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A B S T R A C T

Seismic deconvolution is a general problem associated with recovering the reflectivity series from a seismic
signal when the wavelet is known. In this paper, we solve the problem of semi-blind seismic deconvolution,
where the wavelet is known up to some error. The Multichannel Semi-blind Deconvolution (MSBD) model was
developed for cases where there is some uncertainty in the assumed wavelet. We present a novel, two-stage
iterative algorithm that recovers both the reflectivity and the wavelet. While the reflectivity series is recovered
using sparse modeling of the signal, the wavelet is recovered using L2 minimization, exploiting the fact that all
channels share the same wavelet. The L2 minimization solution is revised to suit the multichannel case. An
analysis is made for each wavelet uncertainty according to the parameters of the respective recovery method. We
show that our algorithm outperforms the straightforward method of assuming the initial wavelet. As a side
result, we also show that the final estimated wavelet fits the true wavelet better than the initial one.

1. Introduction

The deconvolution problem and the kernel estimation problem are
two problems common to many fields, including engineering, physics
and others. Different approaches for solving the problems can be found
in the literature depending on the specific problem, the a priori
knowledge and the different assumptions made about the signals in
the problem. The basic idea is that a signal goes through a linear system
(defined by the kernel), the output of the linear system is contaminated
by some noise and the goal is to recover the kernel and the input signal.
Kernel estimation problems assume to know the signal and aim to find
the kernel, while deconvolution problems assume to know the kernel
and aim to find the signal.

Our discussion is on seismic signals. An interesting way of modeling
can be as follows: A series of impulses are generated in the under-
ground layers of the earth. This series goes through the earth until it is
received on the surface by an array of seismic sensors. The kernel
defining the channel traversed by the impulse series is called the
wavelet, which is defined by the seismic source. This kind of modeling
in the literature is used often as a convenient approach to seismic
modeling, for example in [1]. The recorded data, in the form of seismic
traces, are analyzed, and interesting parameters are extracted to
improve understanding of the layer structure, channel modeling in
that particular area and so on. In some cases it is also common to
transmit a very short (in the time domain) pulse from the surface, let it
traverse the earth channel, reflect off one of the layers and return to the
surface.

Different approaches and models of the same problem can lead to
different performances. When developing a solution for a problem in
this field, one of the first things to determine is whether the solution is
going to be based on a stochastic or deterministic model as well as
defining the parameters. Our method will focus on deterministic
modeling of the problem, but first we review different methods from
both disciplines with greater emphasis on deterministic modeling
methods.

First we briefly describe the different stochastic modeling methods.
Kormylo and Mendel (1982) estimate the wavelet using ARMA (Auto-
Regressive Moving Average) and SMLR (Single Most Likely
Replacement) for the reflectivity estimation while assuming a BG
(Bernoulli–Gaussian) model [2]. Both algorithms use second-order
statistics. Kaaresen and Taxt (1998) also assume the BG model but they
use the IWM (Iterated Window Maximization) algorithm for reflectivity
estimation and the Least-Squares method for wavelet estimation [3].
Heimer et al. (2009) proposed a blind multichannel deconvolution
method based on the statistical properties of the signal [4]. Specifically,
it is based on the Markov–Bernoulli random field modeling. Their
method accounts for layer discontinuities resulting from splitting,
merging, starting or terminating layers within the region of interest.
Ram et al. (2010) also propose a method based on the statistical
properties of the signal [5], where the spatial dependency between
neighboring traces is exploited by a priori assuming 2D reflectivity. The
algorithm is based on the MBG (Markov Bernoulli–Gaussian) reflec-
tivity model.

Methods using higher order statistics are also very important to
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mention. For example, Velis and Ulrych (1999) propose a fourth-order
cumulant matching method [6]. They use the mean-square error as a
measure for matching between the trace cumulant and the wavelet
moment. Van der Baan (2009) also uses a higher order statistics for
wavelet estimation and deconvolution [7]. He maximizes the kurtosis
measure for phase estimation in cases of phase mismatches. Menanno
and Mazzotti (2012) use the vectorial nature of the wavefield [8] and
exploit correlation between different channels in the multichannel case
in a method of quaternion deconvolution. Their method is an extension
of the Wiener filter and uses high order statistics.

There are also methods that do not utilize stochastic solutions to
seismic inversion and wavelet estimation. Instead, they present a
deterministic mathematical model to describe the seismic data and
use methods that depend on the deterministic properties of the signal.
One common method used in deconvolution problems is the Euclid
Deconvolution in which a homogeneous system of equations is solved.
The classic Euclid Deconvolution has stability problems in the presence
of noise. Concerning solutions based on the deterministic properties of
the signal, it has recently become very common to exploit the sparse
representation of the reflectivity series. Methods using the sparse
properties of the signal have different modeling mechanisms for the
reflectivity series. Another major difference is the definition of the
optimization problem and as a consequence, the algorithm that is used
for solving the problem. Different approaches to this problem result in
different performances with some advantages and disadvantages
depending on a priori knowledge, sparsity depth, wavelet type, etc.

