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a b s t r a c t

In this paper, we propose a novel technique for finding the graph embedding and function
extension for directed graphs. We assume that the data points are sampled from a
manifold and the similarity between the points is given by an asymmetric kernel. We
provide a graph embedding algorithm which is motivated by Laplacian type operator on
manifold. We also introduce a Nyström type eigenfunctions extension which is used both
for extending the embedding to new data points and to extend an empirical function on
new data set. For extending the eigenfunctions to new points, we assume that only the
distances of the new points from the labelled data are given. Simulation results
demonstrate the performance of the proposed method in recovering the geometry of
data and extending a function on new data points.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recent advances in geometric based methods of data
mining and machine learning lead to efficient algorithms for
lots of applications such as dimensionality reduction, function
extension, classification and clustering, just to name a few.
Most of these methods are graph based techniques. Graphs
offer an advantageous compromise between their simplicity,
interpretability and their ability to express complex relation-
ships between data points. The core idea in such algorithms is
to construct a weighted graph on data points such that each
vertex of the graph represents a data point, and a weighted
edge, connecting two vertices to each other, represents the
similarity between the two corresponding data points. In the
context of networks (e.g., social networks), the data naturally
lead themselves to graph modelling [1]. The graph based
representation of data combined with Markov chain techni-
ques exhibits extremely successful results. The main idea here
is based on the fact that the eigenvectors of Markov matrices
can be regarded as coordinates on the data set. Among vast
Mousazadeh),
techniques incorporating Markov chain methods in data pro-
cessing, kernel eigenmap methods have attracted much res-
earch attention recently. The algorithmic consequences of
these methods are local linear embedding (LLE) [2], Laplacian
eigenmaps [3], Hessian eigenmaps [4], local tangent space
alignment [5] and diffusion maps [6].

In most of these kernel eigenmaps based methods, the
similarity between points is given by a symmetric posit-
ive semi-definite kernel. In some practical applications the
similarity between points is not necessarily symmetric.
Typical examples are web information retrieval based on
hyperlink structure, document classification based on
citation graphs [7], web information retrieval based on
hyperlink structure, and protein clustering based on pair-
wise alignment scores [8]. Some works have been done to
deal with the ranking problem on link structure of the
Web. Although much progress in the field, it is still a hard
task to do general data analysis on directed graphs such as
classification and clustering. Chen et al. [9] proposed an
algorithm for embedding vertices on directed graphs to
vector spaces. This algorithm explores the inherent pair-
wise relation between vertices of the directed graph by
using transition probability and the stationary distribution
of Markov random walks, and embeds the vertices into
vector spaces preserving such relation optimally. Recently,
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Perrault-Joncas and Meilă [10] proposed an algorithm based
on the analysis of Laplacian type operators and their con-
tinuous limit as generators of diffusions on a manifold. They
modelled the observed graph as a sample from a manifold
endowed with a vector field, and designed an algorithm
that separates and recovers the features of this process: the
geometry of the manifold, the data density, and the vector
field. The most important shortcoming of these methods is
not providing a straightforward procedure to extend the
embedding to new points in case only the distances of the
new point to the original data points are known, which enc-
ountered in applications. In [11], Coifman and Hirn intro-
duced a simple procedure for the construction of a bi-sto-
chastic kernel for an arbitrary data set that is derived from
an asymmetric affinity function. The affinity function mea-
sures the similarity between points in test set and some ref-
erence set.

These geometric based algorithms have been applied in
various signal processing applications. In a pioneering work,
Shi and Malik [12] used spectral methods for image segmen-
tation. Later many researchers have used geometric based
methods in applications such as image clustering [13,14],
image completion [15], speech enhancement in the presence
of transient noise [16], voice activity detection in the presence
of transient noise [17], linear and nonlinear independent
component analysis [18,19], parametrization of linear systems
[20], and single channel source localization [21]. Most if not
all of these applications can be regarded as out of sample
function extension, in which an empirical function is exte-
nded to unlabelled data. In these applications, usually a large
amount of data is involved and the only way to perform a
task like clustering, regression, or classification is to sub-
sample the data set X in order to reduce the size of the
problem, process the new set X, and then extend the results
to the original data X . Coifman and Lafon [22] proposed a
geometric harmonics procedure, inspired from the Nyström
method, to perform this task. More specifically, they assumed
that the similarity between the data points is given by a sym-
metric positive semi-definite kernel. Then it is shown that the
eigenfunctions of the integration operator defined by this
kernel form an orthogonal basis for the space of squared
integrable functions defined on X (i.e. L2ðX Þ). In order to
extend a function defined on the set X to the data set X , first
the eigenfunctions computed on X are extended to the data
set X using the Nyströmmethod. The function is then
approximated as the weighted sum of these extended eigen-
functions. Kushnir et al. [23] and Singer et al. [19] introduced
a method for parameterizing high dimensional data into its
independent physical parameters, which enables the identi-
fication of the parameters and a supervised extension of
the re-parametrization to new observations. In their work, a
novel diffusion processes was used, utilizing only the small
observed set, that approximates the isotropic diffusion on the
parametric manifold. They utilized Nyström-type extension
of the embedding of that small observed data-set to the emb-
edding into the independent components on a much larger
data-set.

In this paper, we propose a novel technique for embed-
ding a directed graph to Euclidean space. We model the
observed data as samples from a manifold where the
similarity between the points is given by an asymmetric
kernel. This asymmetric kernel is modelled utilizing a vec-
tor field, and we design an algorithm that separates and
recovers the geometry of the manifold, the data density,
and the vector field. We further provide a simple Nyström
extension procedure which allows us to extend both the
embedding and the estimated vector field to new data
points. More precisely, we adopt the method presented in
[23] into the case when the kernel is asymmetric. The rest
of this paper is organized as follows. In Section 2, we pro-
vide a model which can be used in directed graph model-
ling. We also introduce our results regarding the limit of
Laplacian type operators and provide an algorithm for obt-
aining the embedding of a directed graph. We also propose
a Nyström extension procedure for extending the embed-
ding and the vector field to new data points. In Section 3
we provide some experimental results. We conclude the
paper in Section 4.

2. Problem formulation, embedding and function
extension

Let X be a set of n data points sampled according to a
distribution p¼ e�U from an unknown smooth manifold
M�Rℓ with intrinsic dimension doℓ. Let G be a directed
graph with n nodes constructed from the data set X, where
each nodes of the graph (e.g. the node i) corresponds to a
point in the set X (e.g. xiAX). We assume that the edge
weight Ki;j between nodes i and j is given by a positive
asymmetric similarity kernel kϵð�; �Þ (i.e. Ki;j ¼ kϵðxi; xjÞZ0).
We also assume that the directional component of kϵð�; �Þ is
derived by a vector field r on the manifold M, which will
be precisely defined shortly. This vector field r is sufficient
to characterize any directionality associated with a drift
component and as it turns out, the component of r normal
to M�Rℓ can also be used to characterize any source
component, see [10] for further discussion. The problem is
finding an embedding of G into Rm;mrd which approx-
imates the generative process geometry M, the sampling
distribution p¼ e�U , and the directionality r. This embed-
ding needs to be consistent as sample size increases and
the bandwidth of the kernel vanishes.

