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a b s t r a c t 

We address the problem of voice activity detection in difficult acoustic environments including high lev- 

els of noise and transients, which are common in real life scenarios. We consider a multimodal setting, 

in which the speech signal is captured by a microphone, and a video camera is pointed at the face of the 

desired speaker. Accordingly, speech detection translates to the question of how to properly fuse the au- 

dio and video signals, which we address within the framework of deep learning. Specifically, we present 

a neural network architecture based on a variant of auto-encoders, which combines the two modalities, 

and provides a new representation of the signal, in which the effect of interferences is reduced. To fur- 

ther encode differences between the dynamics of speech and interfering transients, the signal, in this 

new representation, is fed into a recurrent neural network, which is trained in a supervised manner for 

speech detection. Experimental results demonstrate improved performance of the proposed deep archi- 

tecture compared to competing multimodal detectors. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Voice activity detection is a segmentation problem of a given

peech signal into sections that contain speech and sections that

ontain only noise and interferences. It constitutes an essential

art in many modern speech-based systems such as those for

peech and speaker recognition, speech enhancement, emotion

ecognition and dominant speaker identification. We consider a

ultimodal setting, in which speech is captured by a microphone,

nd a video camera is pointed at the face of the desired speaker.

he multimodal setting is especially useful in difficult acoustic en-

ironments, where the audio signal is measured in the presence

f high levels of acoustic noise and transient interferences, such as

eyboard tapping and hammering [1,2] . The video signal is com-

letely invariant to the acoustic environment, and nowadays, it

s widely available in devices such as smart-phones and laptops.

herefore, proper incorporation of the video signal significantly im-

roves voice detection, as we show in this paper. 

In silent acoustic environments, speech segments in a given sig-

al are successfully distinguished from the silence segments using

ethods based on simple acoustic features such as zero-crossing

ate and energy values in short time intervals [3–5] . However,
� This research was supported by the Israel Science Foundation (grant no. 576/16). 
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he performances of these methods significantly deteriorate in the

resence of noise even with moderate levels of signal-to-noise ra-

ios (SNR). Another group of methods assumes statistical models

or the noisy signal, focusing on estimation of the model param-

ters. For example, the variances of speech and noise can be es-

imated by tracking the variations of the noisy signal over time

6–9] . The main drawback of such methods is that they cannot

roperly model highly non-stationary noise and transient interfer-

nces, which are in the main scope of this study. The spectrum of

ransients often rapidly varies over time, as does the spectrum of

peech, and as a result, they are not properly distinguished [2] . 

More recent studies address the problem of voice activity de-

ection from a machine learning point of view, in which the goal

s to classify segments of the noisy signal into speech and non-

peech classes [10,11] . Learning-based methods learn implicit mod-

ls from training data instead of assuming explicit distributions for

he noisy signal. A particular school of models, relevant to this

aper, is deep neural networks, which have gained popularity in

ecent years in a variety of machine learning tasks. These mod-

ls utilize multiple hidden layers for useful signal representations,

nd their potential for voice activity detection has been partially

xploited in recent studies. Zhang and Wu [12] proposed using

 deep-belief network to learn an underlying representation of a

peech signal from predefined acoustic features. The new repre-

entation is then fed into a linear classifier for speech detection.

endelev et al. [13] introduced a multi-layer perceptron network

or speech detection, and proposed to improve its robustness to

http://dx.doi.org/10.1016/j.sigpro.2017.07.006
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noise using the “Dropout” technique [14] . Despite the improved

performance, the network in [13] classifies each time frame inde-

pendently, thus ignoring temporal relations between segments of

the signal. The studies presented in [15–18] propose using a re-

current neural network (RNN) to naturally exploit temporal infor-

mation by incorporating previous inputs for voice detection. These

methods however still struggle in frames that contain both speech

and transients. Since transients are characterized by fast variations

in time and high energy values, they often appear more dominant

than speech. Therefore, frames containing only transients appear

similar to frames containing both transients and speech, so that

they are wrongly detected as speech frames. 

A different school of studies suggests improving the robust-

ness of speech detection to noise and transients by incorporating a

video signal, which is invariant to the acoustic environment. Often,

the video captures the mouth region of the speakers, and it is rep-

resented by specifically designed features, which model the shape

and movement of the mouth in each frame. Examples of such fea-

tures are the height and the width of the mouth [19,20] , key-points

and intensity levels extracted from the region of the mouth [21–

24] , and motion vectors [25,26] . 

