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a b s t r a c t

Image anomaly detection is the process of extracting a small number of clustered pixels
which are different from the background. The type of image, its characteristics and the
type of anomalies depend on the application at hand. In this paper, we introduce a new
statistical model called noncausal autoregressive–autoregressive conditional heterosce-
dasticity (AR-ARCH) model for background in sonar images. Based on this background
model, we propose a novel anomaly detection technique in sonar images. This new
statistical model (i.e. noncausal ARCH) is an extension of the conventional ARCH model.
We provide sufficient stationarity conditions and develop a computationally efficient
method for estimating the model parameters which reduces to solving two sets
of linear equations. We show that this estimator is asymptotically consistent. Using
matched subspace detector (MSD) along with noncausal AR-ARCH modeling of the
background in the wavelet domain, we propose an anomaly detection algorithm for
sonar images, which is computationally efficient and less dependent on the image
orientation. Simulation results demonstrate the performance of the proposed parameter
estimation and the anomaly detection algorithm.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Image anomaly detection refers to the problem of finding
regions in an image which do not conform to the expected
behavior. The characteristic of the image and the type of
anomalies are application dependent. Anomaly detection has
a wide range of applications, such as silicon wafer defect
detection [1,2], medical imaging [3] and sea-mine detection
in side-scan sonar images [4] just to name a few. In sea-mine
detection, lethal targets must be detected with nearly 100%
reliability. False detections are not disastrous but might slow
down the demining process. Every anomaly detection algo-
rithm consists of some or all of the following stages: selec-
tion of an appropriate feature space; choosing an appropriate
All rights reserved.
statistical model which represents the image background
and selection of a detection algorithm.

A proper selection of a feature space, which allows
distinction of anomalies from the background, is an
important part of an anomaly detection algorithm. Fea-
tures can be extracted from the image pixels themselves or
from the image after passing through a transform. Kazant-
sev et al. [5] introduced a feature space based on two
circular concentric windows W1 and W2 with radii R1 and
R2 ðR1oR2Þ, respectively. A similar approach was taken by
Schweizer and Moura [6], where two concentric rectangles
serve as the moving window. In these methods the fea-
tures are extracted directly from the image itself. Features
can be also extracted from the image in a transformed
domain. Laine et al. [7] used a dyadic wavelet transform in
mammography to emphasize mammographic features
while reducing the noise. Strickland and Hahn [8]
used an undecimated wavelet transform for detection of
Gaussian objects in Markov noise. Xia et al. [9] used the
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wavelet transform to insert an undetectable watermark
into digital imagery. Noiboar and Cohen [4] used undeci-
mated discrete wavelet transform (DWT) for anomaly
detection in sonar images.

Once we have extracted our feature either from the
image itself or from the transformed image, we must find
a statistical model to describe the background in the
selected feature space domain. A survey of current litera-
ture shows that the most popular models for the back-
ground are Gaussian and its extensions. These models are
used mostly because of their mathematical tractability.
Ashton [10] performed a sub-pixel anomaly detection
in multispectral infrared imagery using a Gaussian distri-
bution. Stein et al. [11] used a Gaussian mixture
model (GMM) for modeling hyper-spectral imagery. Other
extensions such as linear mixing model (LMM) and Gauss–
Markov random field (GMRF) are used by several authors
for modeling the background. A review of multi-resolution
Markov models for signal and image processing can be
found in [12]. A survey of results on the structure of two
dimensional wide-sense stationary processes with special
emphasis on finite order models can be found in [13]. The
correlation structure of spatial linear and spatial moving
average processes defined on a square lattice has been
reviewed by Marc [14].

The generalized autoregressive conditional heterosce-
dasticity (GARCH) model was first introduced by Bollerslev
[15] as an extension of the autoregressive conditional
heteroscedasticity (ARCH) model developed by Engle [16]
to model econometric data. Since then, many researchers
have extended and used these models in several speech
and image processing applications. Cohen [17] modeled
the speech signal in the short time Fourier transform
(STFT) domain as a complex GARCH process and used this
model for speech enhancement. AR-GARCH model was
utilized for modeling speech signal in the time domain and
for developing voice activity detection (VAD) algorithms
[18,19]. Abdolahi and Amindavar [20] used the para-
meters of the GARCH model for speech recognition in
Persian isolated digits. Amirmazlaghani et al. [21] used
two dimensional GARCH model for speckle suppression in
SAR images. Two dimensional GARCH model is also used in
image denoising [22]. Noiboar and Cohen [4] used causal
GARCH model for anomaly detection in sonar images. The
causality assumption incorporated into the GARCH model
in [4] is unnatural for images. Developing a non-causal
statistical model may lead to an improvement in detection
performance by reducing the dependency of the detection
procedure on image orientation.

In [23], we presented an anomaly detection method in
sonar images based on noncausal AR-ARCH model. The
background of the sonar image in the wavelet domain was
modeled by a noncausal AR-ARCH model. Matched sub-
space detector (MSD) was used for detecting the anomaly
in the image. In MSD it is assumed that the anomalies are
within a subspace. This subspace is assumed to be known
or can be estimated using training data.

In this paper, we provide sufficient stationary condi-
tions for the model and propose an effective least squares
method for estimating the model parameters. This esti-
mator, which is shown to be asymptotically consistent, is
obtained by solving two sets of linear equations and have a
closed-form expression. We also present the detection
algorithm in more details. This algorithm is based on the
noncausal AR-ARCH modeling of the background and MSD.
The rest of the paper is organized as follows. In Section 2,
we introduce a two dimensional noncausal ARCH model,
provide sufficient stationary conditions and develop a
novel technique for estimating the parameters of this
model. We also show in the Appendix that this estimator
is asymptotically consistent. In Section 3, we introduce our
anomaly detection algorithm, which is based on noncausal
autoregressive ARCH model and MSD. This section is a
detailed description of the method previously proposed by
the authors in [23]. In Section 4, the performances of
the parameter estimation and anomaly detection are
evaluated using simulations. We conclude the paper in
Section 5.

2. Noncausal ARCH model

2.1. Two dimensional noncausal ARCH model and its
stationary conditions

We define a two dimensional noncausal ARCH(p,q)
model as follows:

xðt1; t2Þ ¼ sðt1; t2Þɛðt1; t2Þ; ð1Þ

s2ðt1; t2Þ ¼ c0þ ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;jðx2ðt1� i; t2� jÞþx2ðt1þ i; t2þ jÞÞ;

ð2Þ

c040 ai;jZ0; ð3Þ
where c0 and aij's are the two dimensional noncausal
ARCH parameters, 8 iZ0 ai;0 ¼ 0, p and q are the model
orders in the horizontal and vertical directions, respec-
tively. ɛðt1; t2Þ's are zero mean independent identically
distributed (IID) random variables with unit variance and
s2ðt1; t2Þ's are called the conditional variances. The con-
straints (3) guarantee the positiveness of s2. These equa-
tions simply state that each pixel in the image (i.e. xðt1; t2Þ)
is a random variable whose conditional variance (condi-
tioned on the neighboring pixels) is a weighted sum of the
squared value of the neighboring pixels. The neighborhood
is determined by p and q. This definition is explained
graphically in Fig. 1. This figure shows that the conditional
variance of the centered pixel is a weighted mean of the
squared values of the neighboring pixels where the
weights are symmetric (i.e. pixels dotted with the same
color have the same weight). This condition is applied to
the definition of the model in order to make it identifiable.
More specifically, since our parameter estimation method
is based on the LS method proposed in [24] for estimating
the parameters of the noncausal AR model, and a non-
causal AR model is identifiable by the LS method if and
only if the weights are symmetric, we ought to assume
that the weights are symmetric. Two dimensional non-
causal AR model represents the gray-scale level at a
specific pixel, as a linear combination of the gray-scale
levels of neighboring pixels and an additive white noise.
This model has been used in many applications in image



Fig. 1. The conditional variance of the centered pixel is a weighted mean
of the squared value of the neighboring pixels where the weights are
symmetric (i.e. pixels dotted with the same color have the same weight).
(For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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processing and analysis. For example, it can be used for the
design of image restoration algorithms [25,26], for multi-
dimensional spectral estimation [27], and for texture
analysis and synthesis [28].