2.1. Anisotropic diffusion operator

Any kernel kϵðx; yÞ can be decomposed into symmetric
and anti-symmetric parts as follows:

kϵðx; yÞ ¼ hϵðx; yÞþaϵðx; yÞ; ð1Þ
where hϵðx; yÞ ¼ hϵðy; xÞ is the symmetric component and
aϵðx; yÞ ¼ �aϵðy; xÞ is the antisymmetric component of the
kernel. As in [10], we assume that the symmetric and anti-
symmetric parts can be written as

hϵ x; yð Þ ¼ hðJx�yJ2=ϵÞ
ϵd=2

ð2Þ

aϵ x; yð Þ ¼ rðx; yÞ
2

� y�xð ÞhðJx�yJ2=ϵÞ
ϵd=2

; ð3Þ

respectively, where rðx; yÞ ¼ rðy; xÞ and hZ0 is an arbitrary
exponentially decreasing function when Jx�yJ converges
to infinity.



S. Mousazadeh, I. Cohen / Signal Processing 111 (2015) 137–149 139
In [10] an embedding algorithm has been proposed based
on symmetrization of this kernel. More specifically, assuming
that kϵðx; yÞ is the asymmetric similarity kernel, the authors
defined a symmetric kernel sϵðx; yÞ:M�M-Rþ as fol-
lows:

sϵ x; yð Þ ¼ sϵ y; xð Þ ¼ kϵðx; yÞþkϵðy; xÞ
2

: ð4Þ

Then the diffusion map [6] has been applied to this sym-
metric kernel in order to find the graph embedding. The
vector field r and the sampling density p are then obtained
by constructing a new diffusion operator using kϵð�; �Þ. Alt-
hough this method succeeds in obtaining the embedding
and estimating the sampling distribution and the vector
field, the method suffers from a serious limitation. Suppose
that for a set of data X ¼ fx1; x2;…; xng the embedding is
found by performing the above mentioned procedure. Now
we want to approximate the embedding of a new data point
y using Nyström like eigenfunction extension. Since the
kernel is asymmetric, we need to know both the distance
(i.e. the affinity measure) of the new point y from all of the
points in X (i.e. kϵðy; xiÞ;1r irn) and the distances of all of
the points in X from the new point y (i.e. kϵðxi; yÞ;1r irn).
In practical applications, one of these sets of distances might
be unknown which restricts this method.

Here, we solve the above-mentioned problem by
choosing a different symmetrization of the affinity kernel.
Using the asymmetric kernel kϵðx; yÞ, we define a sym-
metric kernel sϵðx; yÞ:M�M-Rþ as follows:

sϵðx; yÞ ¼ sϵðy; xÞ ¼
Z
M
kϵðx; tÞkϵðy; tÞ dt: ð5Þ

Note that this kernel is positive semi-definite, i.e., for any
mZ1 and any choice of real numbers α1;…;αm, and points
x1;…; xm in M, we have

Xm
i ¼ 1

Xm
j ¼ 1

αiαjsϵðxi; xjÞ ¼
Xm
i ¼ 1

Xm
j ¼ 1

αiαj

Z
M
kϵðxi; tÞkϵðxj; tÞ dt

¼
Z
M

Xm
i ¼ 1

αikϵðxi; tÞ
 !2

dtZ0: ð6Þ

These two kernels, i.e. the asymmetric kernel kϵðx; yÞ and
its symmetrized version sϵðx; yÞ, can be used to construct a
family of Laplacian type operators suitable for graph emb-
edding as in [24,25,6]. This family of operators is inspired
by anisotropic diffusion operator introduced in [6] for
embedding undirected graph. We define a family of diffu-
sion operators as follows. Let αA ½0;1� and

pk;ϵðxÞ ¼
Z
M
kϵðx; yÞpðyÞ dy ð7Þ

ps;ϵðxÞ ¼
Z
M
sϵðx; yÞpðyÞ dy: ð8Þ

We form a new kernel by

kðαÞϵ x; yð Þ ¼ kϵðx; yÞ
pαk;ϵðxÞpαk;ϵðyÞ

ð9Þ

sðαÞϵ x; yð Þ ¼ sϵðx; yÞ
pαs;ϵðxÞpαs;ϵðyÞ

: ð10Þ
Then, we apply the weighted graph Laplacian normaliza-
tion to these kernels by setting the outdegree distributions
of the newly defined kernels as

dk;ϵðxÞ ¼
Z
M
kðαÞϵ ðx; yÞpðyÞ dy ð11Þ

ds;ϵðxÞ ¼
Z
M
sðαÞϵ ðx; yÞpðyÞ dy; ð12Þ

and by defining the anisotropic transition kernel by

tk;ϵ;α x; yð Þ ¼ kðαÞϵ ðx; yÞ
dk;ϵðxÞ

ð13Þ

ts;ϵ;α x; yð Þ ¼ sðαÞϵ ðx; yÞ
ds;ϵðxÞ

: ð14Þ

Finally we define our diffusion operator as follows:

Taa
ϵ;αf ðxÞ ¼

Z
M
tk;ϵ;αðx; yÞf ðyÞpðyÞ dy ð15Þ

Tss
ϵ;αf ðxÞ ¼

Z
M
ts;ϵ;αðx; yÞf ðyÞpðyÞ dy; ð16Þ

where the superscripts a and s indicate which kernel (asy-
mmetric kϵðx; yÞ or symmetric sϵðx; yÞ) is used for obtaining
the anisotropic kernel and the out-degree distribution. It is
worth mentioning that there are in fact eight possible
combinations of kernel and degree distribution. Since only
the two above-mentioned diffusion operators are of parti-
cular interest in retrieving the generative process geome-
try M, the sampling distribution p¼ e�U , and the direct-
ionality r, we concentrate on obtaining the infinitesimal
generators of these diffusion operators as ϵ converges to 0.
2.2. Continuous limit of the diffusion operator

In order to find the infinitesimal generators of the diff-
usion operators we need the following two lemmas.

Lemma 1. Let M be a compact, closed, smooth manifold of
dimension d and kϵðx; yÞ be an asymmetric similarity kernel
defined by Eqs. (1)–(3), then for any function f AC3ðMÞ, the
integral operator based on kϵ has the asymptotic expansion:Z
M
kϵ x; yð Þf yð Þ dy¼m0f xð Þ

þϵ
m2

2
ωðxÞf ðxÞþΔf ðxÞþr �∇f ðxÞ�

þ f ðxÞ∇ � rÞþO ϵ2
� � ð17Þ

andZ
M
kϵ y; xð Þf yð Þ dy¼m0f xð Þþϵ

m2

2
ωðxÞf ðxÞð

þΔf ðxÞ�r �∇f ðxÞ� f ðxÞ∇ � r�þO ϵ2
� �

;

ð18Þ

where m0 ¼
R
RdhðJuJ2Þ du and m2 ¼

R
Rdu2

1hðJuJ2Þ du, u1 is
the first element of a vector u and ωðxÞ ¼ ð2=m2Þ

R
uARd

Q2ðuÞh JuJ2
� �

þQ4ðuÞh0 JuJ2
� �� �

du:
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Proof. See Appendix A.

