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a b s t r a c t

In this paper, we address the problem of function extension when the available data lies
on a homogeneous manifold (i.e. the domain of the function is a homogeneous manifold
embedded in the Euclidean space) and the function is band-limited. We solve this
problem in the general case in which the manifold is unknown. We assume that we have
sufficient labeled data to reconstruct the function from labeled data. We also assume that
we have enough data (at least exponential in the intrinsic dimension of the manifold) to
approximate the Laplace–Beltrami operator on the manifold. The proposed method has a
closed form solution and consists of matrix multiplication and inversion. As the size of
data approaches infinity, the proposed method converges to the optimal solution as long
as the function values are known on an appropriate sampling set. Simulation results
demonstrate the advantage of the proposed method over commonly used function
extension methods.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Supervised learning is a machine learning task of
inferring a function from labeled training data [1]. The
type of data and properties of the function are application
dependent. One of the most basic supervised learning
problem in the field of signal processing is sampling and
reconstruction of a band-limited function. When the data
points are real numbers and the function is band-limited,
the classical Nyquist theorem [2] states that the function
can be perfectly reconstructed from its values on equally
spaced points of reals, if the sampling rate is sufficiently
high. The values of the function on points other than
sampling points can be exactly calculated using SINC
interpolator. Schoenberg [3] used cardinal splines for the
reconstruction formula. There, it is shown that a band-
limited function can be reconstructed from its values sampled
Mousazadeh),
at high enough rate (Nyquist rate) as accurately as needed
using cardinal splines of sufficiently high degree. This result
was further generalized to the case of nonuniform sampling
by Lyubarskii and Madych [4]. More specifically, they showed
that a band-limited function f(x), whose Fourier transform is
compactly supported between ½�π;π� can be completely
reconstructed using spline functions, from its samples f ðxnÞ
taken at sampling points xn, in the case when the functions
expðjxnωÞ, form a Riesz basis for L2ð½�π;π�Þ.

Pesenson [5] generalized the concept of band-limited
functions to the case that the domain of the function is a
homogeneous manifold and introduced the spectral entire
functions of exponential type and Lagrangian splines on
homogeneous manifolds. He also showed that on mani-
folds, the reconstruction of irregularly sampled spectral
entire functions of exponential type (from now on band-
limited functions) by splines is possible, as long as the
distance between points of a sampling sequence is small
enough.

Recently, using a different point of view, Coifman and
Lafon [6] proposed a simple scheme, based on the Nyström
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method for supervised learning and extending empirical
functions defined on a set X to a larger set X . The extension
process involves the construction of a specific family of
functions termed geometric harmonics. These functions
constitute a generalization of the prolate spheroidal wave
functions of Slepian in the sense that they are optimally
concentrated on X. Although being a powerful tool for
function extension, this scheme does not make use of
unlabeled data to improve the approximation of the
Laplace–Beltrami operator on the manifold.

Supervised learning can be also regarded as the problem
of function extension. The central dogma for studying the
problem of function extension on manifolds is that the
distribution of natural data is non-uniform and concentrates
around low-dimensional structures. The shape (geometry) of
the distribution can be exploited for efficient learning. As a
justification for manifold assumption of natural data, see
Jansen and Niyogi [7] for speech signals and Donoho and
Grimes [8] for images. Geometrically derived methods have
been used in applications such as image clustering [9,10],
image completion [11], speech enhancement in presence of
transient noise [12], voice activity detection in presence of
transient noise [13], linear and nonlinear independent com-
ponent analysis [14,15], parametrization of linear systems
[16], and single channel source localization [17].