Theorem. A two dimensional noncausal ARCH model is
mean ergodic with finite second order moment if

sup
t1 ;t2

ε2ðt1; t2Þ ¼ κo1 almost surely ð4Þ

∑
p

i ¼ �p
∑
q

j ¼ 0
ai;jo

1
2κ

ð5Þ

Proof. We define a semi-metric space (X,d) as

X ¼ x t1; t2ð Þ lim
N-1

1
ð2Nþ1Þ2

∑
N

i ¼ �N
∑
N

j ¼ �N
x2 i; jð Þo1

�����
)(

ð6Þ

with the following semi-metric:

d x; yð Þ ¼ lim
N-1

1
ð2Nþ1Þ2

∑
N

i ¼ �N
∑
N

j ¼ �N
x2 i; jð Þ�y2 i; jð Þ :j
�� ð7Þ

Let Tðxðt1; t2ÞÞ be the following mapping:

Tðxðt1; t2ÞÞ

¼ c0þ ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;jðx2ðt1� i; t2� jÞþx2ðt1þ i; t2þ jÞÞ

 !1=2

�ɛðt1; t2Þ: ð8Þ

If we show that (X,d) is a complete space and Tðxðt1; t2ÞÞ is
a contraction mapping from X to itself, then using Banach's
fixed point theorem xðt1; t2Þ ¼ Tðxðt1; t2ÞÞ has at least one
fixed point. This means that xðt1; t2Þ is mean ergodic with
finite second order moment and hence stationary.
To show that (X,d) is a complete space we must show

that every Cauchy sequence in X converges to an element
in X with respect to the metric d. This can be done in a
similar way of proving completeness of ℓ2 which can be
found in every classical textbook on functional analysis.
See for example [29]. In order to show that Tðxðt1; t2ÞÞ is a
contraction mapping from X to itself, first we must show
that if xðt1; t2ÞAX then yðt1; t2Þ ¼ Tðxðt1; t2ÞÞAX. Note that
8NAN we have

αN ¼ 1
ð2Nþ1Þ2

∑
N

t1 ¼ �N
∑
N

t2 ¼ �N
y2 i; jð Þ

¼ 1
ð2Nþ1Þ2

∑
N

i ¼ �N
∑
N

j ¼ �N
c0ɛ2 t1; t2ð Þ

þ 1
ð2Nþ1Þ2

∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j ∑

N

t1 ¼ �N
∑
N

t2 ¼ �N
ɛ2 t1; t2ð Þ

� x2 t1� i; t2� jð Þþx2 t1þ i; t2þ jð Þ� �
r κ

ð2Nþ1Þ2
∑
N

i ¼ �N
∑
N

j ¼ �N
c0

þ κ

ð2Nþ1Þ2
∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j ∑

N

t1 ¼ �N
∑
N

t2 ¼ �N
x2 t1� i; t2� jð Þ

þx2 t1þ i; t2þ jð Þ

¼ κc0þ
κ

ð2Nþ1Þ2
∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j

� ∑
N

t1 ¼ �N
∑
N

t2 ¼ �N
x2ðt1� i; t2� jÞþx2ðt1þ i; t2þ jÞ: ð9Þ

Taking a limit from both sides of the last inequality (9) and
considering the fact that xAX, it can easily be verified that

lim
N-1

αNo1;

hence, T is a mapping from X to X.
For a mapping to be a contraction mapping on X, there

must exist a constant βo1 such that dðTx; TyÞoβdðx; yÞ for
all x; yAX. Now note that

dN Tx; Tyð Þ ¼ 1
ð2Nþ1Þ2

∑
N

t1 ¼ �N
∑
N

t2 ¼ �N
x2 i; jð Þ�y2 i; jð Þj
��

¼ 1
ð2Nþ1Þ2

∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j ∑

N

t1 ¼ �N
∑
N

t2 ¼ �N
ɛ2 t1; t2ð Þ

� x2 t1� i; t2� jð Þ�y2 t1� i; t2� jð Þj
��

þ 1
ð2Nþ1Þ2

∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j ∑

N

t1 ¼ �N
∑
N

t2 ¼ �N
ɛ2 t1; t2ð Þ

�jx2ðt1þ i; t2þ jÞ�y2ðt1þ i; t2þ jÞj: ð10Þ
Using a similar approach we used to obtain (9), it can be
shown that

dðTx; TyÞ ¼ lim
N-1

dNðTx; TyÞr 2κ ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j

 !
dðx; yÞ: ð11Þ

Hence, β¼ ð2κ∑p
i ¼ �p∑

q
j ¼ 0ai;jÞ and a sufficient stationary

condition is

βo1 ) ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;jo

1
2κ

: ð12Þ
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Note that the second condition can be interpreted as a
condition on the probability distribution function (pdf) of
εðt1; t2Þ to be almost surely compactly supported.

2.2. Parameter estimation of two dimensional noncausal
ARCH model

Parameter estimation is an important part of any
model-based signal processing algorithm. There are sev-
eral parameter estimation methods for ARCH and GARCH
models, for example quasi maximum likelihood (QML)
[30], two stage least squares (TSLS) [31], constrained two
stage least squares (CTSLS) [32] and multivariate two stage
least squares (MTSLS) [33]. Since ARCH and GARCH models
are mostly used in econometrics, where processes can be
assumed to be causal, to the best of our knowledge, there
was no attempt to define noncausal (G)ARCH models and
finding a parameter estimation method for the noncausal
case. Upon defining a two dimensional noncausal ARCH
model in the previous section, in this section we develop
a novel parameter estimation method for estimating the
parameters of this model. The proposed method is mainly
based on MTSLS and uses the same approach utilized in
[24] for parameter estimation of the two dimensional
noncausal AR model.

Let yðt1; t2Þ ¼ x2ðt1; t2Þ. Then from the definition of
the two dimensional noncausal ARCH model (1)–(2), we
have

yðt1; t2Þ ¼ c0þ ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;jðyðt1� i; t2� jÞþyðt1þ i; t2þ jÞÞ

þs2ðt1; t2Þðɛ2ðt1; t2Þ�1Þ

¼ c0þ ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;jðyðt1� i; t2� jÞþyðt1þ i; t2þ jÞÞ

þs2ðt1; t2Þηðt1; t2Þ: ð13Þ
Ignoring the dependence of s2ðt1; t2Þηðt1; t2Þ on the para-
meters, (13) is similar to a two dimensional noncausal AR
process. We utilize a similar approach employed in [24]
for parameter estimation. Note that yðt1; t2Þ can be divided
into the following two respectively causal and anti-causal
processes:

1
2
y t1; t2ð Þ ¼ c0

2
þ ∑

p

i ¼ �p
∑
q

j ¼ 0
ai;jy t1� i; t2� jð Þþs2 t1; t2ð ÞηL t1; t2ð Þ

ð14Þ

1
2
y t1; t2ð Þ ¼ c0

2
þ ∑

p

i ¼ �p
∑
q

j ¼ 0
ai;jy t1þ i; t2þ jð Þ

þs2ðt1; t2ÞηUðt1; t2Þ; ð15Þ
where ηLðt1; t2Þ and ηUðt1; t2Þ are the corresponding causal
and anti-causal prediction errors such that ηLðt1; t2ÞþηU
ðt1; t2Þ ¼ ηðt1; t2Þ. As in [24], we can assume that ηLðt1; t2Þ
and ηUðt1; t2Þ are uncorrelated. Furthermore, it can also be
assumed that ηLðt1; t2Þ and ηU ðt1; t2Þ are uncorrelated with
yðt17 i; t27 jÞ : �pr irp;0r jrq. In order to check that if
these assumptions hold, we simulate a noncausal ARCHð1;1Þ
model and computed the correlation between η, ηL, ηU , and y.
In this experiment, we simulated a noncausal ARCHð1;1Þ
process of the size 200�200 using Banach fixed point
theoremwith 15 iterations. The model parameters were set to

c0 ¼ 1; a�1;�1 ¼ 0:03; a0;�1 ¼ 0:04; a1;�1 ¼ 0:05;
a�1;0 ¼ 0:06:

The process noise ɛðt1; t2Þ was chosen to be a sequence of IID
random variables driven from uniform distribution having
zero mean and unity variance (i.e. ɛðt1; t2Þ �Uð½�

ffiffiffi
3

p
;
ffiffiffi
3

p
�Þ).

The sample cross-correlation of column stack of ηL and y, ηU
and y, η and y, and ηL and ηU is depicted in Figs. 2(a), (b), (c),
and (d), respectively. From these figures, it is obvious that
these processes are uncorrelated for any lag greater than zero.
Hence, the parameters of the model can be estimated by
minimizing the following cost function:

C að Þ ¼ ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1

1
2
y t1; t2ð Þ�aTyL t1; t2ð Þ

� �2

þ 1
2
y t1; t2ð Þ�aTyU t1; t2ð Þ

� �2

ð16Þ

with respect to a, where N andM are the number of available
data in the horizontal and vertical directions, respectively, and
ð�ÞT is the transpose operator. The vector of parameters a,
yLðt1; t2Þ and yUðt1; t2Þ is defined as follows:

a¼ ½c0; a�p;0…a�1;0; a�p;1…ap;1; a�p;2…ap;2;…a�p;q;…ap;q�T
ð17Þ

yL t1; t2ð Þ ¼ ½12 ; y t1�1; t2ð Þ…y t1�p; t2ð Þ;
yðt1þp; t2�1Þ…yðt1�p; t2�1Þ;
yðt1þp; t2�2Þ…yðt1�p; t2�2Þ;…;

yðt1þp; t2�qÞ…yðt1�p; t2�qÞ�T ð18Þ

yU t1; t2ð Þ ¼ ½12 ; y t1þ1; t2ð Þ…y t1þp; t2ð Þ; y t1�p; t2þ1ð Þ…
yðt1þp; t2þ1Þ; yðt1�p; t2þ2Þ…
yðt1þp; t2þ2Þ;…; yðt1�p; t2þqÞ…
yðt1þp; t2þqÞ�T : ð19Þ

Since it is difficult to obtain statistical properties of this
estimator, we propose the following suboptimal parameter
estimation method:

âpr ¼ 1
2

arg min
a

∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1

1
2
y t1; t2ð Þ�aTyL t1; t2ð Þ

� �2
 

þargmin
a

1
2
y t1; t2ð Þ�aTyU t1; t2ð Þ

� �2
!

ð20Þ

which, as we show latter, is asymptotically unbiased and
consistent. The minimum of each of these cost functions
in (20) can be found by setting the gradient of the
corresponding cost function with respect to the vector of
parameters to zero. These cost functions have quadratic
forms in parameters and therefore are convex and have a
unique minimum. Hence a primary estimate of the para-
meters is obtained as follows:

âT
pr ¼ 1

2 xTLR
�1
L þxTUR

�1
U

� 	
; ð21Þ

where

RL ¼ 2 ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yLðt1; t2ÞyTL ðt1; t2Þ ð22Þ



Fig. 2. The sample cross-correlation of: (a) ηL and y, (b) ηU and y, (c) η and y, and (d) ηL and ηU .
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RU ¼ 2 ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yUðt1; t2ÞyTUðt1; t2Þ ð23Þ

xL ¼ ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yðt1; t2ÞyLðt1; t2Þ ð24Þ

xU ¼ ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yðt1; t2ÞyU ðt1; t2Þ: ð25Þ

We denote this estimator by âpr where the subscript pr
stands for ‘preliminary’. This is due to the fact that
in deriving this estimator we have not considered the
dependency of s2ðt1; t2Þηðt1; t2Þ on the parameters. Using
(2) and this preliminary estimate of the parameters, we
can estimate the conditional variance s2ðt1; t2Þ, in the
following way:

ŝ2ðt1; t2Þ ¼ ĉpr0 þ ∑
p

i ¼ �p
∑
q

j ¼ 0
âpr
i;j ðyðt1� i; t2� jÞþyðt1þ i; t2þ jÞÞ

¼ âT
prðyLðt1; t2ÞþyUðt1; t2ÞÞ; ð26Þ

where ĉpr0 and âpr
i;j are the preliminary estimates of the

parameters obtained in (21). It follows from (13) that

yðt1; t2Þ
ŝ2 ðt1; t2Þ �

c0
ŝ2 ðt1; t2Þ
þ ∑
p

i ¼ �p
∑
q

j ¼ 0
ai;j

yðt1� i; t2� jÞ
ŝ2 ðt1; t2Þ

�

þ yðt1þ i; t2þ jÞ
ŝ2 ðt1; t2Þ

�
þ ɛ2 t1; t2ð Þ�1
� �

:

ð27Þ

Note that the two sides of (27) are not exactly equal
because we have canceled out s2ðt1; t2Þ by its estimate,
i.e. ŝ2ðt1; t2Þ. Now, we use the above equation to find our
final estimator. If we ignore the approximation used in
deriving (27), we can derive the LS estimate of the
parameters (i.e. a) by solving the following optimization
problem:

â ¼ 1
2

argmin
a

∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1

1
2
y t1; t2ð Þ�aTyL t1; t2ð Þ

� �2
 

þargmin
a

1
2
y t1; t2ð Þ�aTyU t1; t2ð Þ

� �2
!
; ð28Þ

where

y t1; t2ð Þ ¼ yðt1; t2Þ
ŝ2 ðt1; t2Þ ð29Þ

yL t1; t2ð Þ ¼ yLðt1; t2Þ
ŝ2 ðt1; t2Þ ð30Þ
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yU t1; t2ð Þ ¼ yU ðt1; t2Þ
ŝ2 ðt1; t2Þ: ð31Þ

Again, since each of the cost function is a quadratic
function of the vector a, they are convex and have a
unique minimum which can be found by setting the
derivative of C ðaÞ to zero. Hence, our final estimator is
obtained as follows:

âT ¼ 1
2 xT

LRL
�1þxT

URL
�1

� 	
; ð32Þ

where

RL ¼ 2 ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yLðt1; t2ÞyT

L ðt1; t2Þ ð33Þ

RU ¼ 2 ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yUðt1; t2ÞyT

Uðt1; t2Þ ð34Þ

xL ¼ ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yðt1; t2ÞyLðt1; t2Þ ð35Þ

xU ¼ ∑
N�p

t1 ¼ pþ1
∑

M�q

t2 ¼ qþ1
yðt1; t2ÞyU ðt1; t2Þ: ð36Þ

We denote this estimator as two stage least squares
(TSLS) estimator. In the Appendix, we show that under
some moment conditions besides mean ergodicity, this
estimator is asymptotically unbiased and consistent. It
should be noted that the TSLS estimator does not guaran-
tee that the estimated model is stationary. However, this
method can be easily modified (by solving the least
squares problems under stationary conditions) such that
the estimated model be stationary, as was done for the
univariate causal ARCH case in [32].