Two common approaches exist in the literature concerning the

fusion of audio and video signals, termed early and late fusion

[27,28] . In early fusion, video and audio features are concatenated

into a single feature vector and processed as single-modal data

[29] . In late fusion, measures of speech presence and absence are

constructed separately from each modality, and then combined us-

ing statistical models [30,31] . Dov et al. [32,33] , for example, pro-

posed to obtain separate low dimensional representations of the

audio and video signals using diffusion maps. The two modali-

ties are then fused by a combination of speech presence measures,

which are based on spatial and temporal relations between sam-

ples of the signal in the low dimensional domain. 

In this paper, we propose a deep neural network architec-

ture for audio-visual voice activity detection. The architecture is

based on specifically designed auto-encoders providing an underly-

ing representation of the signal, in which simultaneous data from

audio and video modalities are fused in order to reduce the effect

of transients. The new representation is incorporated into an RNN,

which, in turn, is trained for speech presence/absence classification

by incorporating temporal relations between samples of the sig-

nal in the new representation. The classification is performed in a

frame-by-frame manner without temporal delay, which makes the

proposed deep architecture suitable for online applications. 

The proposed deep architecture is evaluated in the presence

of highly non-stationary noises and transient interferences. Exper-

imental results show improved performance of the proposed ar-

chitecture compared to single-modal approaches that exploit only

the audio or video signals, thus demonstrating the advantage of

audio-video data fusion. In addition, we show that the proposed

architecture outperforms competing multimodal detectors. 

The remainder of the paper is organized as follows. In Section 2 ,

we formulate the problem. In Section 3 , we introduce the proposed

architecture. In Section 4 , we demonstrate the performance of the

proposed deep architecture for voice activity detection. Finally, in

Section 5 , we draw conclusions and offer some directions for future

research. 

2. Problem formulation 

We consider a speech signal simultaneously recorded via a

single microphone and a video camera pointed at a front-facing

speaker. The video signal comprises the mouth region of the

speaker. It is aligned to the audio signal by a proper selection of

the frame length and the overlap of the audio signal as described

in Section 4 . Let a n ∈ R 

A and v n ∈ R 

V be feature representations of
he n th frame of the clean audio and video signals, respectively,

here A and V are the number of features. Similarly to a n , let ˜ a n ∈
 

A be a feature representation of the audio signal contaminated by

ackground noises and transient interferences. The audio and the

ideo features are based on the Mel Frequency Cepstral Coefficients

MFCC) and motion vectors, respectively, and their construction is

escribed in Section 4 . 

We consider a dataset of N consecutive triplets of frames

( a 1 , ̃  a 1 , v 1 ) , ( a 2 , ̃  a 2 , v 2 ) , . . . , ( a N , ̃  a N , v N ) containing both speech and

on-speech time intervals. We use the clean signal { a n } N 1 
to label

ach time frame n according to the presence or absence of speech.

et H 0 and H 1 be two hypotheses denoting speech absence and

resence, respectively, and let I (n ) be a speech indicator of frame

 , given by: 

 (n ) = 

{
1 , n ∈ H 1 

0 , n ∈ H 0 
. (1)

he goal in this study is to estimate I (n ) , i.e., to classify each frame

 as a speech or non-speech frame. 

Voice activity detection is especially challenging in the pres-

nce of transients, which are typically more dominant than speech

ue to their short duration, high amplitudes and fast variations

f the spectrum [2] . Specifically, frames that contain both speech

nd transients, for which H 1 holds, are often similar in the feature

pace to non-speech frames that contain only transients, so that

hey are often wrongly classified as non-speech frames. To address

his challenge, we introduce a deep neural network architecture,

hich is designed to reduce the effect of transients by exploiting

oth the clean and the noisy audio signals, a n and 

˜ a n , respectively,

nd the video signal v n . 

. Deep architecture for audio-visual voice activity detection 

.1. Review of autoencoders 

The proposed deep architecture is based on obtaining a tran-

ient reducing representation of the signal via the use of auto-

ncoders, which are shortly reviewed in this subsection for the

ake of completeness [34] . An auto-encoder is a feed-forward neu-

al network with an input and output layers of the same size,

hich we denote by x ∈ R 

D and y ∈ R 

D , respectively. They are con-

ected by one hidden layer h ∈ R 

M , such that the input layer x is

apped into the hidden layer h through an affine mapping: 

 = σ ( Wx + b ) , (2)

here W is a D × M weight matrix, b is a bias vector and σ is

n element-wise activation function. Then, h is mapped into the

utput layer y : 

 = ˜ σ
(

˜ W h + 

˜ b 

)
, (3)

here ˜ W , ̃  b , ˜ σ are defined similarly to W, b and σ . 