A modification of the Euclid Deconvolution is presented by Kazemi
and Sacchi (2014), who developed the SMBD (Sparse Multichannel
Blind Deconvolution) method [9]. They exploit the sparsity property in
the reflectivity series to make the Euclid Deconvolution more robust to
noise and generally improve the method. In practice, they define an L2
minimization problem with a regularization term and a requirement on
the sparsity of the signal.

Repetti et al. (2015) [10] present in a new study a different
approach to the L1/L2 minimization problem for the blind deconvolu-
tion case. They propose a new penalty, Smoothed One-Over-Two
(SOOT), based on a smooth approximation of the L1/L2 function.
The SOOT penalty enables them to avoid the problems raised from
solving non-convex and non-smooth optimization problems. They
develop a proximal-based algorithm to solve the minimization problem
and derive theoretical convergence. Furthermore, there are strong
connection between blind deconvolution and blind compressed sen-
sing, which presents the basic idea of recovering a sparse signal from a
small number of linear measurements. Blind compressed sensing is
widely studied and discussed by Gleichman and Eldar (2011) [11].
They suggest different constraints on the sparsity basis which allow
them to guarantee a unique solution, while avoiding the need of prior
knowledge of the sparsity basis, which is essential for the recovery
process. They introduce a general sampling and reconstruction process
which can be suited for all the signals that have a sparse representation
and are under the conditions and restraints presented in their work.
Another interesting work on blind compressed sensing is introduced by
Rosenbaum and Tsybakov (2010) [12], which also account for matrix
uncertainty. In their work they suggest new estimators, since they find
previous estimators as unstable. Their main conclusion of choosing
smartly the regularization parameter as a key to success recovery will
support our findings on the regularization parameters later on.

Nguyen and Castagna (2010) presented a method that exploits the
sparse properties of the reflectivity series using Matching Pursuit
Decomposition (MPD) [13]. MPD involves a few steps and eventually
decomposes the seismic data into a superposition of wavelet atoms
generated from the locations, amplitudes and scaling (physically
translated into different center frequencies) of a base wavelet form.
The method correlates a wavelet dictionary with the data and marks the
parameters iteratively, recording the best-fit wavelet in each iteration.
It is very important to keep the wavelet dictionary orthogonal in this

case. MPD was also used by Wang [14,15].
Zhang and Castagna (2011) presented a method based on Basis

Pursuit Decomposition (BPD) for seismic inversion [16]. They used an
algorithm presented by Chen et al. (2001) [17,18] to solve the Basis
Pursuit problem, which is an L1 optimization problem. They also
utilized a special dictionary form. The special form results from the
Dipole Decomposition process on the reflectivity series. Dipole
Decomposition is a method that decomposes the reflectivity series into
a summation of even and odd impulse pairs, weighted by different
amplitudes. The BPD method is presented by Bork and Wood (2001)
[19]. A brief summary of the method can be found in [16]. The basis
pursuit algorithm is an L1 optimization problem that can be solved in
different ways. The great advantage of BPD over MPD comes from the
process used to solve the problems. MPD is an iterative process that
extracts the best-fit wavelet atom, subtracts it from the data, finds the
next best-fit atom, etc. The solution therefore depends on the order of
the wavelet atoms in the wavelet dictionary, so different ordering of the
same wavelet dictionary can lead to different solutions. Conversely,
BPD is not affected by the ordering of the wavelet dictionary and
obtains one solution for all the different combinations that eventually
construct the same wavelet dictionary. BPD has more advantages over
MPD, including interference handling, computational efficiency, and
good stability even when the wavelet dictionary is not orthogonal. More
information and analytical developments about Basis Pursuit and
Matching Pursuit are widely discussed in [20].

The inversion method that uses BPD is called Basis Pursuit
Inversion (BPI) [16,21,22]. Before BPI was commonly used, another
inversion method was in use, also exploiting sparse properties of the
reflectivity series and solving the L1 optimization problem. This
method is called Sparse Spike Inversion (SSI) [23–25]. SSI does not
utilize any special dictionary, unlike BPI. There are some differences
between BPI and SSI in the method used to solve the optimization
problem, but the main difference is in the dictionary. While SSI uses a
dictionary created from the direct formulation of the problem, BPI uses
a dictionary created after a Dipole Decomposition process is performed
on the reflectivity series.

There are two more important parameters used in the literature to
classify the different kinds of problems. The first is the number of
channels. Basically, a distinction is made between single-channel
problems and multichannel problems. Single channel means that we
have only one sensor that can sample the seismic trace. Multichannel
means that there are multiple sensors spread over some area (close to
one another) that simultaneously sample the seismic traces. The
multichannel approach can give us extra information because of the
correlation between the different traces. There are several potential
causes of this correlation. For example, different channels share the
same kernel or impulses generated from the same layer but sampled in
two (or more) close points in the field. The second parameter used for
classification is knowledge about the kernel. Basically, the literature
deals with two main categories – problems that use full knowledge of
the kernel, called non-blind deconvolution problems, and problems
that assume nothing about the kernel, called blind deconvolution
problems. Of course, there are problems that fall somewhere along
the spectrum between not knowing anything or knowing everything
about the kernel, but this classification of the problem is made by a
more specific definition.

As is shown later on in greater detail, we define the problem as a
Multichannel Semi-blind Deconvolution problem. This means that we
assume to have an array of sensors located close enough to each other,
to get some correlation between different seismic traces, and we also
assume to know a noisy version of the kernel. We combine methods of
kernel estimation and deconvolution to solve this problem.

