting
noise variance is known.

For evaluating the performance of our method we used
the mean square error (MSE) in parameter estimation and
the output SNR of the proposed state smoothing algo-
rithm which both are estimated using 2000 realizations.
The input SNR (SNRin) and the output SNR (SNRout) are
defined as follows:

SNRin ¼ 10 log10
1

2000

X2000

i ¼ 1

PN
t ¼ 1 Jxi

tJ
2PN

t ¼ 1 Jxi
t�yi

tJ
2

SNRout ¼ 10 log10
1

2000

X2000

i ¼ 1

PN
t ¼ 1 Jxi

tJ
2PN

t ¼ 1 Jxi
t�x̂

i
tJ

2
ð43Þ
where xt
i, xt

i and x̂ i
t are the clean, noisy and estimated

signals in the i-th realization, respectively. For each
previously mentioned parameter estimation methods x̂ i

t

is obtained using the proposed state smoothing algorithm
assuming that the corrupting noise variance is known. The
results are depicted in Tables 3–5. In the last columns of
these tables we also provide the output SNR for minimum
mean square error estimator (MMSEE). This estimator
uses the true one-frame-ahead conditional variance of the
clean signal ðktjt�1Þ for state smoothing (i.e. the MMSEE
estimator uses ðktjt�1Þ instead of its estimate ðk̂tjt�1Þ in
(42)). Note that the output SNR given in this column is the
highest achievable SNR. It is obvious that the proposed
methods yield better performance in output SNR and
parameter estimation over the MLNoisy method which is
often used in real world problems. The best performance
is obtained by using the MLClean, as expected, but this
method cannot be used in practical situations because the
clean data are not available. Comparing the output SNR of
PKN and MMSEE shows that the performance of the
proposed parameter estimation method is very close to
the best achievable performance (i.e. MMSEE). Another
point which must be emphasized here is that the perfor-
mance of the proposed method degrades if the noise
variance is unknown. This is because of the additional
information employed in PKN method. Another issue
which must be mentioned here is that estimating b1 is
much more difficult than c0 and a1 because b1 is multi-
plied by a hidden quantity ktjt�1 which makes the
estimation of this parameter difficult. The simulation
results confirm this fact. Other simulation results show
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that the performance of MLClean, MLNoisy, PUN and PKN
methods is almost the same for high values of SNR
(greater than 5 dB).
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Fig. 1. The results of the RML method in estimating ti

Table 6
MSE in parameter estimation for different methods (colored noise)

(SNRin=�4.44 dB).

MSE MLClean MLNoisy PKN MMSEE

c0 0.0003 0.0034 0.0014 –

a1 0.0020 0.0529 0.0145 –

b1 0.0047 0.2358 0.0244 –

SNRout 1.5935 0.9356 1.5604 1.7905
In the second experiment we investigate the influence
of the colored noise on the proposed algorithm. In the text
we addressed how to treat the colored noise. For this
experiment we used the same GARCH model as expressed
in the first simulation but the process was corrupted by a
zero-mean Gaussian colored noise with covariance matrix
equals to Sn ¼ diagð1,0:16Þ. By this choice of the corrupt-
ing noise covariance matrix the input SNR equals to
�4.44 dB. The results are depicted in Table 6. It is
apparent that the proposed method outperforms the
MLNoisy method.

In the third experiment, we try to estimate the time
varying parameters of a two dimensional complex GARCH
6000 7000 8000 9000 10000
les)

6000 7000 8000 9000 10000
les)

6000 7000 8000 9000 10000
les)

me varying parameters for three different SNRs.
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Table 7
MSE in parameter estimation for RML methods with three different SNR.

MSE SNR=0 dB SNR=6 dB SNR=10 dB

c0 0.0190 0.0075 0.0065

a1 0.0245 0.0147 0.0100

b1 0.0143 0.0138 0.0114
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process corrupted with zero-mean complex Gaussian
white process with known covariance using the proposed
RML method. The performance of the RML method is
analyzed in three different SNRs, i.e. 0, 6 and 10 dB. The
true and estimated values of the time varying parameters
are depicted in Fig. 1. It is obvious that the RML algorithm
can follow time varying parameters and its performance
gets better as the SNR increases. The MSE in parameter
estimation presented in Table 7, is estimated by

MSEi ¼
1

104

X104

t ¼ 1

ðyiðtÞ�ŷiðtÞÞ
2

ð44Þ

where yi, ŷi and MSEi are i-th element of h, its estimate
and mean square error in its estimation, respectively. For
a practical application of the RML parameter estimation in
speech processing see [14].

5.1. Computational complexity

The computational complexities of the MLNoisy and
the MLClean methods, which are often used in practice,
are the same since these methods only use different data.
The computational complexity of the proposed method
roughly equals to that of MLNoisy (or MLClean) method.
The reason is that all these methods are using the same
algorithm, i.e. gradient projection method for maximiza-
tion of the pdf on the parameters. Assuming that multi-
plications and divisions have the same complexity for the
processor, the number of sums and multiplications for
computing the pdf function in each iteration of the
gradient projection method for the MLClean method are
3 and 6 kN, respectively. For the proposed method the
number of sums is 6 kN and the number of multiplications
is 9 kN, respectively. Increasing the order of the model
increases the computational load but the computational
load of parameter estimation of higher order models is
still O(N). It should be mentioned that the method
presented in [9] takes approximately 35 h to estimate
the parameters of one process while the proposed method
just needs 23 s (for the process used in the first
simulation). This fact shows that the method presented
in [9], even if it has better performance over the purposed
method, cannot be applied in practical applications.

6. Conclusion

We have presented a new ML estimation procedure for
parameter estimation of complex GARCH(1,1) model in
presence of the additive noise, and a new procedure for
estimating the hidden states of the model in the MMSE
sense. The method computes the log-likelihood function
together with its gradient vector and Hessian matrix, and
uses the Newton method (or gradient projection method
under stationarity conditions) to numerically find the
maximum of the log-likelihood function. We also presented
an RML method for estimating the time varying parameters.
Simulation results show improvement with respect to not
considering the noise effect in the estimation of the
parameters. In this work we considered two situations.
The first one is the general case where the SNR is unknown.
In this situation, the proposed method estimates the
variance of the noise together with the parameters and
the hidden states of the model. The second situation, which
is a special case of the first one, assumes that the variance
of the additive noise is known and just estimates the
parameters of the model. As expected, the second case
yields better performance over the first one because of the
additional information employed. The issue how to handle
colored noise is also discussed in the paper.
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[12] L. Ljung, T. Söderström, Theory and Practice of Recursive Identifica-
tion, MIT Press, Cambridge, 1983.

[13] V. Tadic, A. Doucet, Exponential forgetting and geometric ergodicity
for optimal filtering in general state-space models, Stochastic
Processes Appl. 115 (2005) 1408–1436.

[14] S. Mousazadeh, I. Cohen, AR-GARCH in presence of noise:
parameter estimation and its application to voice activity detection,
IEEE Trans. Audio Speech Lang. Process., submitted for publication.


	Simultaneous parameter estimation and state smoothing of complex GARCH process in the presence of additive noise
	Introduction
	Problem formulation
	ML estimation of the parameters
	Recursive ML

	State smoothing
	Simulations
	Computational complexity

	Conclusion
	Acknowledgements
	References