Lemma 2. Suppose the conditions of Lemma 1 are satisfied,
thenZ
M
sϵðx; yÞf ðyÞ dy¼

Z
M

Z
M
kϵðx; tÞkϵðy; tÞ dtf ðyÞ dy

¼m2
0f ðxÞþϵm0m2 ωðxÞf ðxÞþΔf ðxÞ� �þOðϵ2Þ:

ð19Þ

Proof. Let

GϵðxÞ ¼
Z
M

Z
M
kϵðx; tÞkϵðy; tÞf ðyÞ dy dt

¼
Z
M
kϵðx; tÞ

Z
M
kϵðy; tÞf ðyÞ dy

� �
dt: ð20Þ

Using Lemma 1 (Eq. (18)) we have

Gϵ xð Þ ¼
Z
M
kϵ x; tð Þ m0f tð Þþϵ

m2

2
g tð Þ

� �
dtþO ϵ2

� � ð21Þ

where

gðxÞ ¼ωðxÞf ðxÞþΔf ðxÞ�r � ∇f ðxÞ� f ðxÞ∇ � r: ð22Þ
Now applying Lemma 1 again to Eq. (21) we have

Gϵ xð Þ ¼m0 m0f xð Þþϵ
m2

2
g xð Þ

h i
þϵ

m2

2

� ω xð Þ m0f xð Þþϵ
m2

2
g xð Þ

� �
þΔ m0f xð Þþϵ

m2

2
g xð Þ

� �h
þr � ∇ m0f xð Þþϵ

m2

2
g xð Þ

� �
þ∇ � r m0f xð Þð

þϵ
m2

2
g xð Þ

�
�þO ϵ2

� �
: ð23Þ

Discarding the second order terms we get

Gϵ tð Þ ¼m2
0f tð Þþϵ

m2m0

2
g tð Þþϵ

m2

2
ωðxÞm0f ðtÞþΔ m0f ðtÞð Þ�

þr � ∇ m0f ðtÞð Þþ∇ � r m0f ðtÞð Þ	þO ϵ2
� �

¼m2
0f tð Þþϵ

m2m0

2
gðtÞþωðxÞf ðxÞþΔf ðtÞþr � ∇f ðtÞ�

þ∇ � rf ðtÞ	þO ϵ2
� �

: ð24Þ

Using the definition of g(x) in (22) we get the final result, i.e.

GϵðtÞ ¼m2
0f ðtÞþϵm2m0 ωðxÞf ðxÞþΔf ðtÞ� 	þOðϵ2Þ: □

ð25Þ

The scalar functions ωðxÞ was first obtained in [6] and
corresponds to an interaction between the symmetric kernel
hϵð�; �Þ and the curvature of M. Lemma 1 gives a general fact
about spectral embedding algorithms: in most cases, Lapla-
cian operators confound the effects of spatial proximity,
sampling density and directional flow due to the presence of
the various terms above.

The next theorem represents the main result of this
paper regarding the infinitesimal generator of the diffusions
introduced before.

Theorem 3. Suppose that the kernel kðx; yÞ is normalized
such that m0 ¼ 1 and m2 ¼ 2. Let

Laaϵ;α ¼
I�Taa

ϵ;α

ϵ
ð26Þ
Lssϵ;α ¼
I�Tss

ϵ;α

2ϵ
ð27Þ

be the infinitesimal generator of the Markov chain, where
Taa
ϵ;α and Tss

ϵ;α are defined in (15) and (16), respectively. Then

lim
ϵ-0

Laaϵ;αf ¼Δf �2ð1�αÞ∇U � ∇f þr �∇f ð28Þ

lim
ϵ-0

Lssϵ;αf ¼Δf �2ð1�αÞ∇U � ∇f ð29Þ

Proof. See Appendix B.

In the next section, we show how this theorem can
be used to recover the geometry of data along with the
vector field.

2.3. Manifold learning, estimation of sampling density and
the vector field

The geometry of the data can be fully recovered by
computation of the Laplace–Beltrami operator on the mani-
fold. In other words, the geometry of a Riemannian manifold
is determined by the spectrum of Laplace–Beltrami operator.
Additionally, since the eigenfunctions of this operator make
a basis for all functions in L2ðMÞ, obtaining the eigenfunc-
tions of this operator plays an important role in manifold
learning. In order to fully learn the manifold M, we also
need to estimate the sampling density p¼ e�U and the
vector field r. As shown in [26,10] the eigenfunctions of the
Laplace–Beltrami operator can be estimated by computing
the eigenfunctions of Lssϵ;1. Furthermore, the sampling den-
sity can be obtained by computing the left eigenfunctions of
the Lssϵ;1 corresponding to eigenvalue 1.

Since

lim
ϵ-0

Laaϵ;αf �Lssϵ;1f ¼ r �∇f ; ð30Þ

the components of the vector field r on the tangent space
denoted by rjj can be recovered by

rjj ¼ r �∇ψ ; ð31Þ
where ψ is any diffeomorphic embedding of M. Because of
the fact that the eigenfunctions of the Laplace–Beltrami
operator are a diffeomorphic embedding of M, we use the
eigenfunctions of this operator in (31) to recover the
vector field r. The algorithmic consequence of this proce-
dure for learning the manifold using a directed kernel is
summarized in Table 2.

2.4. Embedding and function extension on directed graph

In this section, we present a method for embedding and
function extension on directed graph which essentially
originates from Nyström eigenfunction extension. We adopt
the method presented in [23] into the case when the kernel
is asymmetric. More specifically, suppose that we have a
data set X �M consisting of n data points. Let ψ ðXÞARn�m

be the embedding of these points into Rm obtained using
Algorithm 2. Furthermore, suppose that we are given a
function f ð�Þ whose value is known only on the set X.
Now, assume that we are given another set of data points
X �M and the distances fkϵðx; xÞ; xAX ; xAXg. The goal is
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extending the embedding and finding the value of the fun-
ction f ð�Þ on this set X �M.

As shown earlier in (6), sϵðx; yÞ, the symmetrized ver-
sion of the asymmetric kernel kϵðx; yÞ, is positive semi-def-
inite. Using sϵðx; yÞ we define an integral operator by

Sf ðxÞ ¼
Z
X
sϵðx; yÞf ðyÞ dy: ð32Þ

It is trivial to show that this operator is self-adjoint and
compact and hence has a discrete sequence of eigenvalues
fλjg (in nonincreasing order) and eigenvectors fψ jg defined
on X where

λjψ jðxÞ ¼
Z
X
sϵðx; yÞψ jðyÞ dy; ð33Þ

and since the operator is positive semi-definite, λjZ0; 8 j.
The fact that the kernel can be evaluated on the entire M
enables us to take any xAM in the right-hand side of this
identity. This yields the following Nyström extension of ψj

from X to M, i.e.