3. Anomaly detection based on noncausal
AR-ARCH model

In this section, we introduce our anomaly detection
algorithmwhich is based on noncausal AR-ARCH modeling
of the image background in the wavelet domain. This
section is mainly based on our previous work on anomaly
detection [23]. We use a matched subspace detector (MSD)
proposed in [34] along with noncausal AR introduced in
[24] and noncausal ARCH model introduced in the pre-
vious section. We assume that the anomalies in the images
are so rare that their influence on the parameter estima-
tion algorithm can be ignored. The proposed algorithm is
an extension of the method proposed in [4]. In [4], the
authors introduced an anomaly detection algorithm based
on causal AR-GARCH modeling of the images in the
wavelet domain. Causality of the model in [4] leads to
dependence of the anomaly detection procedure on the
orientation of the image. This means that the algorithm is
sensitive to the orientation of the image, so in order to use
this method one must consider all four orientations of the
image which is a time consuming process. Another dis-
advantage of the procedure proposed in [4] is its high
computational load. That method uses causal AR-GARCH
model in the wavelet domain, and the parameters of the
GARCH part are estimated using a maximum likelihood
(ML) method, which has a very high computational load,
since the maximum of the likelihood function is found by a
search method. Our method overcomes both of these
disadvantages. Using the proposed noncausal model, the
sensitivity of our method to image orientation is reduced
significantly and the computational load is decreased
considerably using the proposed TSLS method for para-
meter estimation of the noncausal ARCH model.

In what follows, we introduce our noncausal AR-ARCH
model for the image background in the wavelet domain.
This model is to some extent similar to the model used in
[4] with a major difference. The model used in [4] is a
causal model whereas our model is noncausal. Let zðt1; t2Þ
be the original image. Using the two dimensional undeci-
mated wavelet transform [35], we obtain a set of 2Lþ1
images where L is the depth of the wavelet transform.
These 2Lþ1 images are obtained as follows. The undeci-
mated wavelet transform yields four sub-band images
at every analysis level. These four sub-band images are
labeled by diLH, d

i
HL, d

i
HH and siLL, where the superscript i

represents the layer index and the subscripts L and H stand
for low-pass and high-pass filtering, respectively. d labels a
detail sub-band, s represents the “smooth” sub-band, and
the superscript ℓ specifies the analysis level. The undeci-
mated wavelet transform yields a redundant representa-
tion. However, the same analysis and synthesis filters are
used as in the undecimated wavelet transform, and since
the transform preserves the spatial dimensions, it is easy
to work with. Furthermore, the undecimated wavelet
transform has an additional property, namely, translation
invariance, which is important in the context of anomaly
detection. As in [8], we use the sub-band images of an
undecimated wavelet transform to create a 2Lþ1 feature
images at every spatial location ðt1; t2Þ as follows:

y2i�1ðt1; t2Þ ¼ diLHðt1; t2ÞþdiHLðt1; t2Þ; 1r irL ð37Þ

y2iðt1; t2Þ ¼ diHHðt1; t2Þ; 1r irL ð38Þ

y2Lþ1ðt1; t2Þ ¼ s2Lþ1
LL ðt1; t2Þ: ð39Þ

Let yℓðt1; t2Þ; 1rℓr2Lþ1 be the ℓ-th feature image in
the wavelet domain, obtained by (37)–(39). We assume
that the background image is a noncausal AR-ARCH process
defined as follows:

yℓðt1; t2Þ ¼ ∑
r

i ¼ � r
∑
s

j ¼ 0
bℓi;jðyℓðt1� i; t2� jÞþyℓðt1þ i; t2þ jÞÞ

þxℓðt1; t2Þ ð40Þ

xℓðt1; t2Þ ¼ sℓðt1; t2Þɛℓðt1; t2Þ ð41Þ

s2ℓðt1; t2Þ ¼ cℓ0þ ∑
p

i ¼ �p
∑
q

j ¼ 0
aℓi;jðx2ℓðt1� i; t2� jÞþx2ℓðt1þ i; t2þ jÞÞ;

ð42Þ
where bℓij's are parameters of the AR part, 8 iZ0 bℓi;0 ¼ 0
and r and s are the order of AR model in the horizontal and
vertical directions, respectively. c0 and aij's are the para-
meters of the ARCH part and 8 iZ0 ai;0 ¼ 0, p and q are the
order of ARCH model in the horizontal and vertical direc-
tions, respectively. ɛℓðt1; t2Þ's are zero mean independent
identically distributed (IID) random variables. We have
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defined our two dimensional noncausal AR-ARCH model
based on the definition of the two dimensional noncausal
AR model [24] extensively used in image signal processing
and the two dimensional noncausal ARCH model intro-
duced in Section 2.

Now we propose a method for parameter estimation of
the two dimensional noncausal AR-ARCH model. Consid-
ering the fact that the ARCH process is white, the para-
meters of the AR part can be easily estimated with the
method proposed in [24]. Let this estimate of the para-
meters of the AR part be denoted by b̂

ℓ

ij. Substituting this
estimate of the parameters in (40), the residuals of the AR
model (i.e. xℓðt1; t2Þ) can be estimated as follows:

x̂ℓðt1; t2Þ ¼ yℓðt1; t2Þ� ∑
r

i ¼ �p
∑
s

j ¼ 0
b̂
ℓ

i;jðyℓðt1� i; t2� jÞ

þyℓðt1þ i; t2þ jÞÞ: ð43Þ
Using this estimate of the residuals, the parameters of the
ARCH part can be estimated using the TSLS method
introduced in the previous section. Substituting this esti-
mate of the parameters of the ARCH part and the estimate
of the residuals (i.e. x̂ℓðt1; t2Þ) in (42), the estimate of the
conditional variance is obtained as follows:

ŝ2
ℓðt1; t2Þ ¼ ĉℓ0þ ∑

p

i ¼ �p
∑
q

j ¼ 0
âℓ
i;jðx̂2ℓðt1� i; t2� jÞ

þ x̂2ℓðt1þ i; t2þ jÞÞ; ð44Þ
where ĉℓ0 and âℓ

i;j are the estimates of the parameters of the
ARCH part obtained by the TSLS method. The order of
the model (i.e. p, q, r and s) can be selected by Akaike
information criterion (AIC) or Bayesian information criter-
ion (BIC). In this work we select the order of the model
experimentally. A more detailed discussion on order selec-
tion needs further research and is beyond the scope of
this paper.

Using this estimate of the conditional variance, the
anomaly detector is obtained as follows. For each pixel in
each layer, we create a column vector x̂ℓðt1; t2Þ by column
stacking an image chip of size T1 � T2 of x̂ℓðt1; t2Þ centered
around the pixel ðt1; t2Þ in the ℓ-th layer. Assume that
there exists no interference and let ψℓðt1; t2Þ be vector
locating the anomaly within its subspace Hℓ ¼ span Hℓð Þ.
These matrices, i.e. Hℓ;1rℓr2Lþ1, are obtained from a
set of M training patches containing anomalies. Succinctly,
suppose we are given a set of training images containing
mines. Each of these images is transformed to the wavelet
domain and for each image, 2Lþ1 feature images are
extracted using (37)–(39). In a specific layer ℓ, we used
the corresponding M images to obtain the anomaly sub-
space in that layer. This task is done by first extracting all
possible T1 � T2 image chips (without overlap) from these
Table 1
Anomaly detection algorithm using noncausal AR-ARCH model.