Zhu et al. [18] introduced an approach for supervised
learning which is based on a Gaussian random field model.
Labeled and unlabeled data were represented as vertices in
a weighted graph, with edge weights encoding the simi-
larity between instances. The learning problem was then
formulated in terms of a Gaussian random field on this
graph, where the mean of the field was characterized in
terms of harmonic functions, and was efficiently obtained
using matrix methods or belief propagation. In [19], it is
shown that this method becomes ill posed as the number
of unlabeled points tends to infinity. This observation was
the motivation for Zhou and Belkin [20] to address the
semi-supervised learning problem and propose a solution
by using regularization based on an iterated Laplacian,
which is equivalent to a higher order Sobolev semi-norm.
Their proposed solution can alternatively be viewed as a
generalization of the thin plate spline to an unknown sub-
manifold in high dimensions.

In most practical applications, besides the function, the
data manifold is also unknown and just some labeled data
(the points that the value of function is known on them,
i.e. sampling points) and unlabeled data (the points that
the value of function on them must be determined, i.e.
interpolation points) are available. This means that the
sampling theorem on manifolds [5] cannot be utilized
directly to learn and extend the function to unlabeled data
because in [5], the manifold is assumed to be known.

In order to be able to use a sampling theorem on
manifolds, one needs to completely know the manifold.
This means that the Laplace–Beltrami operator on the
manifold must be known and can be computed for every
function. Many manifold learning algorithms have been
introduced during the last decade, among them one can
name isomap [21], Locally-linear embedding (LLE) [22],
Laplacian eigenmaps [23] and diffusion maps [24]. Diffusion
maps leverage the relationship between heat diffusion and
a random walk on a graph. The heat diffusion on manifold,
is the diffusion process whose infinitesimal generator is the
Laplace–Beltrami operator. In [24], an analogy is drawn
between the diffusion operator on a manifold and a Markov
transition matrix operating on functions defined on the graph
whose nodes were sampled from the manifold. It is also
shown that one can approximate the Laplace–Beltrami opera-
tor using appropriately normalized Markov transition matrix.

In this paper, we propose a novel technique for super-
vised learning when the data is assumed to be located on a
manifold. More specifically, we use diffusion maps as a
tool for manifold learning and approximating the Laplace–
Beltrami operator on a manifold. Next, we use sampling
theorem of band-limited functions on manifolds [5] to
extend the function onto the interpolation points. The
solution coincides with the method proposed in [20],
hence gives another justification for the method presented
in [20]. This paper is organized as follows. In Section 2, we
formulate the problem and introduce our function exten-
sion algorithm. In Section 3, we evaluate the performance
of our method and compare it to several available function
extension methods. We also discuss some applications of
the proposed method. We conclude the paper in Section 4.

2. Problem formulation

Let M be a C1-homogeneous manifold and Δ be the
Laplace–Beltrami operator in the corresponding Hilbert
space L2ðMÞ. We say that a function f ð�Þ from L2ðMÞ is
ω0-band-limited if the function satisfies the Bernstein
inequality [5]:

JΔk=2f Jrωk
0 J f J ð1Þ

for every natural even k, where J f J denotes L2ðMÞ norm.
Using Parseval's theorem, it can be easily verified that in
the special case where M¼R, this definition is equivalent
to the definition of band-limited functions (i.e. the Fourier
transform is compactly supported in �ω0;ω0½ �).

A set of points Zλ ¼ fxγg, is called a sampling sequence if
(a)
 infγaμ dist xγ ; xμ
� �

40,

(b)
 Balls Bðxγ ; λÞ form a cover of M, and

(c)
 λo c0ω0ð Þ�1,
where c0 is a manifold-dependent constant. In the case
M¼R, the last condition becomes the Nyquist sampling
condition if the sampling is uniform. It can be shown [5]
that any ω0-band-limited function can be exactly recon-
structed from its samples as long as the value of the
function is known on a sampling sequence.