ψ j xð Þ ¼ 1
λj

Z
X
sϵ x; yð Þψ j yð Þ dy; xAM; ð34Þ

where ψ jðxÞ is the extended value of the eigenvector ψ jð�Þ
at the point x. Note that since

sϵðx; yÞ ¼
Z
M
kϵðx; tÞkϵðy; tÞ dt; ð35Þ

this eigenfunction extension technique only needs the dis-
tance from the test point x to the training points yAM.
Hence, in cases where the distance from the training points
to the test point x is not available, this method outperforms
the method presented in [10].

Our function extension algorithm relies on the fact that the
Laplace–Beltrami operator is a positive semi-definite opera-
tor and therefore its eigenfunctions form a basis for the set
of functions defined on the manifold. In particular, since the
eigenfunctions ψ jðxÞ; xAX form a basis for the set of functions
on X, any function f ð�Þ on this set can be decomposed as

f ðxÞ ¼
X1
j ¼ 1

〈ψ j; f 〉ψ jðxÞ; xAX; ð36Þ

hence we can define the Nyström extension of f ð�Þ to the rest
of M to be

f ðxÞ9
Xδ
j ¼ 1

〈ψ j; f 〉ψ jðxÞ; xAX : ð37Þ

where ψ jðxÞ is defined in (34) and δ is chosen considering
stability issues. More specifically, choosing the parameter δ is
Table 1
Proposed algorithm for embedding and function extension on a directed graph

Algorithm 2: Embedding and function extension

Input: Affinity matrix KARn�n where n is the number of points in the train
points, ψARn�δ the eigenvectors of the Laplacian on the training data (o
(obtained by Algorithm 1), RARn�m the vector field components on the
embedding, and f ARn�1 the function value on the training set.

1. ψ ðxÞ ¼WKðdiagðWK1ÞÞ�1ψðI�ΛÞ�1

2. f ðxÞ ¼ fψψ ðxÞT
3. RðxÞi ¼ Riψψ ðxÞT ; where i¼ 1;2;…;m and RðxÞi is the ith element of the ex
application dependent which depends on both the manifold
and the function to be extended. In practical cases this para-
meter can be chosen by cross validation. For further discus-
sion on this issue, interested readers are referred to [27]. It is
worth mentioning that the vector field r which is computed
on the set X can also be extended to M by treating each
element of r as a function defined on the set X and using (37).
The overall algorithm for embedding and function extension
is summarized in Table 1, where I and 1 are respectively the
identity matrix and a vector of ones with appropriate sizes.

3. Experimental results

In this section, we examine the performance of the pro-
posed algorithm in retrieving the geometry, the vector field,
and the sampling density using toy examples. We also
evaluate the performance of the proposed algorithm in exte-
nding an empirical function. Using directed graph embed-
ding as a pre-process procedure, we also consider an appl-
ication of the proposed directed graph embedding algorithm
to a web page classification problem.

For the first simulation, let M be a one dimensional
manifold embedded in R3 which is given by the following
parametric representation:

M¼ xAR3; x¼ gðθÞ ¼
ð2þ cos ð8θÞÞ cos ðθÞ
ð2þ cos ð8θÞÞ sin ðθÞ

sin ð8θÞ

2
64

3
75; 0rθr2π

8><
>:

9>=
>;:

ð38Þ
500 points are sampled from the manifold by sampling
θ uniformly from the interval 0 2π½ �. This sampling proce-
dure corresponds to sampling from the manifold by the
following distribution [28]:

pðxÞ ¼ pðgðθÞÞ ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð cos ð8θÞþ2Þ2þ64

q
; ð39Þ

where α is a normalization factor such that
R
MpðxÞ dx¼ 1.

The similarity kernel is given by (1)–(3) where we choose
ϵ¼ 0:2 and the vector field rðx; yÞ is given by

rðx; yÞ ¼wðxÞþwðyÞ; ð40Þ
where

wðxÞ ¼wðgðθÞÞ ¼ 0:2

�8 sin ð8θÞ cos ðθÞ� sin ðθÞð cos ð8θÞþ2Þ
cos ðθÞð cos ð8θÞþ2Þ�8 sin ð8θÞ sin ðθÞ

8 cos ð8θÞ

2
64

3
75
T

:

ð41Þ
The results of Algorithm 2 and the method presented in [10]
are depicted in Fig. 1. It is obvious that the two algorithms
.

ing set, WARn�1 the affinity between the test point and the training
btained by Algorithm 1), ΛARδ�δ a diagonal matrix of eigenvalues
training points in the direction of the corresponding coordinates of the

tension of the vector field to x and RiAR1�n is the ith row of matrix R.



Table 2
Proposed algorithm for finding the embedding, the sampling density and the vector field representing the directed graph.

Algorithm 1: Directed graph embedding

Input: Affinity matrix KARn�n where n is the number of points and embedding dimension m (mrd).

1. S¼ KKT

2. Ps ¼ diag
Pn

i ¼ 1 Si;j
� �

3. S1 ¼ P�1
s SP�1

s

4. Ds ¼ diag
Pn

i ¼ 1 S
1
i;j

� �
5. Ts ¼D�1

s S1

6. Ls ¼
I�Ts

2ϵ
7. Compute 0¼ λ1rλ2r⋯rλn the eigenvalues of the matrix Ls and ψARn�n a matrix of orthonormal columns containing the right eigenvector of Ls.

Eigenvectors 2 to mþ1 of Ls (i.e. 2nd through ðmþ1Þth column of ψ) are the m coordinates of the embedding.
8. Compute Λ¼ diagðλ1 ; λ2 ;…; λnÞ, a diagonal matrix of eigenvalues.
9. Compute πthe left eigenvector of Ls with eigenvalue 0.
10. π ¼ πP

i
πi
is the density distribution over the embedding.