In the next sections of this paper we formulate the problem
mathematically, step by step, present the classic well-known solutions
for the generic problems and adapt these solutions to fit our specific
problem. Finally, we use examples to test our method, compare it with
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the classic solutions and discuss the results.

2. Problem formulation

We denote the earth's impulse response, the wavelet, by w n[ ]. The
reflectivity series and the seismic data are denoted by r n[ ] and s n[ ],
respectively. The input–output relation between the reflectivity series,
the wavelet and the seismic data are given by

s n r n w n v n[ ] = [ ]* [ ] + [ ] (1)

where * is the well known convolution operator and v n[ ] are indepen-
dent and identically distributed (i.i.d) additive white Gaussian noise
(AWGN), i.e., v n σ[ ] ∼ (0, )v

2 .
We assume an array of N seismic sensors, where all channels share

the same wavelet and the noise in the channels are statistically
independent and identically distributed. Denoting i as the channel
index we get the following set of input–output relations:

s n r n w n v n i N[ ] = [ ]* [ ] + [ ], 1 ≤ ≤ .i i i (2)

We can write (2) in the following vector–matrix form:

i Ns Wr v= + , 1 ≤ ≤i i i (3)

where s ∈i
N N+ −1r w is a vector representation of the seismic signal

s n i N n N N[ ], 1 ≤ ≤ , 1 ≤ ≤ + − 1i r w , W ∈ N N N( + −1)×r w r is the convolu-
tion matrix of w n[ ], r ∈i

Nr is a vector representation of the reflectivity
signal r n i N n N[ ], 1 ≤ ≤ , 1 ≤ ≤i r , and v ∈i

N N+ −1r w is a vector repre-
sentation of the noise signal v n i N n N N[ ], 1 ≤ ≤ , 1 ≤ ≤ + − 1i r w .

The goal of the basic problem is to recover ri from si while assuming
full knowledge of W and σv. This problem has been widely investigated
and is called the deconvolution problem. A wide variety of solutions
have been proposed to solve this problem, depending on the model of
the signal ri. In seismic deconvolution, assuming a sparse model for ri,
sparse deconvolution methods have been proposed. One of them is
Basis Pursuit Denoising (BPDN) [20,26–28], which is an approach that
solves the following optimization problem:

λx Ax y x= min 1
2

− +
x 2

2
1 (4)

when we know that y Ax b= + .
Minimization of the term Ax y− 2

2 maintains fidelity to the
observations, and minimization of the term x 1 maintains sparsity of
the recovered signal. The parameter λ controls the trade-off between
them. The minimization problem can also be presented in the following
form:

x x Ax y= min s. t. − < ϵ
x

1 2 (5)

where ϵ controls the abovementioned trade-off.
In our case, we do not have full knowledge of A. We have A′, which

is a noisy version of A and holds the relation A A A= ′ − v. Av

represents the uncertainty in A and later on we address the problem
with a specific definition of Av.

3. Multichannel Semi-blind Deconvolution – MSBD

Our purpose is to establish a general method for the Semi-blind
Deconvolution problem and to specifically analyze two different cases
of wavelet uncertainty as shown later. First, we introduce the general
method. The method relies on the different modeling of each of the
recovered signals. We know nothing about the reflectivity signal
besides the fact that it is sparse, however we assume to know the
wavelet up to some level of noise. The noise can be additive to the
wavelet signal or intrinsic to one of the parameters that form the
wavelet model, or any other noise that can be mathematically
formulated. We assume non-sparse representation of the wavelet
signal. This means that we use the standard deconvolution methods
for the wavelet. In our case, we choose to work with the L2 minimiza-

tion method. This method was adapted to best fit our problem. The
adaption that was made and the full form of the deconvolution are
shown later. The method we propose is an iterative method, with two
steps in each iteration, as follows:

1. Assume to know the wavelet and use the sparse deconvolution
method to recover the reflectivity signal.

2. Assume to know the reflectivity and use the L2 minimization method
to recover the wavelet.

In the first step we chose to work with the BPDN method for
recovering sparse signals. As mentioned before regarding this method,
the most important thing is to choose the trade-off parameter wisely.
Our method relies on the fact that the uncertainty in the wavelet is
represented as additive noise to the true wavelet. Later we show that if
this is not the case, then we can approximate the non-additive noise
with an additive estimate.