(1) Transform the image to the wavelet domain and find the f
(2) Find the anomaly subspace Hℓ for each layer
(3) For each layer estimate the AR parameters and the residua
(4) For each layer estimate the ARCH parameters and the con
(5) Find the generalized likelihood ratio using (49)
(6) Compare the generalized likelihood ratio to a threshold
M images, column stacking each of these patches and
finding the K principle components using principle com-
ponent analysis (PCA), see [4] for a more detailed discus-
sion. Let r2ℓðt1; t2Þ be a vector obtained by column stacking
of an image chip of size T1 � T2 of s2ℓðt1; t2Þ centered
around the pixel ðt1; t2Þ in the ℓ-th layer. Let Σℓðt1; t2Þ be
a diagonal matrix whose diagonal is the vector r2ℓðt1; t2Þ.
We define two hypotheses, H0 and H1, which respectively
represent the absence and presence of an anomaly as
follows:

H0 : x̂ℓðt1; t2Þ ¼Σℓðt1; t2Þεℓðt1; t2Þ ð45Þ

H1 : x̂ℓðt1; t2Þ ¼Hℓψℓðt1; t2ÞþΣℓðt1; t2Þεℓðt1; t2Þ; ð46Þ

Under these two hypotheses, we assume that the sample
conditional distribution of x̂ℓðt1; t2Þ is Gaussian with iden-
tical covariance matrices with different means, i.e.

H0 : x̂ℓðt1; t2Þ �N ð0;Σℓðt1; t2ÞÞ ð47Þ

H1 : x̂ℓðt1; t2Þ �N ðHℓψ
ℓðt1; t2Þ;Σℓðt1; t2ÞÞ ð48Þ

Under this assumption, the log-likelihood ratio in the ℓ-th
layer is given by [4]

Lℓðt1; t2Þ ¼ ððΣℓðt1; t2ÞÞ�1=2x̂ℓðt1; t2ÞÞTPHℓ ððΣℓðt1; t2ÞℓÞ�1=2

�x̂ℓðt1; t2ÞÞ ð49Þ

where

PHℓ ¼HℓðHT
ℓHℓÞ�1HT

ℓ ð50Þ

Since the true value of the conditional variance (Σℓðt1; t2Þ) is
not available, by the generalized likelihood ratio test, it can
be replaced by its estimate (bΣℓðt1; t2Þ). Our final detector is
given by comparing the generalized likelihood ratio with a
predefined threshold, i.e.

LGLRðt1; t2Þ ¼ ∑
2Lþ1

ℓ ¼ 1
ððbΣℓðt1; t2ÞÞ�1=2x̂ℓðt1; t2ÞÞT

PHℓ ððbΣℓðt1; t2ÞÞ�1=2x̂ℓðt1; t2ÞÞ ≷
H1

H0

Th ð51Þ

where bΣℓðt1; t2Þ is a diagonal matrix whose diagonal ele-
ments are obtained by column stacking of an image chip of
size T1 � T2 of ŝ2

ℓðt1; t2Þ centered around the pixel ðt1; t2Þ in
the ℓ�th layer. Th is the threshold and its value selection is a
tradeoff between the probability of detection and the
probability of false alarm. Increasing Th decreases both
probability of detection and false alarm. The anomaly
detection algorithm is summarized in Table 1.
eature images using (37)–(39)

ls (i.e. x̂ℓðt1; t2ÞÞ using (43)
ditional variance (i.e. ŝℓðt1 ; t2ÞÞ using (44)



Fig. 5. PDF of â3 for different values of N for an N�N noncausal
ARCHð1;1Þ process.
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4. Performance evaluation and simulation results

In this section, we evaluate the performance of our para-
meter estimation method and anomaly detection algo-
rithm using simulations.

In the first simulation, we evaluate the performance of
the parameter estimation method. We use a two dimen-
sional noncausal ARCH model with the following vector of
parameters:

a¼ ½1:00 0:05 0:01 0:07 0:04�:

ɛðt1; t2Þ's are zero mean independent identically random
variables uniformly distributed on the interval ½�

ffiffiffi
3

p
;
ffiffiffi
3

p
�.

The noncausal ARCH process is obtained using Banach's
fixed point theorem with 15 iterations. The probability
density function of the estimated parameters ba j (an esti-
mate of the j-th element of a), obtained by 250 Monte-
Carlo iterations for different image sizes, is depicted in
Figs. 3–7. The normalized root mean square error (NRMSE)
in the estimation of the parameters is depicted Fig. 8. Fig. 8
shows that the mean square error (MSE) in parameter
Fig. 3. PDF of â1 for different values of N for an N�N noncausal
ARCHð1;1Þ process.

Fig. 4. PDF of â2 for different values of N for an N�N noncausal
ARCHð1;1Þ process.

Fig. 6. PDF of â4 for different values of N for an N�N noncausal
ARCHð1;1Þ process.

Fig. 7. PDF of â5 for different values of N for an N�N noncausal
ARCHð1;1Þ process.



Fig. 8. Estimated normalized root mean square error in parameter
estimation of an N�N noncausal ARCHð1;1Þ process as a function of N. Fig. 9. ROC curves: comparison of detection performance between

noncausal ARCH and GARCH modeling for synthetic data.
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estimation of the proposed estimator converges to zero as
the number of data increases which was predicted theo-
retically in the previous section. From Figs. 3–7 it can be
seen that the estimated parameters converge to Gaussian
distributions as the number of data increases. This phe-
nomenon was proved in [31,33] for causal one and multi-
dimensional ARCH process, respectively. We conjecture
that this is also true for noncausal case, where proving
this needs further research.

In the second simulation, we compare the performance
of the proposed detection algorithm using synthetic data.
We have generated 200 noncausal ARCH(1,1) process with
the following vector of parameters:

a¼ ½1:00 0:03 0:04 0:05 0:06�;
using Banach's fixed point theorem with 15 iterations.
ɛðt1; t2Þ's were zero mean independent identically random
variables uniformly distributed on the interval ½�

ffiffiffi
3

p
;
ffiffiffi
3

p
�.

The anomaly was chosen to be a 5�5 image with changing
location in each iteration. The anomaly subspace H was
chosen to be H ¼ spanðfHig4i ¼ 1Þ where each Hi was a 5�5
matrix consisting of IID zero mean Gaussian random variables
with unity variance. The vector ψ locating the anomaly within
anomaly subspace was chosen randomly such that each of
its elements is distributed normally having zero mean and
variance 0.5. We compared the performance of anomaly
detection using noncausal ARCH modeling with that of
GARCH modeling. The parameters of the noncausal ARCH
model were estimated via the proposed TSLS method and the
parameters of the GARCH model were estimated using max-
imum likelihood method. To check the sensitivity of the
proposed method to anomalies, we estimated the parameters
using both images with and without anomaly. We computed
the probability of false alarm (Pfa) and the probability of
detection (Pd) using 200 Monte-Carlo iterations. The receiver
operating characteristic (ROC) curves are depicted in Fig. 9,
where in this figure by theoretic we mean using the image
without anomaly to estimate the parameters. As is expected,
although the performance of detection is decreased if anoma-
lies present, the performance degradation due to anomalies is
not very serious in the proposed TSLS method while it is more
critical for the ML method. An analytical sensitivity analysis of
the proposed parameter estimation algorithm needs further
research which is beyond the scope of this paper. It is also
obvious that our presented noncausal ARCH model has higher
performance comparing to GARCH modeling.