Optimal parameters (weights) ˜ W , W , ̃  b , b are those that allow

econstructing the signal x at the output y of the auto-encoder, and

hey are obtained via a training procedure, by optimizing a certain

oss function L ( x, y ), e.g., a square error, which we use here. It has

een shown [35,36] that minimization of the auto-encoder’s loss

unction L ( x, y ) is equivalent to maximization of a lower bound

n the retained information between the input and output of the

uto-encoder. Thus, the hidden layer h , obtained by (2) with opti-

ized parameters W and b , has the maximal mutual information

ith the input signal x . The activation functions σ, ˜ σ are usually

hosen to be non-linear functions; here, we use a sigmoid function

(z) = 

1 
1+ exp −z , so that the hidden layer h incorporates non-linear

elations between different parts of the input signal [34,37] . In ad-

ition, the dimension M of h is typically set smaller than that of
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he input signal D . Therefore, the hidden layer h is often consid-

red as a non-linear low dimensional representation of the input

ignal. 

A deep architecture of auto-encoders is constructed by stacking

 auto-encoders such that the l th hidden layer, denoted by h 

l , is

sed as an input for the (l + 1) th layer. The training is performed

ne layer at a time in a bottom-up fashion. The first layer of the

eep architecture is trained with x as input, and once trained, h 

1 

s calculated by (2) using the optimized parameters W 

1 and b 

1 ,

here W 

l and b 

l denote the parameters of the l th layer. Then, we

x parameters W 

1 and b 

1 and use the obtained h 

1 as input for the

raining procedure of the second layer and similarly for all layers

p to L . 

.2. Transient-reducing audio-visual autoencoder 

We adopt ideas from [38,39] of using autoencoders to fuse mul-

imodal signals. We propose a specifically designed deep architec-

ure, based on feeding the auto-encoder with an audio-visual sig-

al contaminated by acoustic noises and transients, while recon-

tructing the clean signal. Specifically, let z n ∈ R 

A + V and 

˜ z n ∈ R 

A + V 

e feature vectors of frame n , obtained by concatenating the video

eatures v n along with the audio features a n and 

˜ a n , respectively,

uch that z n = [ a T n , v 
T 
n ] 

T and 

˜ z n = [ ̃ a T n , v 
T 
n ] 

T . The auto-encoder is fed

y the noisy audio-visual feature vector ˜ z n , and is trained to re-

onstruct the clean signal z n , i.e., to minimize L ( ̂ z n , z n ) where

ˆ 
 n ∈ R 

A + V is the output of the auto-encoder. 

This approach simultaneously serves two purposes; it both al-

ows fusing of the audio and the video modalities, and reduces the

ffect of transients. According to (2) , the hidden layer h is obtained

y a non-linear fusion between the entries of ˜ z , and specifically,

y the fusion of the audio and the video modalities. In addition,

he effect of transients is reduced in the hidden layer h since the

raining process is designed to reconstruct the clean signal at the

utput. As a result, the hidden layer only captures factors that are

elated to the clean signal, as we demonstrate in Section 4 . 

We stack L such auto-encoders to form a deep neural network

s described in Section 3.1 . For layers l > 1 we can no longer use

he clean and the noisy speech signals; instead, we follow the

rinciple of a de-noising auto-encoder [35] , i.e., corrupt each in-

ut h 

l 
n with random noise, and train the auto-encoder to recon-

truct the uncorrupted input. Vincent et al. [35] have shown that

tacking several auto-encoders yields an improved representation

or the input data over an ordinary one layer auto-encoder, since

he added layers allow the auto-encoder to learn more complex

igher-order relations across the modalities. Assuming an architec-

ure of L such auto-encoder layers, we consider the last layer of

he network, denoted by p n � h 

L 
n , as the new underlying represen-

ation of the audio-visual signal. 

It is worth noting that the proposed representation signifi-

antly differs from the common early and late fusion approaches

27,28] since it is obtained via the exploration of complex relations

etween the audio and video signals. 