We now introduce the general method of choosing the trade-off
parameter when assuming additive noise to the wavelet and later on we
demonstrate this method for specific cases. Denote by w ∈ Nw the
vector representation of the signal w n n N[ ], 1 ≤ ≤ w. The additive noise
to the wavelet is denoted by w ∈v

Nw and the corresponding convolu-
tion matrix is W ∈v

N N N( + −1)×r w r. In the same way we denote the initial
wavelet we are given and its corresponding convolution matrix as

w′ ∈ Nw and W′ ∈ N N N( + −1)×r w r so we get the relation,

W W W= ′ − .v (6)

Substituting (6) into (3) we get,

s Wr v W W r v W r v W r= + = ( ′ − ) + = ′ + − .i i i v i i i i v i (7)

Looking at this relation,

s W r v W r= ′ + −i i i v i (8)

we can identify that W′ is our “known” wavelet and it will be treated as
one, and v W r−i v i is the term that represents the noise, or uncertainty,
in the problem. For a wise choice of the trade-off parameter, variance
analysis must be performed for that term. A major issue we have
identified is that in each iteration the variance of the uncertainty term
can be changed and a wise adaptation to that trade-off parameter needs
to be made. We denote the new noise term as,

v v W r′ = − .i i v i (9)

For the first step we assume to know the wavelet and recover the
reflectivity series. As mentioned before, this is done by applying the
BPDN solution to our problem. As we see in (5), we have to choose the
trade-off parameter, ϵ, wisely. The literature does not prove, nor imply,
a generic analysis for choosing this parameter, but as mentioned above
(Section 2), ϵ has a strong relation to the total standard deviation of the
noise in the problem. In our case we decided to define the total
standard deviation of the noise in two forms. Each form has its
advantages and disadvantages.

The first form is as follows:

∑V nv= ′ [ ]i
j

N N

j
=1

+ −1r w

(10)

σϵ = .i Vi (11)

The second form is:

∑ σϵ = .i
j

N

v
=1

2
r

j
(12)

The main difference is that in the first form we look at different
elements of the noise vector with common elements constructing them,
hence there is a strong correlation between the sources of noise from
different elements. In the second form we look at the total noise as the
sum of independent noise sources in each element.

M. Mirel, I. Cohen Signal Processing 135 (2017) 253–262

255



The selection of a specific form comes more from intuition and
empirical processes and less from analytical proof that the chosen form
is the only correct one. Different forms can be suggested, the important
thing is to maintain a logical connection to the model of the problem
and to take into account and quantify all the noise sources in the
problem.

For the second step, we assume to know the reflectivity series and
aim to recover the wavelet. Unlike the first step, here we cannot apply
BPDN, or any other sparse deconvolution method for that matter. The
simple reason is that the wavelet is not a sparse signal. We look at this
problem from another point of view, dictionary learning. Dictionary
learning is a broad field that can provide many insights on how to
update the wavelet. Several ideas were tested according to [20,29–31].

The seismic data can be considered by a linear combination of the
columns of W, the dictionary, where the reflectivity series can be
treated as the coefficients. This makes sense because the columns of W
are shifted versions of w. With that in mind, finding the wavelet when
the reflectivity series is known can be treated by methods from the field
of dictionary learning, as the purpose of this stage is to update and
learn W (defined directly by w). We use a method of dictionary update
based on the Signature Dictionary as described in [20].

Specifically, we would like to minimize the l2 expression
s Wr∑ −i

N
i i=1 2

2, where s r{ } , { }i i
N

i i
N

=1 =1 are known and W has the special
form of W R w=k k , where Wk is the k-th column of W and Rk is a matrix
that fits w into a zero-vector from its k-th element, i.e., Rk looks like
this:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟R

0
1

0
= .k

k N

N N

N k N

−1×

×

− ×

w

w w

r w (13)

This minimization problem was solved in [20] to obtain the optimal
w, although solved for different Rk matrices. Accordingly we get the
following solution:

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟∑ ∑ ∑ ∑ ∑k j kw r r R R r R s= [ ] [ ] [ ]

k

N

j

N

i

N

i i k
T

j
i

N

k

N

i k
T

i
opt

=1 =1 =1

−1

=1 =1

r r r

(14)

and now we can update the matrix W.
This step is common to all different kinds of uncertainties in the

wavelet since the true wavelet model and its connection to the seismic
data are not affected by wavelet uncertainty.

Now we continue on to analyze two different cases of wavelet
uncertainty. The first is AWGN contamination of the wavelet and the
second is a parametric change in the wavelet model.

3.1. Wavelet AWGN

The first case of wavelet uncertainty is where the wavelet is
contaminated with AWGN. The model we are assuming is as follows:

w w w′ = + v (15)

where the elements of wv are i.i.d and normally distributed with a
known variance, i.e.,

k σ k Nwi. i. d [ ] ∼ (0, ), 1 ≤ ≤ .v w w
2 (16)

In addition we assume that kw{ [ ]}v k
N
=1
w and kv{{ [ ]} }i k

N N
i
N

=1
+ −1

=1
w r are

statistically independent.
We recall that our purpose is to choose ϵi according to (10) and

(11). In this case we have the exact form as in (6) so no further
adaptations need to be made to fit the proposed model and method.

First let us examine the general element in v′i as defined in (9). To
do this we recall that

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

w w w

w
w w

w
w

w w
w

w

w W= [ , ,…, ] and =

0 ⋯ 0
0

⋮ ⋱ ⋮
⋮ 0

0
0 0 ⋱
⋮ 0 ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯

.v v v v N
T

v

v

v v

v

v N

v N v

v

v N

;1 ;2 ;

;1

;2 ;1

;2

;

; ;1

;2

;

w

w

w

w

Substituting this into (9) we get,

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥N N

w
w w

w
w

w w
w

w

N

v v W r

v
v

v

r
r

r

′ = − =

[1]
[2]
⋮

[ + − 1]

−

0 ⋯ 0
0

⋮ ⋱ ⋮
⋮ 0

0
0 0 ⋱
⋮ 0 ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯

[1]
[2]
⋮
[ ]

.i i v i

i

i

i r w

v

v v

v

v N

v N v

v

v N

i

i

i r

;1

;2 ;1

;2

;

; ;1

;2

;

w

w

w

(17)

So the general element in v′i can be written as:

∑k k w j k N Nv v r′ [ ] = [ ] − [ ], 1 ≤ ≤ + − 1.i i
j

k

v k j i r w
=1

; − +1
(18)

In this case, we choose to work with the first form of the trade-off
parameter selection. It is pretty clear that different noise vector
elements have a strong correlation in their noise sources.