In the third simulation, we demonstrate the validity of
the noncausal ARCH model in modeling the residual of the
AR part. We also evaluate the performance of our anomaly
detection algorithm. We use real side-scan sonar images.
The side-scan sonar images presented in this simulation
are from the sonar-5 database collected by the Naval
Surface Warfare Center Coastal System Station (Panama
City, FL). The images are 8-bit gray scale. Elongated sea
mines (such as those presented in Fig. 10) are character-
ized by a bright line (the highlight or echo), corresponding
to the scattering effect of mines to the acoustic insonifica-
tion, and shadow behind them, corresponding to the
blocking of sonar waves by mines. Further technical and
navigational information about the specific database used
is not available. Since the number of mines in our database
was limited, it was impossible to estimate the anomaly
subspace accurately. Instead we used the images in
Fig. 10 to make artificial mines by combining these images
linearly using random weights. More specifically, we con-
structed 100 images by linearly combining these images
where the weights are chosen from uniform distribution.
The anomaly subspace in each layer (i.e. Hℓ) is then
estimate from these 100 training images using PCA where
we used 10 principle components. Test images were
constructed from a real mine-free background together
with artificially added mines in random locations. An
example of such test image is depicted in Fig. 11(a)
together with true detection which is depicted in Fig. 11(b).
The likelihood ratio (i.e. LGLR) obtained using noncausal
AR-ARCH and AR-GARCH models is represented in
Fig. 11(c) and (d), respectively. The vertical and horizontal
patch sizes (i.e. T1 and T2) are both set to 16. The wavelet
depth L is set to 3. We used two dimensional undecimated
Haar wavelet transform. Other simulation results show
that the wavelet basis has no significant effect on the
detection results. We used the AR-ARCH model with the
following orders : p¼ 1; q¼ 1; r¼ 2; s¼ 2.



Fig. 10. Sample side scan sonar image with a sea mine (sea mines are characterized by a bright line (the highlight or echo), corresponding to the scattering
effect of the mine to the acoustic insonification, and a shadow behind it, corresponding to the blocking of sonar waves by the mine). These images, each
16�16 pixel, are used as training image for obtaining the anomaly subspace.
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Fig. 12 provides a comparison between the cumulative
distribution function (CDF) of a column stack version of
the x̂2ðt1; t2Þ obtained from a typical mine free image from
our database and that of a column stack version of a
simulated noncausal ARCHð2;2Þ process. The parameters
of this simulated image are set to those obtained by
applying the TSLS method to x̂2ðt1; t2Þ. Fig. 13 provides
quantile–quantile plot (QQ-plot) of these images. The
purpose of the QQ plot is to determine whether the
samples of two processes come from the same distribu-
tion. If the samples do come from the same distribution
(same shape), even if one distribution is shifted and re-
scaled from the other (different location and scale para-
meters), the plot will be linear. A reference line passing
through the first and third quartiles is helpful for judging
whether the points are linear. These figures justify the
use of noncausal ARCH model in the modeling of the AR
residual of the background in the wavelet domain. The
same phenomena have been observed in modeling the
other layers. We also applied Kolmogorov–Smirnov test on
a column stack version of the two dimensional fast Fourier
transform (FFT) of x̂2ðt1; t2Þ and the FFT of noncausal ARCH
modeled x̂2ðt1; t2Þ. The Kolmogorov–Smirnov statistic
quantifies a distance between the empirical distribution
function of the sample and the cumulative distribution
function of the reference distribution. The null distribution
of this statistic is calculated under the null hypothesis that
the samples are drawn from the same distribution. Exten-
sive simulations showed that the test chooses the null
hypothesis at the 5% significance level.

We compare the performance of our method to that of
the method presented in [4]. The ROC curves of both
methods are depicted in Fig. 14. These curves are obtained
using 100 simulations. As it can be seen from these curves
the proposed method has a slightly better performance
compared with the method presented in [4]. As mentioned
before, the advantage of the proposed method is its lower
computational load compared to that of the method
proposed in [4].

5. Conclusions

We have used the wavelet transform along with a
noncausal AR-ARCH model for anomaly detection in side



Fig. 11. A sample side-scan sonar image with artificial mine (a), true detection (b), generalized likelihood ratio LGLR obtained by noncausal ARCH modeling
(c) and GARCH modeling (d).

Fig. 12. Comparison of cumulative distribution function of a noncausal
ARCH modeling and real sea mine data.

Fig. 13. Comparison of QQ-plot of a noncausal ARCH modeling and real
sea mine data.
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Fig. 14. ROC curves: comparison of detection performance between
noncausal ARCH and GARCH modeling for real data.
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scan sonar images. We introduced a novel background
model (i.e. noncausal AR-ARCH model) and used matched
subspace detector (MSD) to detect an anomaly in sonar
images. We introduced the two dimensional noncausal
ARCH model and obtained sufficient stationarity condi-
tions. We also proposed the TSLS estimator for parameter
estimation of this model. This estimator has a closed form
obtained by solving two sets of linear equations. We have
shown that this estimator is asymptotically consistent. The
most important advantage of this parameter estimation
method is its low computational complexity. We also
presented an anomaly detection algorithm based on non-
causal AR-ARCH modeling of the background. The detec-
tion algorithm utilizes a matched subspace detector [34]
for the background noncausal AR-ARCH model. This model
is an extension of the GARCH model used in [4] for
anomaly detection. The advantages of the proposed
method over that presented in [4] are lower computa-
tional load and lower dependency on the orientation of
the image. Simulation results have demonstrated the
performance of the proposed method.
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Appendix

In this Appendix, we show that both proposed estima-
tors, i.e. âpr and â, are asymptotically unbiased and consis-
tent estimators. In this section, without loss of generality
we assume that N and M (i.e. the number of available data
in the horizontal and vertical directions, respectively) are
equal. For the sake of simplicity, we change the notation as
follows. Instead of double indexing the processes and
double sum, we use single indexing and sum. More speci-
fically, by t we mean ðt1; t2Þ (hence yðtÞ9yðt1; t2Þ) and
by ∑N2

t ¼ 1 we mean ∑N
t1 ¼ 1∑

N
t2 ¼ 1. We assume that the

noncausal ARCH process satisfies the conditions (3)–(5),
hence is mean ergodic. Besides mean ergodicity, we also
assume that

E ∏
j

i ¼ 1
yðtiÞ

( )
o1 8ti; j¼ 2;3;4

EfηLðtÞ2go1 8t
EfηUðtÞ2go1 8t ð52Þ
and EfyLð1ÞyTL ð1Þg and EfyU ð1ÞyTUð1Þg are positive definite
matrices having finite elements where Ef�g is expectation.

In order to obtain the statistical properties of âpr , note
that

âT
pr ¼ 1

2 xTLR
�1
L þxTUR

�1
U

� 	
: ð53Þ

Using Eqs. (14) and (15) and the definitions of a, yL and yU ,
it can be easily verified that

yðtÞ ¼ 2aTyLðtÞþ2s2ðtÞηLðtÞ; ð54Þ

yðtÞ ¼ 2aTyUðtÞþ2s2ðtÞηUðtÞ: ð55Þ
Substituting (22)–(25) into (53), we have

âT
pr ¼

1
2

xTLR
�1
L þxTUR

�1
U

� 	
¼ 1

2
∑
N2

t ¼ 1
yðtÞyTL ðtÞ

 !
2 ∑

N2

t ¼ 1
yLðtÞyTL ðtÞ

 !�1
24

þ ∑
N2

t ¼ 1
yðtÞyTU ðtÞ

 !
2 ∑

N2

t ¼ 1
yUðtÞyTUðtÞ

 !�1
35: ð56Þ

Substituting (54)–(55) into (56), we have

âT
pr ¼

1
2

∑
N2

t ¼ 1
ð2aTyLðtÞþ2s2ðtÞηLðtÞÞyTL ðtÞ

 !"