11. Pa ¼ diag
Pn

i ¼ 1 Ki;j
� �

12. K1 ¼ P�1
a KP�1

a

13. Da ¼ diag
Pn

i ¼ 1 K
1
i;j

� �
14. Ta ¼D�1

a S1

15. La ¼ I�Ta

ϵ
16. R¼ La�Lsð Þψ . Columns 2 to mþ1 of R are the vector field components in the direction of the corresponding coordinates of the embedding.
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are capable of retrieving correctly the geometry, the vector
field and the sampling distribution. In this figure, the first
and the second rows represent the results of the proposed
algorithm and the method presented in [10], respectively.
The left column shows the manifold together with the
vector field. The embedding using the first two nondegene-
rate eigenvectors together with the estimated vector field is
depicted in the second column. The actual and the esti-
mated sampling distributions are represented in the third
column. In order to show the effectiveness of the Algorithm
1 in extending the embedding and the vector field to new
data points, we generate 1000 random points uniformly
from the interval 0 2π½ � and obtain the corresponding
points on the manifold using (38). Then we compute their
distances from the 500 points used in the first part of this
experiment. The embedding is then extended using Algo-
rithm 1. The result is depicted in Fig. 2. The results of emb-
edding extension using Nyström extension and geometric
harmonics for extending the vector field are also shown in
Fig. 2. Using the definition of the vector field in this exp-
eriment (i.e. Eqs. (40) and (41)) it can be easily verified that
the estimated vector field must be tangent to the embed-
ding. Fig. 2(a) shows that the estimated vector field using
the proposed algorithm is nearly tangent to the embedding
while the estimated vector field using geometric harmonics
is not. This is due to the essential assumption of symmetry
of the kernel in geometric harmonics which does not hold
in this experiment. As it can be seen from the results, there
exists a clear error between actual and estimated sampling
distribution for both methods. Although this error is smaller
in the proposed method it is still significant. In order to
reduce this error, while the number of available data is con-
stant, one must increase the kernel width (i.e. increase the
parameter ϵ). While increasing the kernel width decreases
the error in estimating the sampling distribution, it incr-
eases the error in embedding. In this simulation we have
chosen the kernel widthsuch that the embedding is close to
the actual embedding which causes error in estimating the
sampling distribution.

In the second experiment we show the advantage of the
proposed method in function extension. Let M be the two
dimensional intervalM¼ x¼ ½x1; x2�; �1rx1; x2r1j� �

, and
the asymmetric similarity kernel be defined by

kϵ x; yð Þ ¼ exp � Jx�yJ2

ϵ2

 !
; x1ry1

0 otherwise;

8>><
>>: ð42Þ

where ϵ¼ 0:5. Let X be a set of 100 points extracted uniformly
from M. We evaluate the function f ðxÞ ¼ 1þ sin ðx1Þ cos ðx2Þ
on this set. The test set X is built by deriving 4000 samples
from the manifold uniformly. We use both the proposed
method and the geometric harmonics for extending the
function on these points. In the extension phase, we assume
that we only know the distance of the points in X to X. The
other distances (i.e. the distance of the points in X to X ) are
assumed to be unknown. The results of function extension are
depicted in Fig. 3. It is obvious that the proposed method
performs much better than the geometric harmonics. We
attribute to the tacit assumption of kernel symmetry in the
construction of the geometric harmonics, which is not the
case in this simulation. The accuracy of the function extension
was quantified by the normalized root mean square error
(NRMSE), given by

NRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xAX ðf ðxÞ� f ðxÞÞ2P
xAX f

2ðxÞ

vuut : ð43Þ

The NRMSE for the aforementioned function extension
wad 0.0717, compared to 0.2137 for the geometric har-
monics approach.
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Fig. 1. Comparison of Algorithm 2 (second row) and the method proposed in [10] (third row): (a) One dimensional manifold embedded in R3. (b) and (c)
The embedding using the first two nondegenerate eigenvectors together and the estimated vector field, respectively. (d) and (e) The embedding using the
first two nondegenerate eigenvectors together and the estimated vector field, respectively.
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In order to show the advantage of the proposed directed
graph embedding, we consider the web-page classification
problem. The World Wide Web can be regarded as a
weighted directed graph with binary weights. In this graph
each vertex (i.e. vi ) corresponds to a web-page (i.e. web-
page number i) and directed edge from vi to vj has unity
weight if there exists a link from page i to page j and zero
otherwise. Using our notation in the previous section a
corpus containing n web pages can be modelled with a
weighted graph whose affinity matrix K ¼ Ki;j

� �n
i;j ¼ 1 is
given by

Ki;j ¼
1; i¼ j or there exists a link from page i to page j

0 otherwise


:

ð44Þ

In this simulation, we used theWebKb data set. This data
set contains a subset of the WWW-pages collected from
computer science departments of various universities in
January 1997 by the World Wide Knowledge Base (Web-Kb)
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project of the Carnegie Mellon University (CMU) text learn-
ing group. The 1051 pages contain pages from the four uni-
versities Cornell (243), Texas (254), Washington (298) and
Wisconsin (256). We use three different directed graph
embedding as a pre-process procedure, and then use K-
means clustering to classify to four different categories. The
affinity matrix and the results are depicted in Fig. 4(a) and
(b), respectively. We compare our classification results
to those of the methods due to Joncas–Meila (presen-
ted in [10]) and Chen–Yang–Tang (presented in [9]). The
mean success rates versus number of training samples are
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Fig. 4. Affinity matrix (a) and the comparison of the proposed method and the
(presented in [9] for web page classification.
depicted in Fig. 4(b). The mean success rate is computed as
follows. Let m be the number of training samples. We
randomly choose m web-pages from the corpus for training
and use the rest as a test set. The success rate will be the ratio
of the number of successfully classified samples to the size of
the test set. For each m, we perform this train-test procedure
100 times and report the average. It is obvious that the
proposed method outperforms the competing methods.

In our last simulation, we use the proposed function ext-
ension method for supervised system identification using
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discrete time filter (SPF) using arbitrary speech signals. More
specifically, the problem is to identify the filter (i.e. finding
the location of the pole of the filter) given a filtered version
of speech signal. We assume that we only have Nt filtered
speech signals yiðtÞ ¼ xiðtÞnhiðtÞ;1r irNt , where xi(t)'s are
arbitrary unknown speech signals, hiðtÞ;1r irNt are the
impulse responses of SPF's corresponding to poles pi;1r
irNt and n corresponds to discrete time convolution. The
problem is to find htest(t) (or equivalently ptest the pole of an
unknown test filter) given ytestðtÞ ¼ xtestðtÞnhtestðtÞ where xtest
is also an unknown speech signal. Without loss of generality,
we assume that all output of filters have the same length.
Concisely, our function is a mapping from yi(t) to pi which is
to be extended to ytest(t).

We define our asymmetric kernel as follows:

K yi; yj
� �

¼ K pi; pj
� �

¼ exp � z
ϵ

� �
; z40

0 otherwise

8<
: ð45Þ

z¼ Kurðh�1
j ðtÞnyiðtÞÞ�KurðxiðtÞÞ ð46Þ

where h�1
j is the inverse of the impulse responses of SPF

corresponding to poles pj and Kurðf ðtÞÞ is the empirical
kurtosis of the sequence f(t).

In this simulation, we assume that the 0:2rpir0:6.
We uniformly extract 60 samples from this interval and
produce 60 SPF's. In order to generate training signals, for
each SPF, we chose randomly a speech signal from the
TIMIT [29] database of length 3 s and filter it with the SPF.
The similarity matrix is depicted in Fig. 5(a).