In [5], it is shown that given an ω0-band-limited
function f ð�Þ on a d-dimensional manifold M, ϵ40 and a

sampling sequence Zλ, there exists a function f̂
k
such that

J f � f̂
k
Joϵ; k¼ 2ld; lAN ð2Þ

for a sufficiently large l. The function f̂
k
is the solution of

the following optimization problem:

f̂
k ¼ arg min

u
JΔk=2uJ
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s:t:

f̂
kðxγÞ ¼ f ðxγÞ; 8xγAZλ: ð3Þ

In [5], it has been shown that the above optimization
problem has a unique solution for each k, but the author
did not supply any algorithm for solving it in the general
case. The main contribution of this paper is to present a
method for solving the above optimization problem in the
case where no information about the manifold is available
(i.e. the Laplace–Beltrami operator is unknown). We
assume that we have a valid sampling sequence (i.e. a
sequence satisfying the conditions (a) through (c) above)
so that we can exact reconstruction is possible. We also
assume that we have enough (theoretically infinite but at
least exponential in the intrinsic dimension of the manifold)
unlabelled data the approximation of the Laplace–Beltrami is
sufficiently accurate. This issue will be discussed later in
more details.

Diffusion maps [24] is a powerful tool for nonlinear
dimensionality reduction. Besides being a useful means for
dimensionality reduction, it can be used for manifold
learning. Using anisotropic kernel for constructing diffu-
sion maps, Nadler et al. [25], described a random walk
construction that in the limit of infinite data recovers the
Laplace–Beltrami (heat) operator on the manifold on
which the data resides, regardless of the possibly non-
uniform sampling of points on it. This normalization is
therefore best suited for learning the geometry of the
data-set, as it separates the geometry of the manifold from
the statistics on it. In what follows we briefly overview the
method and introduce a novel technique for solving the
optimization problem in (3).

Let X ¼ fxjgJj ¼ 1 be a finite data set sampled from a
homogeneous manifold M�RP randomly sampled from
some arbitrary probability distribution. Suppose that we
are given a kernel k:X � X-R that is symmetric (i.e.
kðx; yÞ ¼ kðy; xÞ) and is positive (i.e. kðx; yÞZ0). This kernel
represents some notion of affinity or similarity between
points of X. This kernel describes the relationship between
pairs of points in the set X and in this sense, one can think
of the data points as being the nodes of a symmetric graph
whose weight function is specified by k. Without loss of
generality, for a fixed value of ϵ (a meta-parameter of the
algorithm), we define an isotropic diffusion kernel:

kϵ x; yð Þ ¼ exp
� Jx�yJ2

ϵ

 !
: ð4Þ

We construct an J� J similarity matrix K such that

K i;j ¼ kϵ xi; xj
� �

; ð5Þ

where K i;j is the (i,j)-th element of matrix K . Next, we
normalize the similarity matrix as follows:

W ¼D�1KD�1; ð6Þ
where D is a diagonal matrix whose (i,i)-th element equals
to the sum of the i-th row (or equivalently column) of K
(i.e. D¼ diagðK1Þ where 1 is the column vector of ones).
The Laplacian matrix L is then obtained by

P ¼D�1
W W ; ð7Þ
L¼ I�P
ϵ

ð8Þ

where DW ¼ diagðW1Þ. It can be shown that both L and LT

(where ð�ÞT denotes the transpose of a matrix or a vector)
converge to the Laplace–Beltrami operator when the
number of data, J, approaches infinity and ϵ approaches
zero [24,25]. Since our approximation of the Laplace–
Beltrami operator needs to be symmetric, we choose

Ls ¼ LþLT

2
; ð9Þ

as a discrete approximation of the Laplace–Beltrami
operator.

Let Xs ¼ fxsi gMi ¼ 1 be a set consisting of a labelled or
training data (i.e. a sampling sequence) which satisfying
the conditions (a) through (c), and let f s be a column
vector such that f si ¼ f ðxsi Þ where f si is the i-th element of