Substituting this into (10) we get,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

V l l w j

l w j l

k w

v v r

v r v

r

= ′ [ ] = [ ] − [ ]

= [ ] − [ ] = [ ]

− [ ] .

i
l

N N

i
l

N N

i
j

l

v l j i

l

N N

i
l

N N

j

l

v l j i
l

N N

i

j

N

k

N

i v j

=1

+ −1

=1

+ −1

=1
; − +1

=1

+ −1

=1

+ −1

=1
; − +1

=1

+ −1

=1 =1
;

r w r w

r w r w r w

w r

(19)

We can see that Vi is a linear combination of independent normally
distributed random variables, so we can directly obtain the variance
and the standard deviation of Vi:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑ ∑

∑

σ σ k σ N N σ

N k σ

r

r

= + [ ] = ( + − 1)

+ [ ]

V
l

N N

l
j

N

k

N

i w r w v

w
k

N

i w

v
2

=1

+ −1

[ ]
2

=1 =1

2
2 2

=1

2
2

i

r w

i

w r

r

(20)

and now we can obtain ϵi from (11):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑σ N N σ N k σrϵ = = ( + − 1) + [ ] .i V r w v w

k

N

i w
2

=1

2
2

i

r

(21)

Notice the dependence on σv and σw, which changes from iteration
to iteration. We show an easy way to update σw in each iteration to best
fit ϵ to the current iteration. Updating σv is not trivial and has no
analytical solution to date, so in our system we assume σv stays
constant from one iteration to the next.

To update σw we analyze the current wavelet that was recovered
from the last iteration and the initial wavelet that was given to us. The
initial wavelet, w ,init and the current wavelet, wcurr , can be modeled as,

w w w w w w= + = + ′init v curr v (22)

where we assume that k σ k Nw [ ] ∼ (0, ), 1 ≤ ≤v w w
2 , and
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k σ k Nw′ [ ] ∼ (0, ), 1 ≤ ≤v w w′
2 . We know σw and aim to find σ′w. We

recall that we hold winit and wcurr fixed, and analyze the following term:

N σ σw w w w w w− = + − ( + ′ ) = [ + ( ′ ) ].init curr v v w w w2
2

2
2 2 2 (23)

It is easy to see that we can extract σ′w,

σ
N

σw w′ = 1 − − .w
w

init curr w2
2 2

(24)

Now we can update σw at the beginning of each iteration.

3.2. Wavelet parametric change

The second case of wavelet uncertainty is the one that involves a
change in one of the parameters that define the wavelet. In this case we
assume a certain model for the wavelet and analyze an uncertainty in
one of its parameters.

A very common model for a seismic wavelet is the Ricker wavelet,

w t f π f t e( ; ) = (1 − 2 ) π f t2 2 2 − 2 2 2
(25)

where f is a parameter that represents the frequency of the wavelet. In
our case, we assume that the seismic data result from a wavelet defined
by a frequency f0, w t f( ; )0 , but the wavelet we are initially given is

Fig. 1. True and recovered reflectivity and the correlations between them: (a) true (original) reflectivity, (b) recovered reflectivity using MSBD, (c) recovered reflectivity using the classic
method, and (d) correlation between true and recovered reflectivity as a function of channel number.

Fig. 2. (a) MSBD recovered reflectivity compared to the original reflectivity, within a specific channel. (b) The correlation between recovered and original reflectivity within a specific
channel, as a function of iteration.
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defined by the parameter f, where f f≠ 0.
In order to simplify the later analysis of ϵ, we present the change in

f as an additive term to the true wavelet. To do this, we need to
represent w t f( ; ) as a Taylor series. We develop the series up to three
elements. The first two derivatives are:

w t f
f

π ft e π ft π f t e

π ft π f t e π f t π ft e
w t f

f
π f t π t e

π ft π f t π ft e

π f t π f t π t e

∂ ( ; )
∂

= −4 − 2 (1 − 2 )

= 2 (2 − 3) = (4 − 6 )
∂ ( ; )

∂
= (12 − 6 )

− 2 (4 − 6 )

= (24 − 8 − 6 ) .