In the testing phase, we uniformly extract 100 samples
from the interval ½0:2rptesti r0:6�, and produce 100 test
SPF's htest

i ðtÞ. In order to generate test signals, for each SPF,
we chose randomly a speech signal xtesti ðtÞ from the TIMIT
[29] database of length 3 s and not used in training step
filter it with the SPF (i.e. ytesti ðtÞ ¼ htesti ðtÞnxtesti ðtÞ). Then we
use our algorithm and the algorithm presented in [10] for
estimating the pole. The result is depicted in Fig. 5(b). The
normalized root mean square error obtained of the algo-
rithm presented in [10] and the proposed method is
14.31% and 2.05%, respectively. It is obvious that the
proposed method outperforms the competing method.
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Fig. 5. Affinity matrix (a) and the comparison of the proposed method and th
identification.
4. Conclusion

We have proposed a novel method based on Laplace
operator for embedding a directed graph. We modelled the
observed graph as a sample from a manifold endowed
with a vector field, and designed an algorithm that
separates and recovers the features of this process: the
geometry of the manifold, the data density and the vector
field. More specifically, we introduced an anisotropic
diffusion type operator and we showed that under certain
conditions this operator converges to a Laplace–Beltrami
operator on the manifold. Using the fact that eigenfunc-
tions of Laplace–Beltrami operator can be regarded as
coordinates on the data set, we derived our embedding
procedure. We also proposed a Nyström type embedding
extension and a novel technique for extending an empiri-
cal function on a directed graph. Simulation results
demonstrated the advantage of the proposed method in
function extension on a directed graph.
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Appendix A. Proof of Lemma 1

In this appendix we provide the proof to Lemma 1. This
lemma was introduced in [10] and the proof is given in a
technical report. For consistency and since we used this
lemma to prove Lemma 2, we provide the proof of this
lemma here. We adopt the same notation as in the proof of
Lemma 8 in [6]. Let

Gϵf ðxÞ ¼
Z
M
kϵðx; yÞf ðyÞ dy; ð47Þ

and 0oγo1=2. Then we haveZ
yAM: Jx�y J 4ϵγ

kϵðx; yÞf ðyÞ dy
����

����¼Z
yAM: Jx�y J 4ϵγ

1þrðx; yÞ
2

� y�xð Þ
� �

hϵ x; yð Þf yð Þ dy
����

����
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r f
�� ��

1 1þ rðx; yÞ
2

����
����
1

� �
1
ϵd=2

Z
yAM: Jx�y J 4ϵγ

Jx�yJh
����

� Jx�yJ2

ϵ

 !
dy

�����¼ f
�� ��

1 1þ rðx; yÞ
2

����
����
1

� �

� 1
ϵd=2

Z
yAM: Jy J 4ϵγ

JyJh
JyJ2

ϵ

 !
dy

�����
�����¼ f
�� ��

1

� 1þ rðx; yÞ
2

����
����
1

� � ffiffiffi
ϵ

p Z
yAM: Jy J 4ϵγ � 1=2

JyJh JyJ2
� �

dy
����

����
¼ C f

�� ��
1 1þ rðx; yÞ

2

����
����
1

� � ffiffiffi
ϵ

p Z
yAR:y4ϵγ � 1=2

ydh y2
� �

dy
����

����;
ð48Þ

where C is a constant and we used generalized spherical
coordinates for obtaining the last equation. Using the
exponential decay property of h, this term is exponentially
small and bounded by Oðϵ3=2Þ. Hence, we have

Gϵf xð Þ ¼
Z
yAM

kϵ x; yð Þf yð Þ dy¼
Z
yAM: J x�y J rϵγ

� 1þrðx; yÞ
2

� y�xð Þ
� �

hϵ x; yð Þf yð Þ dyþO ϵ3=2
� �

ð49Þ
Now we can use a Taylor expansion since everything is
localized around x. The two terms in the above integration
can be expanded as follows. Let

g yð Þ ¼ 1þrðx; yÞ
2

� y�xð Þ
� �

f yð Þ ð50Þ

then

g yð Þ ¼ g xð Þþ
Xd
i ¼ 1

si
∂g
∂si

xð Þþ1
2

Xd
i ¼ 1

Xd
j ¼ 1

sisj
∂2g
∂si∂sj

xð Þ

þQ3 s1; s2;…; sdð ÞþO ϵ2
� �

¼ f xð Þþ
Xd
i ¼ 1

si
∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
f xð Þþ ∂f

∂si
xð Þ

"

� 1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x

#

þ1
2

Xd
i ¼ 1

Xd
j ¼ 1

sisj
∂2

∂si∂sj
1þrðx; yÞ

2
� y�xð Þ

� �����
y ¼ x

f xð Þ
"

þ ∂f
∂sj

xð Þ ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x

þ ∂2f
∂si∂sj

xð Þ 1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x

þ ∂f
∂si

xð Þ ∂
∂sj

� 1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
:

�
þQ3 uð ÞþO ϵ2

� �
; ð51Þ

where si is the i-th geodesic coordinate and Qmðs1;
s2;…; sdÞ denotes a homogeneous polynomial of degree
m of the variables s1; s2;…; sd which depends on x and
might change from line to line. This expansion can be
written in the local coordinates of the tangent plane at
point x as

g uð Þ ¼ f xð Þþ
Xd
i ¼ 1

ui
∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
f xð Þþ ∂f

∂si
xð Þ

" #
þ1
2

Xd
i ¼ 1

Xd
j ¼ 1

uiuj
∂2

∂si∂sj
1þrðx; yÞ

2
� y�xð Þ

� �����
y ¼ x

f xð Þ
"

þ ∂f
∂sj

xð Þ ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x

þ ∂2f
∂si∂sj

xð Þþ ∂f
∂si

xð Þ ∂
∂sj

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x

#

þQ3ðuÞþOðϵ2Þ; ð52Þ
where ui is the i-th local coordinate of the tangent plane at
point x and u is the orthogonal projection of y on the tan-
gent plane at point x. Similarly, using Lemma 7 of [6], the
kernel can be Taylor expanded as

h
Jx�yJ2

ϵ

 !
¼ h

JuJ2

ϵ

 !
þ Q5ðuÞþQ4ðuÞ

ϵ

� �
h0

JuJ2

ϵ

 !
þO ϵ2

� �
:

ð53Þ
Substituting (52) and (53) into (49), and changing the

variable ðy�xÞ-u, we get

Gϵf xð Þ ¼
Z
yAM: Jx�y J rϵγ

1þrðx; yÞ
2

� y�xð Þ
� �

hϵ x; yð Þf yð Þ dy

þO ϵ3=2
� �

¼ 1
ϵd=2

Z
Ju J rϵγ

g uð Þh JuJ2

ϵ

 !
1þQ2ðuÞð

þQ3ðuÞÞ duþO ϵ3=2
� �

: ð54Þ

Using the exponential decay property of the kernel, we can
extend the domain of integration to Rd. Hence, we have