vector f s. Let XI ¼ fxIig
N
i ¼ 1 be a set consisting of unlabeled

or testing data (i.e. an interpolation sequence). Let f I be a

column vector such that f Ii ¼ f ðxIiÞ where f Ii is the i-th

element of vector f I . The goal is to determine f I given the
value of a band-limited function f ð�Þ, on a sampling
sequence (i.e. given vector f s). We assume that NþM is
sufficiently large such that the approximation of the
Laplace–Beltrami operator on the manifold is accurate
enough (at least exponential in the intrinsic dimension
of the manifold). Note that here we have two independent
sampling procedures. In order to learn the function on the
manifold we need labeled data which means sampling the
function defined on the manifold such that the conditions
(a) through (c) are satisfied. In order to learn the manifold
(i.e. approximating of the Laplace–Beltrami operator on
the manifold), we need samples from the manifold, to
learn the Laplace–Beltrami operator on the manifold. The
diffusion maps use all the available data sampled from the
manifold to find the approximation of Laplace–Beltrami
operator, whether or not they are labeled.

Let X be a ðMþNÞ � P matrix where each row repre-
sents a single data point. Without loss of generality we
assume that the first M rows represent the sampling
sequence (i.e. Xi;: ¼ xsi for i¼ 1;2;…;M, where X i;: is the
i-th row of matrix X ) and the next N rows consist of
interpolation points (i.e. X iþM;: ¼ xIi for i¼ 1;2;…;N). Let f

be a column concatenation of f s and f I i.e.

f ¼
f s

f I

" #
ð10Þ

Let K be the ðMþNÞ � ðMþNÞ similarity matrix computed
by

K i;j ¼ kϵðX i;:;X j;:Þ; ð11Þ
and let Ls be a discrete approximation of the Laplace–
Beltrami operator computed using (6) through (9). Using
Ls, discrete approximation of the optimization problem in
(3) is obtained as follows:

f̂
k ¼ arg min

f
JLk=2s f J
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s:t:

f̂
k

i ¼ f si ; I¼ 1;2;…;M; ð12Þ

where f̂
k
i and f si are the i-th elements of f̂

k
and f s,

respectively. The above optimization problem can be
equivalently written as follows:

f̂
k ¼ arg min

f
f TLks f

s:t:

Af̂
k ¼ f s; ð13Þ

where A¼ ½IM�M⋮0M�N� and IM�M and 0M�N are the iden-
tity and zero matrices of appropriate sizes, respectively.
This is a simple quadratic programming problem with
equality constraints and can be solved easily using range
space or null space approaches [26]. Using the null space
method, the solution of the optimization problem in (13) is
given by

f̂
k ¼ Af s�Z ZTLksZ

� ��1
ZTLksAf s
� �

; ð14Þ

where ZARðNþMÞ�ðNÞ is the matrix whose columns span
the null space of A and is given by

Z ¼
0M�N

IN�N

" #
: ð15Þ

The overall function extension algorithm is summarized in
Table 1.

The last important issues which must be addressed
here are the determination of the power of Laplacian (i.e.
k), the kernel width ϵ and the effect of number of samples
on the performance of the proposed methods. As is
discussed in [5], if the Laplace–Beltrami operator is fully
Table 1
Proposed algorithm for extension of band-limited functions on homo-
genous manifolds using diffusion maps.

Input

Xs ¼ fxsi gMi ¼ 1: The set containing a sampling sequence

f s: A column vector such that f si ¼ f ðxsi Þ.
XI ¼ fxIig

N
i ¼ 1: The set containing the interpolation sequence.

kϵð�; �Þ: A kernel represents local similarity between points.
(1) Construct X ¼ ½Xs;XI � by column concatenation of

sampling sequence and interpolation points.
(2) Construct the similarity matrix K such that

K i;j ¼ kϵ xi ; xj
� �

.
(3) Let

W ¼D�1KD�1,

P ¼D�1
W W ,

L¼ I�P
ϵ

,

Ls ¼ LþLT

2
,

where D¼ diagðK1Þ and DW ¼ diagðW1Þ.
(4) Let

f̂
k ¼ Af s�Z ZTLksZ

� ��1
ZTLksAf s
� �

,

where f̂
k
is the estimate of the function on all data.