π f t π f t

π f t π f t

π f t

π f t

π f t

2 2 − 2 2 2 2 2 −

2 2 2 2 2 − 4 3 4 2 2 −

2

2
4 2 4 2 2 −

2 2 4 3 4 2 2 −

4 2 4 6 4 6 2 2 −

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2 2 2

2 2 2
(26)

So we can approximately write that:

w t f w t f w t f
f

f f w t f
f

f f( ; ) ≈ ( ; ) + ∂ ( ; )
∂

( − ) + 1
2

· ∂ ( ; )
∂

( − ) .
f f f f

0
=

0

2

2
=

0
2

0 0

(27)

Putting this into a vector–matrix form in order to maintain the
relation in (1) we get,

f fW W DW DW= + Δ + 1
2

Δf f f f0 1 = 2 =
2

0 0 (28)

where W DW,0 1 and DW2 are the convolution matrices of w t f( ; ), w t f
f0

∂ ( ; )
∂

and w t f
f

∂ ( ; )
∂

2

2 , respectively, and f f fΔ = − 0. Applying this notation to (6)

we can see that W W′ = 0 and f fW DW DW= −( Δ + Δ )v f f f f1 =
1
2 2 =

2
0 0 .

Following this we can write (9) as,

⎛
⎝⎜

⎞
⎠⎟f fv v DW DW r′ = + Δ + 1

2
Δ .i i f f f f i1 = 2 =

2
0 0 (29)

Now we assume that f σΔ ∼ (0, )f
2 and analyze (9):

k k k f k f

k N N

v v DW r DW r′ [ ] = [ ] + ( )[ ]Δ + ( )[ ]Δ ,

1 ≤ ≤ + − 1.

i i f f i f f i

r w

1 =
1
2 2 =

2
0 0

In this case, we chose to work with the second form of the trade-off
parameter selection. Although it seems that different elements are also
correlated with respect to the noise sources, the second form is more
suitable here because of the independence of each element with the
others.

We would like to use (12); to do so we must first examine the
variance of kv′ [ ]i :

E k k σ E k σ k σ

k σ σ E k E k

σ k σ k σ

v DW r v DW r

DW r v v

DW r DW r

[ ′ [ ]] = ( )[ ] [( ′ [ ]) ] = + ( ) [ ]

+ ( ) [ ] = [( ′ [ ]) ] − ( [ ′ [ ]])

= + ( ) [ ] + ( ) [ ]

i f f i f i v f f i f

f f i f k i i

v f f i f f f i f

v

1
2 2 =

2 2 2
1 =

2 2

3
4 2 =

2 4
′ [ ]

2 2 2

2
1 =

2 2 1
2 2 =

2 4

i

0 0

0

0 0 (30)

and we conclude:

⎛
⎝⎜

⎞
⎠⎟∑ ∑

∑ ∑

σ σ k σ k σ

N σ σ k σ k

DW r DW r

DW r DW r

ϵ = = + ( ) [ ] + 1
2

( ) [ ]

= + ( ) [ ] + 1
2

( ) [ ] .

i
n

N

k

N

v f f i f f f i f

r v f
k

N

f f i f
k

N

f f i

v
=1

2

=1

2
1 =

2 2
2 =

2 4

2 2

=1
1 =

2 4

=1
2 =

2

r

i

r

r r

0 0

0 0
(31)

We note here that the derivatives must be recalculated at each
iteration.

4. Results and discussion

In this section we present experimental results obtained from
testing the performances of MSBD. We will focus on synthetic data
and we will also present a real data example. The synthetic reflectivity
sequences were created using the model presented in [32] with SNR
varied in the range 0–20 dB. Fifty channels were used and the wavelet
was created using the Ricker wavelet.

In the first case, wavelet AWGN, the standard deviation of the
wavelet AWGN, σw, was varied in the range 0.05–0.2. Twenty
iterations were performed.

We present the results in terms of the correlation between the
recovered reflectivity and the original reflectivity, and compare this to
the case where we assume a fixed wavelet. The fixed wavelet is tested
with the SSI and SMBD algorithms that were presented in the
Introduction section. The SSI will represent the non-blind directive
and the SMBD will represent the blind directive in our comparison. All
the results of those algorithms are presented, although when we dive
into figures and detailed explanation of the results, we will compare the
MSBD only to SSI, just to not burden the reader. We will sometime
address the SSI as the “classic method”.

In the next figures we present some graphs and results related to an
example of SNR=20 dB and σ = 0.1w .

First we examine in Fig. 1 the true (original) and recovered
reflectivity series from both (MSBD and SSI) methods. A visual
inspection of the recovered reflectivity graphs indicates a major
improvement with MSBD. Even without a quantitative measure we
can see that the signal outlines are recovered nicely using MSBD. At
certain points we can see that MSBD has created discontinuities, for

Fig. 3. Wavelet estimation.

Table 1
Correlations between recovered and original reflectivity for wavelet AWGN.

σw SNR

0 dB 5 dB 10 dB 15 dB 20 dB

SSI SMBD MSBD SSI SMBD MSBD SSI SMBD MSBD SSI SMBD MSBD SSI SMBD MSBD

0.05 0.4134 0.437 0.4606 0.5738 0.5818 0.6695 0.6234 0.5639 0.6972 0.5748 0.6281 0.8231 0.6724 0.6914 0.8573
0.1 0.4044 0.4297 0.4545 0.5202 0.4941 0.7882 0.4131 0.4193 0.5274 0.4561 0.5734 0.7702 0.2985 0.3761 0.8817
0.15 0.3903 0.4719 0.5258 0.4604 0.3184 0.5974 0.3832 0.4859 0.8174 0.3896 0.5379 0.7768 0.3210 0.5562 0.7710
0.2 0.3008 0.3717 0.4832 0.4258 0.4912 0.5755 0.3155 0.5804 0.6574 0.4530 0.6031 0.7531 0.3082 0.7015 0.7239
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example near channel number 7, at time 100 and time 125. These
discontinuities are due to the fact that each channel is recovered
irrespective of its neighbors; the neighbors are taken into account only
at the stage of wavelet estimation. The correlation between recovered
and true reflectivity for each channel (see Fig. 1(d)) provides a
quantitative measure for testing the quality of the reflectivity recovery.
It is clear that in most channels MSBD outperforms the SSI method.