� 2 ∑
N2

t ¼ 1
yLðtÞyTL ðtÞ

 !�1

þ ∑
N2

t ¼ 1
ð2aTyUðtÞþ2s2ðtÞηUðtÞÞyTUðtÞ

 !

� 2 ∑
N2

t ¼ 1
yUðtÞyTUðtÞ

 !�1
35

¼ aT þ 1
2

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyTL tð Þ

 !"

� 1

N2 ∑
N2

t ¼ 1
yL tð ÞyTL tð Þ

 !�1

þ 1

N2 ∑
N2

t ¼ 1
s2 tð ÞηU tð ÞyTU tð Þ

 !

� 1

N2 ∑
N2

t ¼ 1
yU tð ÞyTU tð Þ

 !�1
35: ð57Þ

Since we assumed that the process is mean ergodic, using
the weak low of large numbers (WLLN) we have

1

N2 ∑
N2

t ¼ 1
yL tð ÞyTL tð Þ-p EfyL τð ÞyTL τð Þg; ð58Þ
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1

N2 ∑
N2

t ¼ 1
yU tð ÞyTU tð Þ-p EfyU τð ÞyTU τð Þg; ð59Þ

where τ¼ ½1;1�. Since s2ðtÞ ¼ aT ðyLðtÞþyUðtÞÞ, we have

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyTL tð Þ-p Efs2 τð ÞηL τð ÞyTL τð Þg

¼ EfaT ðyLðτÞþyUðτÞÞηLðτÞyTL ðτÞg

¼ EfaTyLðτÞηLðτÞyTL ðτÞgþEfaTyU ðτÞηLðτÞyTL ðτÞg

¼ EfaTyLðτÞyTL ðτÞgEfηLðτÞgþEfaTyUðτÞyTL ðτÞgEfηLðτÞg ¼ 0;

ð60Þ

where we have used the fact that EfηLð1Þg ¼ EfηU ð1Þg ¼ 0
and ηLðtÞ is uncorrelated with yUðτÞ and yUðτÞ, as discussed
before. Similarly, it can be shown that

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηU tð ÞyTU tð Þ-p Efs2 τð ÞηU τð ÞyTU τð Þg ¼ 0: ð61Þ

Combining Eqs. (57)–(61) it follows that

lim
N-1

âpr�a¼ 0 almost surely ð62Þ

and hence

lim
N-1

Efâpr�ag ¼ 0; ð63Þ

which shows that âpr is an asymptotically unbiased
estimator. In order to show that âpr is an asymptotically
consistent estimator, it suffices to show that

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyL tð Þ

 !
1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyTL tð Þ

 !
-
p
0 ð64Þ

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηU tð ÞyU tð Þ

 !
1

N2 ∑
N2

t ¼ 1
s2 tð ÞηU tð ÞyTU tð Þ

 !
-
p
0 ð65Þ

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyL tð Þ

 !
1

N2 ∑
N2

t ¼ 1
s2 tð ÞηU tð ÞyTU tð Þ

 !
-
p
0: ð66Þ

In order to show (64), note that

1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyL tð Þ

 !
1

N2 ∑
N2

t ¼ 1
s2 tð ÞηL tð ÞyTL tð Þ

 !

¼ 1

N4 ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1
s2 tað Þs2 tbð ÞηL tað ÞηL tbð ÞyL tað ÞyTL tbð Þ

¼ 1

N4 ∑
N2

t ¼ 1
s4ðtÞη2L ðtÞyLðtÞyTL ðtÞ

 

þ ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1;tb a ta
s2ðtaÞs2ðtbÞηLðtaÞηLðtbÞyLðtaÞyTL ðtbÞ

!

¼ 1

N4 ∑
N2

t ¼ 1
ðaT ðyLðtÞþyU ðtÞÞÞ2η2L tð ÞyL tð ÞyTL tð Þ

þ 1

N4 ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1;tb a ta
s2 tað Þs2 tbð ÞηL tað ÞηL tbð ÞyL tað ÞyTL tbð Þ:

ð67Þ
In order to show that the first term in Eq. (67) converges to
zero in probability, note that because of WLLN

1

N2 ∑
N2

t ¼ 1
ðaT ðyLðtÞþyUðtÞÞÞ2η2L tð ÞyL tð ÞyTL tð Þ

-
p
EfðaT ðyLðτÞþyUðτÞÞÞ2η2L ðτÞyLðτÞyTL ðτÞgo1; ð68Þ

and is finite since we assumed that the process y(t)
satisfies conditions (52). Hence, the first term in Eq. (67)
converges to zero in probability. To show that the second
term in Eq. (67) converges to zero in probability, note that

1

N4 ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1;tb a ta
s2 tað ÞηL tað ÞηL tbð ÞyL tað ÞyTL tbð Þ

¼ 1

N2 ∑
N2

ta ¼ 1
s2 tað ÞηL tað ÞyL tað Þ 1

N2 ∑
N2

tb ¼ 1;tb a ta
s2 tbð ÞηL tbð ÞyTL tbð Þ;

ð69Þ
where both sum can be shown to converge to zero using
the same technique that resulted in (60). Similarly, it can
be easily verified that (65) and (66) hold, hence âpr is an
asymptotically consistent estimate of the parameters.

To obtain the statistical properties of â note that

âT ¼ 1
2 xT

LRL
�1þxT

URL
�1

� 	
: ð70Þ

Substituting (33)–(36) into (70) and using (29)–(31), we
have

âT ¼ 1
2

∑
N2

t ¼ 1

yðtÞyTL ðtÞ
ŝ4 ðtÞ

 !
2 ∑

N2

t ¼ 1

yLðtÞyTL ðtÞ
ŝ4 ðtÞ

 !�1
24
þ ∑

N2

t ¼ 1

yðtÞyTU ðtÞ
ŝ4 ðtÞ

 !
2 ∑

N2

t ¼ 1

yU ðtÞyTUðtÞ
ŝ4 ðtÞ

 !�1
35:

ð71Þ
Inserting (54)–(55) into (71), we have

âT ¼ 1
2

∑
N2

t ¼ 1

aTyLðtÞþs2ðtÞηLðtÞ
� �

yTL ðtÞ
ŝ4 ðtÞ

 !"

� ∑
N2

t ¼ 1

yLðtÞyTL ðtÞ
ŝ4 ðtÞ

 !�1

þ ∑
N2

t ¼ 1

aTyUðtÞþs2ðtÞηUðtÞ
� �

yTUðtÞ
ŝ4 ðtÞ

 !