Output

f̂
I
: A column vector such that f̂

I

i ¼ f̂ ðxIi Þ.
known, the error in function extension decreases by increas-
ing k. Hence, in the proposed method, before k becomes too
large, causing numerical issues, almost always larger k per-
forms better. From the Sobolev embedding theorem, increas-
ing k restricts solution space to be a smoother space, and
from kernel point of view, increasing k corresponds to a
better density adaptive kernel [20]. It can be shown that, in
continuous case, the L2 Mð Þ norm of the error in function
reconstruction decrease exponentially as k grows [5]. In
practice, k can be chosen by cross-validation method.

The convergence to the continuous diffusion operator
can be utilized for properly choosing the kernel width ϵ.
In [27] and [28], it was proposed to automatically set the
scale by examining a logarithmic scale of the sum of the
kernel weights, without computing the spectral decom-
position of the transition matrix. More specifically, using
the fact that the logarithmic plot of ∑i;jkϵðxi; xjÞ with
respect to log ϵ cannot be linear for all ϵ's, they suggested
to choose the kernel width ϵ from that linear region. See
[27,28] and [12] for further discussion.

The last issue to be discussed here is the effect of
number of samples on the performance of the proposed
methods. Several papers provide rigorous estimates for the
accuracy of the approximation of Laplace–Beltrami operator.
For instance, it is shown in [24] that with high probability
the error in approximation of Laplace–Beltrami operator

using finite data is of the order O J�1=2ϵ�d=4�1=2
� �

where J

is the number of data points used for approximating the
Laplace–Beltrami operator, d is the intrinsic dimension of
the manifold and ϵ is the kernel width.

3. Applications, simulation results and performance
evaluation

In this section, we evaluate the performance of the
proposed method using simulations and compare our
method to several available methods. In all simulations,
the kernel width (i.e, ϵ) in all kernel based methods is
chosen such that the normalized root mean square error
(NRMSE) (to be defined shortly in (16)) is minimized.
Although computation of NRMSE needs the knowledge of
the actual function (which is the quantity we try to
estimate), we use this method for all the methods to make
our comparison fair. Choosing an appropriate kernel width
is a critical issue in most of kernel methods (like the
proposed method or geometric harmonics), but dealing
with this issue is beyond the scope of this paper.

In the first example, we try to reconstruct a band-
limited function defined on an interval of reals from
uniformly sampled points. Note that an interval of reals
is not a homogeneous manifold, but neglecting the effect
of the end points it is a homogeneous manifold. We
assume that the sampling rate is more than the Nyquist
rate so exact reconstruction is possible. In this case, the
optimal reconstruction scheme is a SINC interpolator. We
try to reconstruct

f xð Þ ¼ sin 2πxð Þþ sin 4πxþ2π
5

� �
þ sin 6πxþπ

3

� �
þ cos ð8πxÞ
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from its samples. The sampling frequency was set to 10 Hz
(a little bit more than the Nyquist rate which is 8 Hz). We
try to reconstruct the function in interval ½0;10�. We
sample the manifold (i.e. the interval ½0;10�) uniformly
with frequency 100 Hz. The results of simulation are
depicted in Fig. 1. The normalized root mean square error
(NRMSE) in extension is computed by

NRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑xAX jf ðxÞ� f̂ ðxÞj2

∑xAX jf ðxÞj2

s
ð16Þ

as a function of k, and is depicted in Fig. 1. It is obvious that
for a sufficiently large k, the MSE of the proposed method
is lower than that of geometric harmonics. It is also
apparent that the proposed method converges to the
optimal solution (i.e. SINC interpolation) as k increases.
Although theoretically increasing k improves the perfor-
mance of the proposed function extension algorithm, it
must be taken into account that increasing k while the
number of available data (i.e. NþM) is constant, does not
necessarily improve the overall performance (i.e. decreas-
ing MSE in function extension; see the following simula-
tions for an example). This is because of the fact that the
estimation of Laplace–Beltrami operator near the boundaries
of the manifold and regions with high curvature is not very
accurate. Increasing k causes intense error in extension
scheme because of error in estimating the Laplace–Beltrami
operator near the boundaries and regions with high curvature.