.3. Recurrent neural network for voice activity detection 

Speech is an inherently dynamic process comprising rapidly al-

ernating speech and non-speech segments, i.e., a speech segment

ollowed by a non-speech segment (pause) and vice versa. Indeed,

emporal information is widely used for improving voice activity

etection by incorporating several consecutive frames in the deci-

ion process [8,9] . However, the number of previous frames that

hould be considered and their weight on the decision process

s not straightforward, and can change over time. For example, a

ommon assumption is that speech is present with a higher prob-

bility if it was present in previous frames rather than after a non-
peech (silent) frame. Thus, predetermining the amount of past in-

ormation considered in the classification process for all frames can

esult in suboptimal results. We address this issue by incorporating

n RNN for the classification of each frame ˜ z n . 

An RNN is a feed-forward multi-layered neural network in

hich loop connections, which are added to the hidden layers, al-

ow to incorporate temporal information in the decision process. 

Given the auto-encoder’s output at time frame n , p n , an RNN

ith one hidden layer h̄ n computes the output layer ȳ n using a

idden layer at time frame n − 1 , according to: 

¯
 n = ˆ σ

(
ˆ W p n + Ẁ ̄h n −1 + 

ˆ b n 

)
(4) 

¯
 n = σ̄

(
W̄ ̄h n + b̄ n 

)
(5) 

here ˆ W , Ẁ and W̄ are weight matrices, ˆ b and b̄ are the bias pa-

ameters, and ˆ σ , σ̄ are the corresponding activation functions. The

ase of an RNN with one hidden layer is extended to the case of an

NN with L̄ > 1 layers by iteratively calculating the hidden layers

or l = 1 to L̄ : 

¯
 

l 
n = ˆ σ

(
ˆ W 

l h̄ 

l−1 
n + Ẁ 

l h̄ 

l 
n −1 + 

ˆ b 

l 
n 

)
(6) 

here h̄ 

l 
n is the l th hidden layer at time n , and 

ˆ W , Ẁ and 

ˆ b are

efined as in (4) . The first layer is the input layer, i.e., h̄ 

0 
n � x̄ n , and

he output layer ȳ n is calculated from (5) using the last hidden

ayer h̄ 

L̄ 
n . 

We incorporate the proposed transient-reducing representation

 p n } N 1 
into the deep RNN in order to exploit the temporal informa-

ion inherent in speech for voice activity detection. Specifically, for

ach frame n , we feed the new representation p n to the RNN and

teratively compute the hidden layers h̄ 

l 
n according to (6) . Then, we

se the output layer ȳ n , and apply a sigmoid function to constrain

ts values to the range of 0 − 1 . Thus, we consider the output as

 probability measure for the presence of speech in frame n , and

ropose to estimate the speech indicator I (n ) in (1) by comparing

he output to a threshold t : 

 (n ) = 

{
1 , ˜ y n ≥ t 
0 , ˜ y n < t 

}
. (7) 

The RNN has two beneficial properties for voice activity detec-

ion. First, the length of the temporal window used for speech de-

ection is implicitly incorporated in the weights { Ẁ 

l } L̄ 
1 
, and is au-

omatically learned during the training process rather than being

rbitrarily predefined. Second, the speech indicator in (7) is ob-

ained via a supervised procedure, which exploits the true labels

f the presence of speech, and allows for an accurate detection of

peech as we show in Section 4 . 

. Experimental results 

.1. Experimental setting 

.1.1. Dataset 

We evaluate the proposed deep architecture for voice activity

etection using the dataset presented in [32] . The dataset includes

udio-visual sequences of 11 speakers reading aloud an article cho-

en from the web, while making natural pauses every few sen-

ences. Thus, the intervals of speech and non-speech range from

everal hundred ms to several seconds in length. The video sig-

al uses a bounding box around the mouth region of the speaker,

ropped from the original recording, and it is of 90 × 110 pixels.

he audio signal is recorded at 8 kHz with an estimated SNR of

25 dB. It is processed using short time frames of length 634 sam-

les with 50% overlap such that it is aligned to the video frames

hich are processed at 25 frames/s. Each of the 11 sequences is
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Fig. 1. Example of voice activity detection. Acoustic environment: colored Gaussian 

noise with 10 dB SNR and hammering transient interferences. (Top) Time domain, 

input signal – black solid line, true speech- orange squares, true transients – purple 

stars, competing method [32] with a threshold set for 90% correct detection rate 

– green triangles, proposed deep architecture with a threshold set for 90% correct 

detection rate – blue circles. (Bottom) Spectrogram of the input signal. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

 

[  

t  

T  

n  

c  

b  

t  

w  

o  

t  

4

 

w  

s  

A  

o  

p  

a  

(  

a  

n  

w  

o

 

r  

p  

R  

v  

o  

i  

t  

t

 

a  

s  

t  
120 s long, and it is divided into two parts such that the first 60

s are used to train the algorithm and the rest of the sequence is

used for evaluation. 