Now we examine more “low-level” effects of the recovery by MSBD
by focusing on recovery within a specific channel, in this case channel 1
(Fig. 2). When we examine the recovered and true reflectivity series
(Fig. 2(a)), the first effect we notice is the difficulty in recovering
adjacent impulses, such as samples 52 and 53. This is because the
wavelet is wide (in the time domain) so it is difficult to distinguish

between two close impulses. If we look at sample 75 which is far from
the previous and next impulses we note almost perfect recovery by
MSBD. Now we examine the correlation between recovered and true
reflectivity in this same channel as a function of iteration (Fig. 2(b)). In
general, the correlation tends to increase but there are parts where it
decreases. Also, we can clearly see that the final correlation is not the
highest among all iterations. It will be interesting to check an algorithm
that finds the best moment to stop the iterations. Of course this kind of
algorithm will have to take into account all the channels and not only a
specific one.

Finally, we examine the estimation of the wavelet (Fig. 3). We recall
that MSBD is a two-stage algorithm, where the second stage is wavelet
recovery. Here we can see the initial wavelet that was provided at the

Fig. 4. True and recovered reflectivity and their correlation: (a) true (original) reflectivity, (b) recovered reflectivity using MSBD, (c) recovered reflectivity using the classic method, and
(d) correlation between recovered and true reflectivity as a function of channel number.

Fig. 5. (a) MSBD recovered reflectivity compared to the original reflectivity, within a specific channel. (b) The correlation between recovered and true reflectivity in a specific channel as
a function of iteration.
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beginning, and the estimated wavelet at the last iteration, both
compared to the true wavelet from which the seismic data were
created. We can see that the estimation of the wavelet is almost perfect.

The mean correlations between the recovered and original reflec-
tivity measured across all channels, for all tested cases, i.e., SNR varies
from 0 to 20 dB and σw varies from 0.05 to 0.2, are presented in
Table 1. Separate correlations for the SSI, SMBD and MSBD are
presented for each value of SNR and σw.

A few interesting points arise from these results. First, we see that
the mean correlation of MSBD outperforms the mean correlation of SSI
and SMBD methods. This demonstrates that the great potential
improvement MSBD has to offer for seismic deconvolution. Second,
we would have expected to see a fixed trend of improvement in the
correlation with increasing SNR and decreasing σw. For SNR this
assumption held true, besides three exceptions: σ = 0.1w and
SNR = 5 dB, σ = 0.15w and SNR = 10 dB, σ = 0.2w and SNR = 15 dB,
however for σw this assumption was invalid. This is due to the fact that
recovery of the reflectivity is more related to the relative changes in
adjacent samples of the wavelet than to the standard deviation of the
noise in the signal.

Until now we saw how MSBD handles the case of wavelet AWGN;
now we present its performance under wavelet parametric change as
described above (Section 3.2).

This reflectivity series was created in the same way as for the
wavelet AWGN, according to the same element and with the same
parameters. Likewise, the SNR of the seismic data varied from 0 to
20 dB, the wavelet was the Ricker Wavelet with f = 20 and σf varied
from 0.5 to 1.2.

We illustrate the main results using an example with SNR=10 dB
and σ = 1f , again using 20 iterations.

First we examine the true reflectivity series (Fig. 4(a)), the
recovered reflectivity series after applying MSBD (Fig. 4(b)) and the
recovered reflectivity series using the SSI method where we assume a
fix wavelet throughout the process (Fig. 4(c)). Once again, we can

visually see the superiority of MSBD and the improvement it offers,
even without a quantitative measure. Using the SSI recovery, the
outlines of the reflectivity signals are visible, but very unclear and
contain many discontinuities. In contrast, the MSBD recovery series
shows clear reflectivity outlines recovered with high correlation to the
true reflectivity. Surprisingly, there are far fewer discontinuities here
compared to the wavelet AWGN (Fig. 1(b)), even though neighboring
channels were not taken into account when recovering a specific
channel. This could be due to better wavelet estimation as is shown
in Fig. 6. Visual inspection of the correlation between recovered and
true reflectivity for each channel (Fig. 4(d)) indicates that MSBD clearly
outperforms the SSI method. The sharp increases and decreases in the
correlation measure are due to the correlation calculation. Even if a
certain recovery method recovers the amplitudes of the trace perfectly,
a shift of one sample in the impulse times can produce a very small
correlation measure at certain points in time (if we assume no adjacent
impulses then the correlation will be 0). A shift of one sample in the
recovery is quite common, since the wavelet itself is not an impulse and
has a certain width in the time domain. This is highly affected by the
wavelet sample rate.