In the second simulation, we try to reconstruct the
same function as in the first simulation from nonuniform
sampling points. In this case, a band-limited function
defined on reals whose Fourier transform is compactly
supported between ½�W ;W � can be completely recon-
structed using spline functions from its samples f ðxnÞ
taken at sampling points xn, in the case when the functions
expðjxnωÞ form a Riesz basis for L2ð½�W ;W �Þ. Without loss
of generality, suppose that fxn;nAZg is an increasing
sequence. It can be shown that, the sequence expðjxnωÞ
forms a Riesz basis for L2ð½�W ;W �Þ, if xn ¼ ðnπ=WÞþrn
where jrnjoπ=4W [29]. In this simulation, the sampling
on the manifold is exactly the same as in the previous
simulation (i.e. uniform samples on interval ½0;10� with
Fig. 1. Normalized root mean square error (NRMSE) in function extension
for different methods as a function of the parameter k.
frequency 100 Hz). Samples of the function are taken at the
same points as in the previous simulation with random uni-
form displacement of maximum 0.025 (i.e. xn ¼ ðn=10Þþrn
where rn is uniformly distributed in ½�0:025;0:025�). The
simulation results are depicted in Fig. 2. NRMSE as a function
of k is depicted in Fig. 2. It is obvious that for k sufficiently
large, the NRMSE achieved by the proposed method is lower
than that obtained by geometric harmonics.

In the third simulation, we try to reconstruct the same
function as in the second simulation from nonuniform
sampling points while the domain is the unit circle in a
two dimensional Euclidean space which is a homogeneous
manifold. We choose 1500 points from the interval ½�π;π�
sampled from normal distribution of zero mean and
variance π. Then we embed them to the unit circle in a
two dimensional Euclidean space. The function f ðx; yÞ is
then defined as

f x; yð Þ ¼ sin 2πxð Þþ sin 4πxþ2π
5

� �
þ sin 6πxþπ

3

� �
þ cos 8πxð Þ:

ð17Þ

The simulation results are depicted in Fig. 3. NRMSE as
a function of k is depicted in Fig. 3. It is obvious that for k
large enough, the NRMSE achieved by the proposed
method is comparable to that obtained by geometric
harmonics and much better than the method proposed
in [18].

In the following example, we recover the parameters of
an autoregressive-moving average (ARMA) system. Con-
sider the following ARMA process of orders (p,q):

yðtÞ� ∑
p

ℓ ¼ 1
aℓyðt�ℓÞ ¼ xðtÞþ ∑

q

i ¼ 1
bixðt� iÞ ð18Þ

where x(t) is a zero-mean white noise with variance σ2x,
and faℓg and fbig are the AR and the MA coefficients,
respectively. Such an ARMA process is commonly used in
many signal processing applications. ARMA model is
appropriate when a system is a function of a series of
unobserved shocks (the MA part) as well as its own
behaviour. For example, stock prices may be shocked by
fundamental information as well as exhibiting technical
Fig. 2. Normalized root mean square error (NRMSE) in function exten-
sion for different methods as a function of the parameter k.



Fig. 3. Normalized root mean square error (NRMSE) in function exten-
sion for different methods as a function of the parameter k.

Fig. 4. Normalized root mean square error (NRMSE) in estimating the
parameters of the AR part for different methods as a function of the
parameter k.

Fig. 5. Normalized root mean square error (NRMSE) in estimating the
parameters of the MA part for different methods as a function of the
parameter k.
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trending and mean-reversion effects due to market
participants.