� ∑
N2

t ¼ 1

yUðtÞyTU ðtÞ
ŝ4 ðtÞ

 !�1
35

¼ aT þ 1
2

∑
N2

t ¼ 1

s2ðtÞηLðtÞyTL ðtÞ
ŝ4 ðtÞ

 !
∑
N2

t ¼ 1

yLðtÞyTL ðtÞ
ŝ4 ðtÞ

 !�1
24

þ ∑
N2

t ¼ 1

s2ðtÞηUðtÞyTUðtÞ
ŝ4 ðtÞ

 !
∑
N2

t ¼ 1

yUðtÞyTUðtÞ
ŝ4 ðtÞ

 !�1
35:
ð72Þ

Using a very similar approach as used in [33] it can be
shown that, in (72) we can substitute ŝ2ðtÞ with s2ðtÞ and
we get

âT �aT ¼ 1
2

∑
N2

t ¼ 1

ηLðtÞyTL ðtÞ
s2ðtÞ

 !
∑
N2

t ¼ 1

yLðtÞyTL ðtÞ
s2ðtÞ

 !�1
24
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þ ∑
N2

t ¼ 1

ηUðtÞyTUðtÞ
s2ðtÞ

 !
∑
N2

t ¼ 1

yUðtÞyTUðtÞ
s2ðtÞ

 !�1
35þop 1ð Þ: ð73Þ

Since s2ðtÞ ¼ aT ðyLðtÞþyUðtÞÞ we have

âT �aT ¼ 1
2

1

N2 ∑
N2

t ¼ 1

ηLðtÞyTL ðtÞ
aT ðyLðtÞþyUðtÞÞ

 !"

� 1

N2 ∑
N2

t ¼ 1

yLðtÞyTL ðtÞ
aT ðyLðtÞþyU ðtÞÞ

 !�1

þ 1

N2 ∑
N2

t ¼ 1

ηU ðtÞyTUðtÞ
aT ðyLðtÞþyUðtÞÞ

 !

� 1

N2 ∑
N2

t ¼ 1

yU ðtÞyTUðtÞ
aT ðyLðtÞþyU ðtÞÞ

 !�1
35þop 1ð Þ: ð74Þ

With mean ergodicity assumption and use of WLLN, we
have

1

N2 ∑
N2

t ¼ 1

yLðtÞyTL ðtÞ
aT ðyLðtÞþyUðtÞÞ

-
p
E

yLðτÞyTL ðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
; ð75Þ

1

N2 ∑
N2

t ¼ 1

yUðtÞyTUðtÞ
aT ðyLðtÞþyUðtÞÞ

-
p
E

yUðτÞyTUðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
: ð76Þ

Note that since we assumed that if c0 is absolutely positive,
then s2ðτÞ40 and because of the moment constraints (52)
we assumed that these quantities are finite. Furthermore,
we have

1

N2 ∑
N2

t ¼ 1

ηLðtÞyTL ðtÞ
aT ðyLðtÞþyUðtÞÞ

-
p
E

ηLðτÞyTL ðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
; ð77Þ

1

N2 ∑
N2

t ¼ 1

ηUðtÞyTUðtÞ
aT ðyLðtÞþyUðtÞÞ

-
p
E

ηUðτÞyTUðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
: ð78Þ

Using the fact that EfηLð1Þg ¼ EfηU ð1Þg ¼ 0 and ηLðtÞ is
uncorrelated with yUðτÞ and yUðτÞ, we have

E
ηLðτÞyTL ðτÞ

aT ðyLðτÞþyUðτÞÞ


 �
¼ E

yTL ðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
EfηLg ¼ 0; ð79Þ

E
ηUðτÞyTU ðτÞ

aT ðyLðτÞþyUðτÞÞ


 �
¼ E

ηUðτÞyTUðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
EfηUg ¼ 0: ð80Þ

Combining Eqs. (72)–(80) it follows that

lim
N-1

â�a¼ 0; ð81Þ

and hence

lim
N-1

Efâ�ag ¼ 0; ð82Þ

which shows that â is an asymptotically unbiased
estimator.

In order to show that â is an asymptotically consistent
estimator, it suffices to show that

1

N2 ∑
N2

t ¼ 1

ηLðtÞyLðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
1

N2 ∑
N2

t ¼ 1

ηLðtÞyTL ðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
-
p
0;

ð83Þ
1

N2 ∑
N2

t ¼ 1

ηLðtÞyUðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
1

N2 ∑
N2

t ¼ 1

ηLðtÞyTUðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
-
p
0;

ð84Þ

1

N2 ∑
N2

t ¼ 1

ηLðtÞyUðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
1

N2 ∑
N2

t ¼ 1

ηLðtÞyTL ðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
-
p
0:

ð85Þ
In order to show that (83) is correct, note that

1

N2 ∑
N2

t ¼ 1

ηLðtÞyLðtÞ
aT ðyLðtÞþyUðtÞÞ

 !
1

N2 ∑
N2

t ¼ 1

ηLðtÞyTL ðtÞ
aT ðyLðtÞþyUðtÞÞ

 !

¼ 1

N4 ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1

ηLðtaÞyLðtaÞ
aT ðyLðtaÞþyUðtaÞÞ

ηLðtbÞyTL ðtbÞ
aT ðyLðtbÞþyUðtbÞÞ

¼ 1

N4 ∑
N2

t ¼ 1

ηLðtÞ2yLðtÞyTL ðtÞ
ðaT ðyLðtÞþyUðtÞÞÞ2

þ 1

N4 ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1;tb a ta

ηLðtaÞyLðtaÞ
aT ðyLðtaÞþyUðtaÞÞ

ηLðtbÞyTL ðtbÞ
aT ðyLðtbÞþyUðtbÞÞ

:

ð86Þ
In order to show that (86) converges to zero in probability,
note that, for the first term in (86) using WLLN we have

1

N2 ∑
N2

t ¼ 1

ηLðtÞ2yLðtÞyTL ðtÞ
ðaT ðyLðtÞþyU ðtÞÞÞ2

-
p
E

ηLðτÞ2yLðτÞyTL ðτÞ
ðaT ðyLðτÞþyUðτÞÞÞ2

( )
; ð87Þ

which is finite because of the moment constraints (i.e.
(52)) we assumed and the fact that ðaT ðyLðτÞþyUðτÞÞÞ240
since c040. Hence,

1

N4 ∑
N2

t ¼ 1

ηLðtÞ2yLðtÞyTL ðtÞ
ðaT ðyLðtÞþyU ðtÞÞÞ2

-
p
0: ð88Þ

In order to show that the second term in (86) converges to
zero in probability, note that,

1

N4 ∑
N2

ta ¼ 1
∑
N2

tb ¼ 1;tb a ta

ηLðtaÞyLðtaÞ
aT ðyLðtaÞþyUðtaÞÞ

ηLðtbÞyTL ðtbÞ
aT ðyLðtbÞþyUðtbÞÞ

¼ 1

N2 ∑
N2

ta ¼ 1

ηLðtaÞyLðtaÞ
aT ðyLðtaÞþyU ðtaÞÞ

� �

� 1

N2 ∑
N2

tb ¼ 1;tb a ta

ηLðtbÞyTL ðtbÞ
aT ðyLðtbÞþyU ðtbÞÞ

� �
; ð89Þ

and using WLLN and the fact that EfηLð1Þg ¼ 0 and ηLðtÞ is
uncorrelated with yUðτÞ and yUðτÞ, we have

1

N2 ∑
N2

ta ¼ 1

ηLðtaÞyLðtaÞ
aT ðyLðtaÞþyUðtaÞÞ

� �
-
p
E

ηLðτÞyLðτÞ
aT ðyLðτÞþyUðτÞÞ


 �
¼ E

yLðτÞ
aT ðyLðτÞþyU ðτÞÞ


 �
E ηLðτÞ
� ¼ 0: ð90Þ

Hence (86) converges to zero in probability and therefore
(83) holds. Using the similar approach it can be verified
that (84)–(85) hold, and hence â is an asymptotically
consistent estimator. This is the main result of this paper.
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