Gϵf xð Þ ¼ 1
ϵd=2

Z
uARd

g uð Þh JuJ2

ϵ

 !
1þQ2ðuÞþQ3ðuÞð Þ du

þO ϵ2
� �¼ 1

ϵd=2

Z
uARd

f xð Þþ
Xd
i ¼ 1

ui

(

� ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
f xð Þþ ∂f

∂si
xð Þ

" #

þ1
2

Xd
i ¼ 1

Xd
j ¼ 1

uiuj
∂2

∂si∂sj
1þrðx; yÞ

2
� y�xð Þ

� �����
y ¼ x

f xð Þ
"

þ ∂f
∂sj

xð Þ ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
þ ∂2f
∂si∂sj

xð Þ

þ ∂f
∂si

xð Þ ∂
∂sj

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x

�)

� h
JuJ2

ϵ

 !
þ Q5ðuÞþQ4ðuÞð Þ

ϵ
h0 JuJ2

ϵ

 !" #

� 1þQ2ðuÞþQ3ðuÞ½ � duþOðϵ2Þ: ð55Þ
Setting the integration of the odd function to zero, we get

Gϵf xð Þ ¼ 1
ϵd=2

Z
uARd

f xð Þþ1
2

Xd
i ¼ 1

u2
i

(

� ∂2

∂s2i
1þrðx; yÞ

2
� y�xð Þ

� ������
y ¼ x

f xð Þ
2
4

þ2
∂f
∂si

xð Þ ∂
∂si

1þrðx; yÞ
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� y�xð Þ
� �����

y ¼ x
þ∂2f
∂s2i

xð Þ
#)

� h
JuJ2

ϵ
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þQ4ðuÞ

ϵ
h0 JuJ2
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 !" #
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� 1þQ2ðuÞ½ � duþOðϵ2Þ: ð56Þ
Changing variables according to u-

ffiffiffi
ϵ

p
u we have

Gϵf xð Þ ¼
Z
uARd

f xð Þþ1
2

Xd
i ¼ 1

ϵu2
i

∂2

∂s2i
1þrðx; yÞ

2
� y�xð Þ

� ������
y ¼ x

f xð Þ
2
4

8<
:

þ2
∂f
∂si

xð Þ ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
:þ∂2f

∂s2i
xð Þ
#)

� h JuJ2
� �

þϵQ4ðuÞh0 JuJ2
� �h i

� 1þϵQ2ðuÞ½ � duþO ϵ2
� �

¼ f xð Þ
Z
uARd

h JuJ2
� �

duþϵf xð Þ
Z
uARd

Q2ðuÞh JuJ2
� ��

þQ4ðuÞh0 JuJ2
� ��

du

þϵ
2

Xd
i ¼ 1

∂2

∂s2i
1þrðx; yÞ

2
� y�xð Þ

� ������
y ¼ x

f xð Þ
2
4

þ2
∂f
∂si

xð Þ ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
þ∂2f
∂s2i

xð Þ
�

�
Z
uARd

u2
1h JuJ2
� �

dtþOðϵ2Þ: ð57Þ

It is easy to verify that

∇ � r¼
Xd
i ¼ 1

∂2

∂s2i
1þrðx; yÞ

2
� y�xð Þ

� ������
y ¼ x

ð58Þ

∇f � r¼
Xd
i ¼ 1

2
∂f
∂si

xð Þ ∂
∂si

1þrðx; yÞ
2

� y�xð Þ
� �����

y ¼ x
ð59Þ

Δf ¼
Xd
i ¼ 1

∂2f
∂s2i

xð Þ; ð60Þ

where ∇ � r, ∇f and Δf are the divergence of the vector
field r, the gradient of function f ð�Þ and the Laplace–
Beltrami operator on the manifold, respectively. Substitut-
ing (58)–(60) into (57) we have

Gϵf xð Þ ¼ f xð Þ
Z
uARd

h JuJ2
� �

duþϵf xð Þ
Z
uARd

Q2ðuÞh JuJ2
� ��

þQ4ðuÞh0 JuJ2
� ��

duþϵ
2

∇ � rþ∇f � rþΔf
� �

�
Z
uARd

u2
1h JuJ2
� �

dtþO ϵ2
� �¼m0f xð Þ

þϵ
m2

2
ωðxÞf ðxÞþΔf ðxÞþr � ∇f ðxÞþ f ðxÞ∇ � r� �þO ϵ2

� �
:

ð61Þ
where

m0 ¼
Z
Rd
hðJuJ2Þ du ð62Þ

m2 ¼
Z
Rd
u2
i hðJuJ2Þ; du ð63Þ

ω xð Þ ¼ 2
m2

Z
uARd

Q2ðuÞh JuJ2
� �

þQ4ðuÞh0 JuJ2
� �� �

du:

ð64Þ
In order to prove (18), note thatZ
M
kϵ y; xð Þf yð Þ dy¼

Z
M

1þrðy; xÞ
2

� x�yð Þ
� �

hϵ y; xð Þf yð Þ dy
¼
Z
M

1�rðy; xÞ
2

� y�xð Þ
� �

hϵ y; xð Þf yð Þ dy; ð65Þ

Since rðy; xÞ and hϵðy; xÞ are assumed to be symmetric, we
haveZ
M
kϵ y; xð Þf yð Þ dy¼

Z
M

1�rðy; xÞ
2

� y�xð Þ
� �

hϵ y; xð Þf yð Þ dy

¼
Z
M

1�rðx; yÞ
2

� y�xð Þ
� �

hϵ x; yð Þf yð Þ dy

¼m0f xð Þþϵ
m2

2
ωðxÞf ðxÞð

þΔf ðxÞ�r �∇f ðxÞ� f ðxÞ∇ � r�þO ϵ2
� �

:

ð66Þ
where the last equation is simply obtained by substituting
�rðy; xÞ instead of rðy; xÞ in (17). □

Appendix B. Proof of Theorem 3

In this appendix we provide the proof to Theorem 3.
First we prove (28). Note that