An ARMA process can be viewed as a white noise
filtered by a linear system, where the corresponding
transfer function is given by

Ha;b ωð Þ ¼ 1þ∑q
i ¼ 1bie� jωi

1�∑p
ℓ ¼ 1aℓe� jωℓ

: ð19Þ

Let Sa;bðωÞ be the power spectral density (PSD) of the
ARMA process given by

Sa;b ωð Þ ¼ σ2
x Ha;b ωð Þj2
		

¼ σ2
x
j1þ∑q

i ¼ 1bie� jωij2
j1�∑p

ℓ ¼ 1aℓe� jωℓj2: ð20Þ

We observe in last equation that the PSD depends only on
the ARMA parameters (i.e. controlling parameters) when
σx
2
assumed to be known. Consequently, the variations of

the controlling parameters are conveyed by the PSD. Now,
from (20), we can express the covariance function of the
output signal as

cya;b ðτÞ ¼F�1 Sa;bðωÞ
 �
; ð21Þ

where F�1 �f g denotes the inverse Fourier transform.
Hence, we can conclude that the PSD and consequently
the covariance function of a specific output signal is a high
dimensional data lying in a low dimensional manifold of
dimension pþq embedded in a high dimensional space.

Now if we look at each parameters of the model as
function of the covariance function, our task is to extend
this function from a given sampling sequence to an
interpolating sequence. In this example, we examine the
ability of the proposed algorithm to recover the para-
meters of ARMAð1;1Þ processes. The parameters of the
ARMA processes (i.e. a1 and b1) are uniformly sampled
from the rectangle ½0;0:50:3;1� (i.e. 0ra1r0:3 and
0:5rb1r1). The process noise used in this simulation is
chosen to be independent identically distribute white Gaus-
sian noise with unity variance. We generate 1000 ARMA
processes with different parameters and compute 20 corre-
lation coefficients. From these 1000, 20-dimensional correla-
tion coefficients, we uniformly (with respect to the sampling
on parameter space) chose 16 of them for training sequence
and utilize the proposed algorithm to extended the function
on the rest of the points. We use a Gaussian kernel for
similarity computationwith scale parameter set to ϵ¼0.5, i.e.
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The results of the simulation are depicted in Figs. 4 through 5.
We compare our results to those of iterative search method
widely used in estimating the parameters of the ARMAmodel
[30]. An iterative search algorithm minimizes a robustified
quadratic prediction error criterion. The iterations are termi-
nated either when the maximum number of iterations is
reached, or when the expected improvement is less than the
specified tolerance, or when a lower value of the criterion
cannot be found. We have also compared our results with
those of KNN-search and the method proposed in [18].



Fig. 6. Estimated reflection coefficient βx1 versus the true value for
different methods.

Fig. 7. Estimated reflection coefficient βx2 versus the true value for
different methods.

Fig. 8. Normalized root mean square error (NRMSE) in estimating the
reflection coefficient βx1 for different methods as a function of the
parameter k.
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In Figs. 4 and 5 the x-axis regards to the power of Laplacian
for the proposed method or number of nearest neighbor in
KNN-search method. As it can be seen from these Figs. 4 and
5, the proposed method outperforms the competing methods
for large enough k in estimating the parameters of AR part
while have better or approximately the same performance as
competing method in estimating the parameters of MA part.

In our last experiment, we examine the ability of the
proposed method to recover the controlling parameters of
acoustic channels, simulated using the image method. The
propagation of a sound wave within an enclosure can be
considered linear if the medium is homogeneous. Hence,
the acoustic channel from a source to a microphone is
obtained by solving the wave equation. However, this
solution is difficult to be expressed analytically; hence, in
practice usually some approximation is utilized. The image
method, presented by Allen and Berkley [31] is one of the
most common methods for this task. In this method, the
acoustic channel between a source and a sensor in a
rectangular room is approximated by a linear time invar-
iant (LTI) finite impulse response (FIR) system.