The clean audio signal is contaminated with various background

noises such as white Gaussian noise, musical instruments noise

and babble noise, and with transients, such as a metronome, key-

board typing and hammering, taken from [40] . The training data

extracted from each speaker contains all possible combinations of

background noises and transients. 

4.1.2. Feature selection 

For the representation of the audio signal, we use MFCC [41] ,

which represent the spectrum of speech in a compact form using

the perceptually meaningful Mel-frequency scale. The MFCCs were

found to perform well for voice activity detection under challeng-

ing conditions such as low SNR and non-stationary noise [32,42] .

Each MFCC feature vector is composed of 12 cepstral coefficients,

and their first and second derivatives, � and ��, respectively. Ac-

cordingly, the dimensions of the clean and contaminated audio fea-

ture vectors, a n and 

˜ a n , are A = 36 . We note that by using � and

�� MFCCs, we incorporate temporal information into the process

of learning the transient reducing representation. This allows for

a better distinction between transients and speech, where the for-

mer typically vary faster over time. Even though the temporal in-

formation is also incorporated in the RNN, we found in our ex-

periments that the use of � and �� MFCCs further improves the

detection results. 

For the representation of the video signal, we use motion vec-

tors, calculated using the Lucas–Kanade method [43,44] . Motion

vectors are suitable for speech-related tasks since they capture

both spatial and temporal information, i.e., the movement of the

mouth, and they were previously exploited for voice activity de-

tection in [25] . The feature representation, v n , is obtained by con-

catenating the absolute values of the velocities of each pixel from 3

consecutive frames n − 1 , n, n + 1 , so that its dimension is V = 297 .

We refer the reader to [32] for more details on the construction of

the dataset and the audio-visual features. 

4.1.3. Training process 

The concatenated feature vector ˜ z n , of size A + V = 333 , is fed

as input to the transient-reducing audio-visual auto-encoder. The

entries of ˜ z n are normalized over the training set such that they

have zero mean and unit variance in order to prevent saturation

of the auto-encoder’s neurons. We use an auto-encoder architec-

ture with L = 2 hidden layers containing 200 neurons each, and

with a logistic sigmoid activation function. During the training of

the second hidden layer, in which we can no longer use the clean

and contaminated signals for training, we contaminate the input

for that layer with Gaussian noise with zero mean and variance

0.05 as described in Section 3.2 . 

The input layer of the RNN has 200 neurons, matching the out-

put of the transient-reducing audio-visual auto-encoder, p n . The

RNN comprises L̄ = 3 hidden layers with 50,50, and 30 neurons,

activated with a logistic sigmoid function, so that the full sys-

tem architecture is of the form 333( ̃ z n )-20 0( h 

1 
n )-20 0( p n )-50( ̄h 

1 
n )-

50( ̄h 

2 
n )-30( ̄h 

3 
n )-1( ̄y n ).We used a sigmoid activation function in order

to constrain the output of the entire network to be in the range [0,

1] so that it can be used as a probability measure for speech pres-

ence. For consistency, we also use the sigmoid for the activation of

the hidden layers, and note that we found in our experiments that

it performs similarly to the widely used ReLU [45] . We train the

RNN layers in a supervised end-to-end manner using back propa-

gation through time [36] , and the whole system is optimized with

gradient descent with a learning rate of 10 −5 and momentum 0.9.

All of the weights are initialized with values from a random nor-

mal distribution with zero mean and variance 0.01. 
To prevent over-fitting, we use the early stopping procedure

46] ; specifically, we use 30% of the training data as a valida-

ion set, on which we evaluate the network once every 5 epochs.

he training procedure is stopped when the loss function of the

etwork stops improving, and specifically, when 5 consecutive in-

reases in validation error are obtained. To further increase ro-

ustness against convergence into suboptimal local minima, we

rain three realizations of the same network with different random

eight initializations and average the predictions of the network

ver all realizations. The training time of all three realizations of

he network took about 8 hours on an ordinary desktop computer.