Taa
ϵ;αf xð Þ ¼

Z
M
tk;ϵ;α x; yð Þf yð Þp yð Þ dy

¼
Z
M

kðαÞϵ ðx; yÞ
dk;ϵðxÞ

f yð Þp yð Þ dy

¼
R
MkðαÞϵ ðx; yÞf ðyÞpðyÞ dyR

MkðαÞϵ ðx; yÞpðyÞ dy
; ð67Þ

where

kðαÞϵ x; yð Þ ¼ kϵðx; yÞ
pαk;ϵðxÞpαk;ϵðyÞ

: ð68Þ

Using Lemma 1 and the definition of pk;ϵðxÞ in (7) we have

pk;ϵðxÞ ¼
Z
M
kϵðx; yÞpðyÞ dy

¼ pðxÞþϵ ωðxÞpðxÞþΔpðxÞþr � ∇pðxÞþpðxÞ∇ � r� �
ð69Þ

up to a term of order Oðϵ2Þ. Hence,
1

pαk;ϵðxÞ
¼ p�α

k;ϵ xð Þ ¼ p�α xð Þ 1�αϵ ω xð ÞþΔpðxÞ
pðxÞ þr �∇pðxÞ

pðxÞ þ∇ � r
� �� �

ð70Þ
up to a term of order Oðϵ2Þ. We define

Kα
ϵϕðxÞ ¼

Z
M
kðαÞϵ ðx; yÞϕðyÞpðyÞ dy: ð71Þ

Then using the definition of kαϵ ðx; yÞ, we have

Kα
ϵϕ xð Þ ¼

Z
M

kϵðx; yÞ
pαk;ϵðxÞpαk;ϵðyÞ

ϕ yð Þp yð Þ dy

¼ p�α
k;ϵ xð Þ

Z
M
kϵ x; yð Þϕ yð Þ pðyÞ

pαk;ϵðyÞ
dy: ð72Þ

Substituting the approximation of p�α
k;ϵ ðxÞ obtained in (70)

into (72) we have

Kα
ϵϕ xð Þ ¼ p�α

k;ϵ xð Þ
Z
M
kϵ x; yð Þϕ yð Þp1�α yð Þ 1�αϵ

�
ω yð Þ

�

þΔpðyÞ
pðyÞ þr � ∇pðyÞ

pðyÞ þ∇ � r
��

dy: ð73Þ



where we have used ∇e�ð1�αÞU ¼ �ð1�αÞe�ð1�αÞU∇U.
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Defining

g xð Þ ¼ω xð ÞþΔpðxÞ
pðxÞ þr �∇pðxÞ

pðxÞ þ∇ � r; ð74Þ

and using Lemma 1 we have

Kα
ϵϕðxÞ ¼ p�α

k;ϵ ðxÞ
Z
M
kϵðx; yÞϕðyÞϕðyÞp1�αðyÞ 1�αϵgðyÞð Þ dy

¼ p�α
k;ϵ ðxÞ ϕðxÞp1�αðxÞ 1�αϵgðxÞð Þþϵ ωðxÞð�

� ϕðxÞp1�αðxÞ 1�αϵgðxÞð Þ� �þΔ ϕðxÞp1�αðxÞ�
� 1�αϵgðxÞð ÞÞ::þr � ∇ ϕðxÞp1�αðxÞ 1�αϵgðxÞð Þ� �
þ ϕðxÞp1�αðxÞ 1�αϵgðxÞð Þ� �

∇ � r��: ð75Þ
Discarding terms of order Oðϵ2Þ we have

Kα
ϵϕ¼ p�α

k;ϵ ϕp1�α 1�αϵgð Þþϵ ωϕp1�αþΔ ϕp1�α� ���
þr �∇ ϕp1�α� �þϕp1�α∇ � r��; ð76Þ

where we have dropped the argument of each function (i.e
ðxÞ) for simplicity. Substituting g(x) from (74) into (76) we
have

Kα
ϵϕ¼ p�α

k;ϵ ϕp1�α�ϵ αϕp1�αωþαϕp1�αΔp
p

��

þαϕp1�αr �∇p
p

þαϕp1�α∇ � r
�
:

þϵ ωϕp1�αþΔ ϕp1�α� �þr �∇ ϕp1�α� ��
þϕp1�α∇ � r�� ¼ p�α

k;ϵ ϕp1�αþϵ 1�αð Þp1�α ϕω
���

þϕ∇ � r��αϕ
Δp
pα

þr � ∇p
pα

� �
þΔ ϕp1�α� �

þr �∇ ϕp1�α� ��i

¼ p�α
k;ϵ p

1�α

"
ϕþϵ 1�αð Þ ϕωþϕ∇ � r� ��

�αϕ
Δp
p

þr �∇p
p

� �
þΔ ϕp1�α

� �
p1�α þr � ∇ ϕp1�α

� �
p1�α

!#
:

ð77Þ
Using Eq. (67), the definition of the operator Kα

ϵ in (71) and
Eq. (77), we get
Taa
ϵ;αϕ¼ Kα

ϵϕðxÞ
Kα
ϵ1

¼
ϕþϵ 1�αð Þ ϕωþϕ∇ � r� ��αϕ

Δp
p

þr � ∇p
p

� �
þΔ ϕp1�α

� �
p1�α þr � ∇ ϕp1�α

� �
p1�α

 !

1þϵ 1�αð Þ ωþ∇ � rð Þ�α
Δp
p

þr �∇p
p

� �
þΔ p1�α

� �
p1�α þr � ∇ p1�α

� �
p1�α

 ! : ð78Þ
Utilizing the approximation ð1þϵaÞ�1 � 1�ϵa and dis-
carding terms of order Oðϵ2Þ we get

Taa
ϵ;αϕ¼ϕþϵ 1�αð Þ ϕωþϕ∇ � r� ��αϕ

Δp
p

þr � ∇p
p

� ��

þΔ ϕp1�α
� �
p1�α þr � ∇ ϕp1�α

� �
p1�α

!

�ϕϵ 1�αð Þ ωþ∇ � rð Þ�α
Δp
p

þr � ∇p
p

� ��

þΔ p1�α
� �
p1�α þr �∇ p1�α

� �
p1�α

!

¼ϕþϵ
Δ ϕp1�α
� �
p1�α �Δ p1�α

� �
p1�α ϕ

 

þr � ∇ ϕp1�α
� �
p1�α �r �∇ p1�α

� �
p1�α ϕ

!

¼ϕþϵ Δϕþ2
∇ϕ � ∇p1�α

p1�α þr �∇ϕ
� �

; ð79Þ

where for obtaining the last equation we have used the
following identities:

ΔðfgÞ ¼ gΔf þ fΔgþ2∇f �∇g ð80Þ

∇ðfgÞ ¼ f∇gþg∇f : ð81Þ

Using the assumption p¼ e�U , the definition of Laaϵ;α in (26)
and taking the limit when ϵ-0, we get

lim
ϵ-0

Laaϵ;αf ¼ lim
ϵ-0

1�Taa
ϵ;αf
ϵ

¼Δf þ2
∇f �∇e�ð1�αÞU

e�ð1�αÞU þr � ∇f

¼Δf �2ð1�αÞ∇f �∇Uþr � ∇f ; ð82Þ
To prove (29) note that, similar to the proof of the first
part, all the results are based on a Taylor approximation of
the kernel used in the integration operator used for
obtaining the diffusion operator Taa

ϵ;α. In order to obtain
the limit of infinitesimal generator of the Markov chain
(i.e. Lssϵ;α) constructed from Tss

ϵ;α, note that the Taylor
approximation of the kernel used in the integration
operator for obtaining the diffusion operator Tss

ϵ;α is the
same as that of Taa

ϵ;α when r¼ 0 and ϵ is replaced by 2ϵ.
Hence, using exactly the same procedure that led to (82),
the result of (29) can be obtained. □
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