In order to approximate the acoustic channels in typical
rooms, Habets [32] has provided a software which simu-
lates the acoustic channel between a source and a sensor
using image method which has 12 controlling parameter.
These controlling parameter consist of β¼ ½βx1 ;βx2 ;βy1
βy2

;βz1 ;βz2 � the reflection coefficients of the six walls,
rs ¼ ½xs; ys; zs� and rm ¼ ½xm; ym; zm� the source and the
microphone location, respectively. Typical impulse
responses consist of thousands of taps. In other words,
each impulse response can be expressed as a vector in a
high-dimensional space. However, as we have discussed
earlier, the acoustic channel between a source and a
microphone inside a rectangular room is controlled by a
set of 12 controlling parameter. Hence, we can consider
each impulse response as a point from a low dimensional
manifold embedded in a high dimensional space. Now if
we regard each controlling parameter as a function
defined on the impulse response, and we know the value
of these parameters on a sampling sequence, we can use
the proposed method to extend these function on unla-
beled data (i.e. the impulse responses whose controlling
parameter is unknown) in order to estimate these
parameters.

In this experiment, we recover the reflection coeffi-
cients of two walls. We generate 20 training channels,
where βx1 is sampled uniformly from the interval
½0:150:55� and we set βx2 ¼ 0:7�βx1 . The other four coeffi-
cients are set to 0.5. Then we simulate a room of size
½4;5;3� meter. We place a microphone at rm ¼ ½2;1:5;2�,
and a source at rs ¼ ½2;3:5;2�, distant 2 meters from the
microphone. We then generate the acoustic impulse
response of length 4096 samples and compute 30 correla-
tion coefficients of each impulse response.

The test set is exactly obtained as in training set where
for βx1 we sampled 180 points uniformly from the interval
½0:150:55� and we set βx2 ¼ 0:7�βx1 . All other parameters
are set as in training procedure. We used a Gaussian kernel
with kernel width ϵ¼ 1:0710� 10�18.

The results of the simulation are depicted in Figs. 6
through 9. We compare our results to those of KNN-search.



Fig. 9. Normalized root mean square error (NRMSE) in estimating the
reflection coefficient βx2 for different methods as a function of the
parameter k.
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In Figs. 8 and 9 the x-axis regards to the power of Laplacian
for the proposed method or number of nearest neighbor in
KNN-search method. As it can be seen from these Figs. 8
and 9, the proposed method outperforms the KNN-search
method for large enough k in estimating the parameters of
acoustic impulse response. It is worth mentioning that
proposed method can be easily utilized to recover the
direction of arrival of a random source in a room based on
observations from a single microphone and training.
4. Conclusions and discussions

We have proposed a novel technique for supervised
learning when the data lies on a manifold. We treated this
problem as a problem of extending a band-limited func-
tion on a homogeneous manifold while the function and
the manifold are both unknown. The only assumption for
reconstructing the function is that we have enough labeled
data to reconstruct the function (i.e. enough data points on
the manifold on with known function values) and enough
data to approximate the Laplace–Beltrami operator on the
manifold. Diffusion maps were utilized in order to learn
the manifold (i.e. approximating the Laplace–Beltrami
operator on the manifold). Simulation results show the
advantage of the proposed method over the widely-used
geometric harmonics. The proposed method is insensitive
to the sampling procedure on the manifold. More specifi-
cally, the proposed method is not sensitive to the distribu-
tion of points sampled on the manifold. This is related to
the property that diffusion maps with appropriate normal-
ization recovered the Riemannian geometry of the
data set.

An important issue which must be addressed here is
the obtaining the constant c0 (see condition (c) above).
This constant is manifold-dependent and must be
obtained appropriately to know if we have enough data
for perfect reconstruction. The question of how to obtain
this constant cannot be answered in general except, that
for a compact manifold of dimension d the number of
sampling points should be of order ωd=2, where ω is the
bandwidth. See [5] for further discussion.

The last important issue which is interesting and needs
more research is the behavior of the proposed method in
the case of L1 Mð Þ norm. Answering to this question is
beyond the scope of this paper and to the best of our
knowledge it is an open problem. We conjecture that
under this norm of the error is bounded. A special case
of this problem has been answered in [33].
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