.2. Evaluation 

To evaluate the performance of the proposed deep architecture,

e compare it to the audio-visual voice activity detectors pre-

ented in [32] and [28] , which are denoted in the plots by “Dov

V” and “Tamura”, respectively. In Fig. 1 we present an example

f speech detection in the presence of hammering transient. The

erformance of the proposed deep architecture is compared to the

lgorithm presented in [32] by setting the threshold value t in

7) to provide 90% correct detection rate, and comparing their false

larm rates. Fig. 1 shows that the proposed architecture yields sig-

ificantly fewer false alarms compared to the competing detector,

here the latter wrongly detects transients as speech, e.g., in sec-

nds 33 − 36 . 

In Figs. 2–4 we compare the different algorithms in the form of

eceiver operating characteristic (ROC) curves, which present the

robability of detection versus the probability of false alarm. The

OC curves are generated by spanning the threshold in (7) over all

alues between zero and one. Moreover, the maximal performance

f each method for different acoustic environments is presented

n Table 1 . They are obtained using a threshold value that provides

he best results in terms of true positive (TP) rate plus true nega-

ive (TN) rate. 

In order to further demonstrate the benefit of the fusion of the

udio and video signals for voice activity detection, we evaluated

ingle modal versions of the proposed architecture based only on

he audio or video modalities. The single modal versions are de-
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Table 1 

Comparison of different VADs in terms of TP + TN. The best result in each column is highlighted in bold fonts. 

Babble 10 dB 

SNR Keyboard 

Musical 10 dB SNR 

Hammering 

Colored 5 dB SNR 

Hammering 

Musical 0 dB 

SNR Keyboard 

Babble 15 dB 

SNR Scissors 

Tamura 73.6 83.8 83.9 73.8 81.2 

Dov - Audio 87.7 89.9 87.8 86.5 90.2 

Dov - Video 89.6 89.6 89.6 89.6 89.6 

Dov - AV 92.9 94.5 92.8 92.9 94.6 

Proposed - AV 95.8 95.4 95.9 95.1 97.2 

Fig. 2. Probability of detection versus probability of false alarm. Acoustic environ- 

ment: Musical noise with 10 dB SNR and hammering transient interferences (best 

viewed in color). 

Fig. 3. Probability of detection versus probability of false alarm. Acoustic environ- 

ment: Babble noise with 10 dB SNR and keyboard transient interferences (best 

viewed in color). 
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Fig. 4. Probability of detection versus probability of false alarm. Acoustic environ- 

ment: Colored noise with 5 dB SNR and hammering transient interferences (best 

viewed in color). 
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oted in the plots by “Proposed Audio” and “Proposed Video”, re-

pectively. When tested in a single modal version, the proposed

eep architecture is fed only with features from one modality, af-

er making proper changes to the input layer size. Then, the entire

etwork is trained as described in Section 3 . The benefit of fusing

he audio and the video modalities is clearly shown in Figs. 2–4 ,

here the proposed audio-visual architecture significantly outper-
orms the single modal versions. Also, the proposed deep architec-

ure outperforms the audio-visual methods presented in [28] and

32] . 

In contrast to [32] , where the modalities are merged only at

he decision level, the proposed architecture exploits complex re-

ations between the modalities learned by the transient-reducing

uto-encoder. Moreover, in [32] the temporal context is only con-

idered by concatenating features from a predefined number of

onsecutive frames, while in the proposed architecture the weights

ssociated with previous frames are automatically learned by the

upervised training process of the RNN, allowing for varying dura-

ions of temporal context to be exploited for voice activity detec-

ion. 

. Conclusions and future work 

We have proposed a deep architecture for speech detection,

ased on specifically designed auto-encoders providing a new rep-

esentation of the audio-visual signal, in which the effect of tran-

ients is reduced. The new representation is fed into a deep RNN,

rained in a supervised manner to generate voice activity detection

hile exploiting the differences in the dynamics between speech

nd the transients. Experimental results have demonstrated that

he proposed architecture outperforms competing state-of-the-art 

etectors providing accurate detections even under low SNR con-

itions and in the presence of challenging types of transients. 

Future research directions include considering more complex

ariations of recurrent neural networks for the classification pro-

ess. For example, bidirectional RNNs may be used to exploit the

emporal context from future frames, and long short-term mem-

ry (LSTM) networks may facilitate learning even longer-term de-
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pendencies between the inputs. Another next step is to perform a

fine-tuning of the entire network from end to end in a supervised

manner, while simultaneously updating the weights of the auto-

encoder and the RNN via back propagation. 
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