We now examine the recovery of a specific channel, in this case,
channel 45 (Fig. 5). Comparison between the reflectivity series
recovered by MSBD and the true reflectivity series (Fig. 5(a)) demon-
strates the same effects observed for the wavelet AWGN in a specific
channel (Fig. 2(a)). Now we examine the correlation between recovered
and true reflectivity for the same channel as a function of iteration
(Fig. 5(b)). Again, the correlation demonstrates a generally increasing
trend, however it also decreases at some points along the process. As in
the case of wavelet AWGN (Fig. 2(b)), the correlation at the final
iteration is not the highest among all iterations.

Finally, we examine the estimated wavelet at the last iteration
compared to the true wavelet and the initial wavelet that was provided
to us (Fig. 6). We can see a very good estimation of the wavelet, even
better than that for the wavelet AWGN in Fig. 3.

The mean correlations between the recovered and original reflec-
tivity measured across all channels, for all tested cases, i.e., SNR varies
from 0 to 20 dB and σf varies from 0.5 to 1.2, are presented in Table 2.
Separate correlations for the SSI, SMBD and MSBD are presented for
each value of SNR and σf.

In general, the correlation between the recovered and original
reflectivity increases as SNR increases, as was found for wavelet AWGN
(Table 1). However, it is not clear whether a decrease in σf leads to
better recovery. This is because under wavelet parametric change the
relative amplitude of adjacent samples of the wavelet is maintained
while only the width of the wavelet and the absolute amplitudes
change. In other words, the maximum amplitude of the wavelet will
be maintained at the center of the wavelet, so the quality of the
recovery is not necessarily related to σf.

A very interesting point we can easily see in both simulations is that
we can clearly see that if we have some initial knowledge about the
wavelet, the semi-blind (MSBD) method has more potential in recover-
ing the reflectivity series with better performance than the blind
(SMBD) or non-blind (SSI) directives. This makes sense because

Fig. 6. Wavelet estimation.

Table 2
Correlations between recovered and original reflectivity for wavelet parametric change.

σf SNR

0 dB 5 dB 10 dB 15 dB 20 dB

SSI SMBD MSBD SSI SMBD MSBD SSI SMBD MSBD SSI SMBD MSBD SSI SMBD MSBD

0.5 0.3942 0.3501 0.5339 0.2590 0.3971 0.6110 0.3201 0.4185 0.9232 0.7062 0.7205 0.7721 0.8947 0.8827 0.8954
0.8 0.5442 0.5903 0.6057 0.6673 0.7036 0.7471 0.4537 0.6407 0.6956 0.7020 0.7540 0.8202 0.5266 0.7152 0.8112
1 0.4278 0.5013 0.5649 0.3303 0.4155 0.6991 0.3540 0.5914 0.6965 0.5160 0.6510 0.7686 0.6621 0.7958 0.7309
1.2 0.4953 0.5183 0.5359 0.4271 0.5356 0.6553 0.5768 0.5608 0.6790 0.7272 0.7012 0.7822 0.5780 0.7825 0.8028
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non-blind methods assume that the wavelet is given and does not
change – which is not the case, and blind methods assume nothing
about the initial wavelet so they are not exploiting all the information
given in the problem. This clearly states the importance of the method
we propose.

In these simulations we used a private laptop with an i5 Intel core,
16 GB RAM. The mean computation time was 2.43 s for SSI, 5.52 s for
SMBD and 37.12 s for MSBD with 20 iterations. The mean time was
calculated from all of the abovementioned simulated data.

In the next figures we will see a real data example, courtesy of
GeoEnergy Inc., Texas. In this example we did not have a priori
information about the wavelet, so we assumed a Ricker wavelet with
f σ= 1.5, = 0.5f . The SNR in this example is 2 dB. In Fig. 7 we can see
the seismic data that was given to us and the recovered reflectivity
using MSBD. Also, we can see the initial wavelet that was given to the
algorithm and the optimal wavelet the algorithm found as optimal.

We can see the good recovery of MSBD. There are still disconti-
nuities, for example in channel 38, around sample number 80. This
discontinuities can be due to non-accurate assumptions on the noise in
the setup. Still, we can clearly observe the un-blurring effect of the
MSBD that has managed to distinguish between different spikes from
near channels and from near samples in time.

5. Summary and conclusions

In this study we presented a new deconvolution method based on a
two-stage iterative process that recovers the reflectivity series from the
seismic data given a wavelet containing some kind of an uncertainty.
We presented a general two-stage method, where one of the steps is
fixed at the wavelet recovery stage, and the other is semi-fixed at the
reflectivity recovery stage. The recovery of the reflectivity is semi-fixed
because in general the method does not change from one type of signal
to another; they all apply the BPDN solution for reflectivity recovery.
The part in this stage that does change is the way we choose the trade-

off parameter in the BPDN solution.
In this study we have presented two different cases in which we

analytically calculated the trade-off parameter. For each case we
presented the results of our proposed method and compared it to
blind and non-blind methods. The results clearly show the advantage
and logic behind MSBD. The immediate conclusion is that a stage of
wavelet update is necessary and that the performance of our proposed
method for both wavelet and reflectivity series recovery is very
promising.
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